DSO 138 Oscilloscope DIY Kit
User Manual
Rev. 04
Applicable models: 13803K, 13804K

Tools you need
1. Iron (20W)
2. Screw driver
3. Solder wire
4. Flush cutter
5. Multimeter
6. Tweezers

Before you start
1. Check part values & quantities against part list
2. Always meter resistor values before soldering
3. Understand all part polarities and orientations

Important !!!
Install all SMD parts before proceeding to Step1 if you purchased kit 13804K.

Assembly Main Board and LCD board (follow the order as numbered)

Step 1

1. Resistors
 - Note: Always meter resistor values before soldering
 - R1, R14, R16: 100KΩ
 - R2: 1.8MΩ
 - R3: 200KΩ
 - R4: 2MΩ
 - R5: 20KΩ
 - R6: 300Ω
 - R7, R36: 180Ω
 - R8, R12, R13: 120Ω
 - R9, R15, R26: 1KΩ
 - R10: 3KΩ
 - R38: 1.5KΩ
 - R28, R40: 470Ω
 - R37, R39: 10KΩ

2. HF-Chokes
 - L1, L3, L4: 100μH

3. Diodes
 - D1: 1N5819
 - D2: 1N4004 (or 1N4007)

4. Crystal
 - Y1: 8MHz

5. USB Socket *
 - J4: USB mini B
 - Note: This connector is optional.

6. Tact Switches
 - SW4, SW5: 6 X 6 X 5mm
 - SW6, SW7, SW8

7. Ceramic Capacitors
 - C1, C9: 0.1μF
 - C10, C11, C14, C15, C16, C17, C18, C20, C23
 - C2: 330pF
 - C7, C8: 120pF
 - C3: 3pF
 - C12, C13: 22pF
 - C5: 1pF

8. LED
 - Solder positive pole (the longer lead) to the square pad
 - D3: 0.3mm, green

9. Pin header (for power)
 - Face the opening outward
 - J0: 2 Pin

10. Transistors
 - Q1: 8550
 - Q2: 9014
 - SW1, SW2, SW3, SW4
 - SW5, SW6

11. Regulators
 - U4: 79L05
 - U5: 78L05
 - U7: 5 V
 - U9: 5 V
 - U10: 5 V
 - U11: 5 V

12. Capacitor trimmers
 - C4, C6: 5 - 30pF

13. Power inductor
 - L2: 1mH/0.5A

14. Electrolytic capacitors
 - C19, C21: 100μF/16V
 - C22, C24, C25, C26

15. Power connector
 - J10: DC005

16. Pin-header (male) *
 - J5: 1 X 3 pin
 - J6: 1 X 4 pin
 - Note: These pin-headers are optional.

17. Pin-header (female)
 - J7, J8: 1 X 2 pin
 - J9: 2 X 20 pin

18. Slide switches
 - SW1, SW2, SW3: 2P3T

19. BNC connector
 - J1: BNC
 - Note: The thicker pins need to heat up longer to get good soldering result.

Soldering Hints
1. Put leads through mounting holes from the side with part outline. Ensure component evenly touch PCB.
2. Solder leads at the other side. Solder should fully fill and cover soldering pads.
3. Cut unused leads flush with cutter.
4. Avoid bridges between neighboring pads.

Packages are similar.
Do not mix up!

Attention!
The thicker pins need to heat up longer to get good soldering result.

Note:
- R11: 150Ω
- These pin-headers are optional.
- Applicable models: 13803K, 13804K
- Install all SMD parts before proceeding to Step1 if you purchased kit 13804K.
- Important !!!
- This connector is optional.
- These pin-headers are optional.
- Note:
- The thicker pins need to heat up longer to get good soldering result.

Put leads through mounting holes from the side with part outline. Ensure component evenly touch PCB.

Solder leads at the other side. Solder should fully fill and cover soldering pads.

Avoid bridges between neighboring pads.

Cut unused leads flush with cutter.

Before you start
1. Check part values & quantities against part list
2. Always meter resistor values before soldering
3. Understand all part polarities and orientations

Important !!!
Install all SMD parts before proceeding to Step1 if you purchased kit 13804K.
Step 2

Test and Use

NOTE: You need a 9V DC power supply (at least 200mA capacity) to run the scope. This power supply is not included in the kit.

A. Check voltages

1. Apply 9V power to J10 (or J9).
2. Check voltage at TP22. It should be around +3.3V.
3. If voltage at TP22 is good disconnect power. Short JP4 with solder permanently.

B. Attach LCD board

Plug LCD board into the female headers J3, J7, and J8 on the main board.

C. Verify

1. Connect power supply again. You should see LCD lights up and oscilloscope panel displayed.
2. Press various buttons and move switches to verify their functions.

Troubleshooting

LCD Dark

- Is voltage at V+ good?
 - Yes: Check power supply
 - No: Fix R36
- Is R36 value correct and soldered good?
 - Yes: Check R36 and power again
 - No: Check LCD board

No Display

- Short JP4 if it has not been done. See Step 2 above.
- Press SWB. Does LED blink?
 - Yes: Check +3.3V voltage
 - No: Check J3 soldering for possible opens or shorts
- Check J1 soldering on LCD board for possible opens or shorts (use Test Mode)

Test Mode

What it is and how it works

Test Mode is used to find out possible opens (for all port pins) and shorts (for pins PB0 - 15 and PC13-15). When entered it first checks PB and PC pins with special patterns to find out possible shorts. If found LED will be fast blinking. Otherwise, it generate 3.3V and 0V alternatively at each port pins (PA, PB, PC and PD) in cycle of about 4 seconds. These signals can be used to check for opens.

How to use

1. Hold down SW4 and press RESET to enter Test Mode.
2. If you see LED fast blinking that means there are shorts on PB or PC pins. You need to find out the shorts first.
3. If you see LED slowly blinking use a volt-meter to check each pin related connections that are suspected open. When you don’t see voltage change at a spot which is supposed being connected to a port pin there may be open between the spot and the port pin.

Voltage References

- **Input Voltage**
 - 9.39V
 - 6.43V
 - 0.19V
 - 5.02V
 - 3.3V

- **AV+ and AV-**
 - 8.60V
 - 9.39V
 - 8.34V
 - 3.3V
 - -1.39V

- **Trigger LED blinking twice indicates booting-up is good.**

NOTES:

1. The voltages in the photo are for reference only. The voltages on your board could be different. But they should be close to the values shown.

2. These voltages are input voltage dependent. The values shown were measured when input voltage was 9.39V.

3. These voltages are measured when CPL switch (SW1) is set to GND position.

Tech Support: www.jyetech.com/forum

JYE Tech Ltd. - www.jyetech.com
Connections

Power Supply: Connect DC power supply to J9 or J10. The power supply voltage must be in the range of 8 - 12V.

Probe: Connect probe to J1.

Operations

Press on [SEL] button: Select parameter to be adjusted. The selected parameter will be highlighted.

Press on [+] or [-] button: Adjust the parameter selected by [SEL] button.

Press on [OK] button: Freeze waveform refresh (entering HOLD state). Press on it again will defreeze.

Change [CPL] switch: Set couple to DC, AC, or GND. When GND is selected the scope input is isolated from input signal and connected to ground (0V input).

Change [SEN1] or [SEN2] switch: Adjust sensitivity. The product of [SEN1] and [SEN2] settings makes the actual sensitivity which is displayed at the lower-left corner of the panel.

Press on [Reset] button: Perform a system reset and re-boots the oscilloscope.

0V Line Alignment

Sometimes you may find the 0V line (the trace corresponding to 0V input voltage) does not match with the VPOS indicator at the screen left border. This can easily be fixed by performing the "0V line alignment" function. First, set the couple switch [CPL] to GND position. Then press on [SEL] button to make VPOS indicator highlighted and hold down [OK] button for about 2 seconds. You will set the trace aligned to VPOS indicator when you release [OK] button. You may see some residue mismatch remains at the highest sensitivity settings. This is normal.

Probes Calibration

Because there is always some capacitance between scope input and ground probe needs to be calibrated to achieve better measurement results for high frequency signals. This can be done with the help of the built-in test signal. To do this please follow the steps below.

1. Connect the red clip to the test signal terminal and leave the black clip un-connected (see photo at right).
2. Set [SEN1] switch to 0.1V and [SEN2] switch to X5.
3. Set [CPL] switch to AC or DC.
4. Adjust timebase to 0.2ms. You should see waveform similar to that shown in photos below. If traces are not stable adjust trigger level (the pink triangle on right screen border) so as you get a stable display.
5. Turn C4 (capacitor trimmer) with a small screw driver so that the waveform displays sharp rightangle (photo C).
6. Set [SEN1] switch to 1V and [SEN2] switch to X1 while keep all other settings unchanged. Adjust C6 so that sharp rightangle waveform is displayed.

Turn On/Off Readouts

Press [SEL] so that timebase is highlighted. Hold down [OK] button for about 2 seconds. This will turn on/off measurement readouts.

Waveform Save/Recall

Press [SEL] & [+] simultaneously: Save currently displayed waveform to non-volatile memory.

Triggers and Their Modes

Triggers are events that indicate signal voltage acrossing a set level (i.e. trigger level) along a specified direction (i.e. trigger slope, rising or falling). Oscilloscope uses triggers as reference points in time for stable waveform display and measurements.

Auto Mode

In auto mode oscilloscope will perform display refresh no matter triggers happen or not. When triggers are detected waveform display will be displayed with reference to trigger points. Otherwise, display waveform at random reference points.

Normal Mode

In normal mode oscilloscope will only perform display refresh when there are triggers. If no triggers happen waveform display will stay unchanged.

Single Mode

Single mode is the same as normal mode except that oscilloscope will enter HOLD state after a trigger has been detected and waveform display has been updated.

Normal and single modes are useful for capturing sparse or single waveform.

Specifications

- Max realtime sample rate: 1Ms/s
- Analog bandwidth: 0 – 200kHz
- Sensitivity range: 10mV/div – 5V/div
- Max input voltage: 500Vpk (1X probe)
- Input impedance: 1M ohm/20pF
- Resolution: 12 bits
- Record length: 1024 points
- Timebase range: 0.5us/DIV – 500ms/DIV
- Trigger modes: Auto, Normal, and Single
- Trigger position range: 50%
- Power supply: 9V DC (8 – 12V)
- Current consumption: ~120mA
- Dimension: 115 x 76 x 15mm
- Weight: 90 gram (without probe)

Tech Support: www.jyetech.com/forum

JYT Tech Ltd.

Tel: +86-0773-2113856 www.jyetech.com