-

_

_

- Relative humidity and temperature sensor
- Pre-calculated temperature and humidity read out, no extra calculation needed
- Dew Point Calculation possible
- Fully Calibrated, Digital Output
- Excellent Long Term Stability

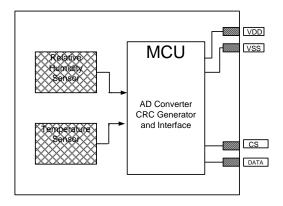
Product Summery

The MTH02 is a MCU based temperature and relative humidity sensor module, comprising one wire interface for direct temperature and humidity read out. The digital output is pre-calculated and no extra calculation is required. The system applied two sensor elements: built in NTC type high precision temperature sensor and resistor type relative humidity sensor from Japan. With a very unique and patented relative humidity calculation algorithm, the system can assure accurate relative humidity output through fine tuned temperature compensation mechanism. Thus very high accurate reading of humidity in the full temperature range (0-50C) can be assured.

No Extra Component Required

Ultra Low Power Consumption

Fully Interchangeable


Automatic Power Down

Small Size

Applications

- HVAC
- Consumer Products
- Weather Stations
- Humidifiers
- Dehumidifiers
- Test and Measurements
- Data Logging
- White Goods

Block Diagram

Parameter	Conditions	Min	Тур	Max	Unit							
Humidity												
Resolution				1	%							
Repeatability			1		%							
Accuracy	Temperature at	0	3	5	%							
Uncertainty	0C – 50C range	0	3	5	70							
Interchangeability		Fully Inter Changeable										
Nonlinearity			1		%							
Range	Temperature at	18		98	%							
	0C – 50C range	10		90	70							
Response Time	63% slowly		60		Second							
Response fille	move air		00		Second							
Hysterisis	Non-condensate	1		2	%							
Long Term Stability	Non-condensate		2		%/yr							
	Tem	peratu	ire									
Resolution			0.1		°C							
Repeatability			0.1	0.2	°C							
Range		-40		70	°C							
Accuracy	25		+/-0.5	+/-1.0	°C							
Response Time	delta T=1.0		60		S							

2. Sensor Interface

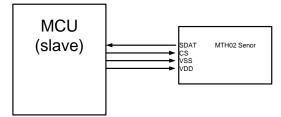


Figure 1: Typical Application

2.1 Power Pins

The MTH02 sensor module requires a voltage supply between 2.2 to 5.5. After power up, the sensor needs 20ms to complete its internal reset process. After reset finished, the sensor will make a measurement automatically and if the CS pin is low, then the measured data will be output automatically.

Power pins should be decoupled through a 10-100nF capacitor. Where in those applications with high power noise

environment, it is strongly recommended to use a 10uF tantalum capacitor to protect the sensor from interferences.

2.2 Serial Interface

The serial interface is optimized for convenient reading and reducing IO usage. Application engineer should be kept in mind the characteristics of the IO pins for applications where current consumption is critical.

CS, INPUT pin, has 50k pull up resister connected internally, thus during normal application, the pin should not be tied to low unless read operation is really needed. DATA, OUTPUT pin in push pull mode. During the power down mode, DATA pin is kept low, and data is modulated through this pin when CS is kept low.

3. Bus Timing

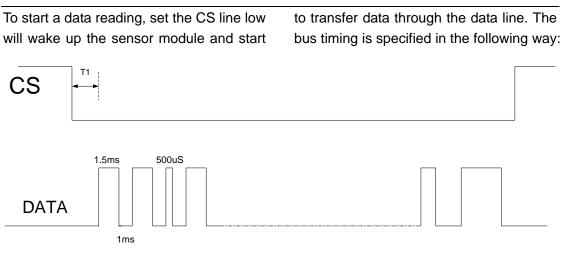


Figure 3: Bus timing

T1: 10ms Nominal 1.5ms - 0 500us - 1

Once CS is set high, sensor module will terminate data transfer process right way, and one extra measurement will start automatically before entering power down mode. The purpose of doing so is that data will be always ready to be transferred once a read command is initiated by pulling low CS pin. This is helpful in reducing waiting time before getting any data back from the sensor module. The imperfect part of this practice is that the data is for previous measured, not up to the current second.

Data output bit stream starts with MSB of temperature (2 byte) data, followed with one byte humidity, two bytes of external sensor temperature and one byte CRC.

T_MSB::T_LSB::RH::EXT_T_MSB::EXT_T_LSB::CRC

3.1Converting output data to temperature and humidity

The temperature value has added an offset value of 40C to avoid negative temperature sign flag problem and multiplied by ten. Thus real temperature can be obtained by deducting 0190(Hex).

4. DC Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Power Supply DC		2.2	3	5.5	V
	AD measuring		100	200	uA
Power Supply Current	data transfering		0.2		mA
	standby		0.2		uA
Low Level Output Voltage		0		20%	Vdd
High Level Output Voltage		80%		100%	Vdd
Low Level Input Voltage	Negative Edge	0%		30%	Vdd
High Level Input Voltage	Positive Edge	70%		100%	Vdd
Pads Leakage Current			1		uA
Output High Current	80%VDD		10		mA
Output Low Current	20%VDD		20		mA

5. Package Information

The module is in 10 x 20 mm size, with six pins:

5.1 Pin Definition

- 1. VDD
- 2. VSS
- 3. PON
- 4. DATA
- 5. SNSA
- 6. SNSB

Figure5: outline of the sensor module

6. CRC

CRC stands for Cyclic Redundancy Check. It is one of the most effective error detection schemes and requires a minimal amount of hardware.

The polynomial used in the MTH01 is: $x^{8} + x^{5} + x^{4}$. The types of errors that are detectable with this polynomial are:

- 1. Any odd number of errors anywhere within the transmission.
- 2. All double-bit errors anywhere within the transmission.

3. Any cluster of errors that can be contained within an 8-bit "window" (1-8 bits incorrect).

4. Most larger clusters of errors.

The receiver can perform the CRC calculation upon the first part of the original message and then compare the result with the received CRC- 8. If a CRC mismatch is detected, the MTH01 should be reset and a new measurement should be repeated.

This application note will cover two methods for checking the CRC. The first "Bitwise" is more suited for hardware or low level implementation while the later "Bytewise" is the preferred method for more powerful microcontroller solutions.

6.1 Bitwise

With the bitwise method, the receiver copies the structure of the CRC generator in hard- or software.

An algorithm to calculate this could look like this:

- 1) Initialize CRC Register to 0
- 2) Compare each (transmitted and received) bit with bit 7
- 3) If the same: shift CRC register, bit0='0' else: shift CRC register and then invert bit4 and bit5, bit0='1' (see figure 1)
- 4) receive new bit and go to 2)
- 5) After the last byte is treated, the result in CRC register is the calculated.

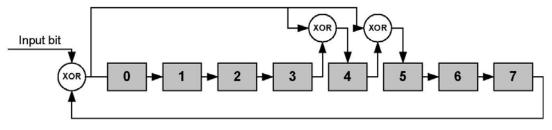


Figure 6 CRC generator state machine

6.1.1 Example for bitwise												
Example	1: 0x05-0x09	9-0x3	81 CR	C calculate example								
Input bit's	bit7 bit0			Comment								
input bit o		0x	dec									
	0000'0000			Start value								
0	0000'0000	00	0	st								
				1 bit of command								
0	0000'0000	00	0	nd								
				2 bit of command								
0	0000'0000	00	0									
0	0000'0000	00	0									
0	0000'0000	00	0									
1	0011'0001			CRC EXOR polynom								
0	0110'0010											
1	1111'0101	F5	245	CRC after command								
0	1101'1011			st byte (MSB) of measurement								
	4000/0444											
0	1000'0111 0011'1111											
0	0111'1110											
0	1100'1101											
0	1010'1011											
0	0110'0111											
1	1111'1111	FF	255	CRC value								
0	1100'1111	••	200	nd								
				2 byte (LSB) of measurement								
0	1010'1111											
1	0101'1110											
1	1000'1101											
0	0010'1011											
0	0101'0110											
0	1010'1100											
1	0101'1000	58	88	Final CRC value								

Example 1: 0x40 CRC calculate example

Input bit's	bit7 bit0	0x	dec	Comment
	0000'0000	-		Start value see below
0	0000'0000	00	0	1 bit of command
0	0000'0000	00	0	2 nd bit of command
0	0000'0000	00	0	
0	0000'0000	00	0	
0	0000'0000	00	0	
1	0011'0001			CRC EXOR polynom
1	0101'0011			
1	1001'0111	97	151	CRC after command
0	0001'1111			1 st bit (MSB) of status register
1	0000'1111			
0	0001'1110			
0	0011'1100			
0	0111'1000			
0	1111'0000			
0	1101'0001			

6.2 Bytewise

With this implementation the CRC data is stored in a 256 byte lookup table. Perform the following operations:

- 1. Initialize the CRC register with value 0
- 2. XOR each (transmitted and received) byte with the previous CRC value. The result is the new byte that you need to calculate the CRC value from.
- 3. Use this value as the index to the table to obtain the new CRC value.
- 4. Repeat from 2.) until you have passed all bytes through the process.
- 5. The last byte retrieved from the table is the final CRC value.

6.2.1 256 byte CRC Lookup table

	_	_		_				_											_	_	_	_					_		_		_
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	49	98	83	196	245	166	151	185	136	219	234	125	76	31	46	67	114	33	16	135	182	229	212	250	203	152	169	62	15	92	109
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
134	183	228	213	66	115	32	17	63	14	93	108	251	202	153	168	197	244	167	150	1	48	99	82	124	77	30	47	184	137	218	235
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
61	12	95	110	249	200	155	170	132	181	230	215	64	113	34	19	126	79	28	45	186	139	216	233	199	246	165	148	3	50	97	80
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
187	138	217	232	127	78	29	44	2	51	96	81	198	247	164	149	248	201	154	171	60	13	94	111	65	112	35	18	133	180	231	214
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
122	75	24	41	190	143	220	237	195	242	161	144	7	54	101	84	57	8	91	106	253	204	159	174	128	177	226	211	68	117	38	23
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
252	205	158	175	56	9	90	107	69	116	39	22	129	176	227	210	191	142	221	236	123	74	25	40	Ô	55	100	85	194	243	160	145
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
71	118	37	20	131	178	225	208	254	207	156	173	58	11	88	105	4	53	102	87	192	241	162	147	189	140	223	238	121	72	27	42
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
193	240	163	146	5	52	103	86	120	73	26	43	188	141	222	239	130	179	224	209	70	119	36	21	59	10	89	104	255	206	157	172

6.2.2 Code example for lookup table

The following procedure calculates the CRC-8. The result accumulates in the variable CRC.

Var

CRC : Byte;

Procedure calc_CRC(X: Byte);

Const

CRC_Table : Array[0..255] of Byte = (

0, 49, 98, 83, 196, 245, 166, 151, 185, 136, 219, 234, 125, 76, 31, 46, 67, 114, 33, 16, 135, 182, 229, 212, 250, 203, 152, 169, 62, 15, 92, 109, 134, 183, 228, 213, 66, 115, 32, 17, 63, 14, 93, 108, 251, 202, 153, 168, 197, 244, 167, 150, 1, 48, 99, 82, 124, 77, 30, 47, 184, 137, 218, 235, 61, 12, 95, 110, 249, 200, 155, 170, 132, 181, 230, 215, 64, 113, 34, 19, 126, 79, 28, 45, 186, 139, 216, 233, 199, 246, 165, 148, 3, 50, 97, 80, 187, 138, 217, 232, 127, 78, 29, 44, 2, 51, 96, 81, 198, 247, 164, 149, 248, 201, 154, 171, 60, 13, 94, 111, 65, 112, 35, 18, 133, 180, 231, 214, 122, 75, 24, 41, 190, 143, 220, 237, 195, 242, 161, 144, 7, 54, 101, 84, 57, 8, 91, 106, 253, 204, 159, 174, 128, 177, 226, 211, 68, 117, 38, 23, 252, 205, 158, 175, 56, 9, 90, 107, 69, 116, 39, 22, 129, 176, 227, 210, 191, 142, 221, 236, 123, 74, 25, 40, 6, 55, 100, 85, 194, 243, 160, 145, 71, 118, 37, 20, 131, 178, 225, 208, 254, 207, 156, 173, 58, 11, 88, 105, 4, 53, 102, 87, 192, 241, 162, 147, 189, 140, 223, 238, 121, 72, 27, 42, 193, 240, 163, 146, 5, 52, 103, 86, 120, 73, 26, 43, 188, 141, 222, 239, 130, 179, 224, 209, 70, 119, 36, 21, 59, 10, 89, 104, 255, 206, 157, 172);

Begin CRC := CRC_Table[X xor CRC]; End;

7. Important Notice

Do not use this product as safety or emergency stop devices or in any other applications where failure of the product could result in personal injury. Failure to comply with this instruction could result in death or fatal injury.

7.1 ESD precautions

To prevent ESD related damage and/or degradation, take normal ESD precautions when handling the device.

7.2 Warranty

We make no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor do we assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages.