0

S ELECROW

Advance HMI P4

- 5.0"
‘ ™Y
°. ESP32-P4 HMI
Al Display

Table of contents

Lesson 1 - Print "Hello World"

Lesson 2 - Turn on the LED

Lesson 3 - UART3-IN interface (external power supply)

Lesson 4 - Serial port usage

Lesson 5 - Touchscreen

Lesson 6 - USB2.0

Lesson 7 - Turn on the screen

Lesson 8 - SD Card File Reading
Lesson 9 - LVGL Lighting Control
Lesson 10 - Temperature and Humidity
Lesson 11 - Playback After Recording
Lesson 12 - Playing Local Music from SD Card
Lesson 13 - Camera Real-Time

Lesson 14 - SX1262 Wireless Module

Lesson 15 - nRF2401 Wireless RF Module

Lesson 01
Print “Hello World”

Introduction

In this class, we will officially learn to write code in the ESP-IDF environment to drive the
Advance-P4 development board. The subsequent courses will follow a gradient design
from simple to complex, helping you gradually master the ESP-IDF development
framework and the usage logic of the ESP32-P4 chip, and establish a clear technical
understanding. Specifically for this class, there are two core goals: First, to teach you how
to create and burn a basic program in ESP-IDF, achieving the first "communication”
between your computer and the ESP32-P4 chip on the Advance-P4 development board;
second, to enable you to clearly see the "Hello World" information printed in real-time by
the chip in the terminal window of the ESP-IDF tool, completing the crucial step from
“configuring the environment” to "verifying the function”.

Hardware Used in This Lesson

This class does not involve the use of hardware. It is only to teach you how to create a
new project and how to flash code to the ESP32-P4 chip on ESP-IDF.

Operation Effect Diagram

+ When running on the ESP32-P4, the serial terminal will output "Hello world" with an
increasing counter every 1 second.

[ESP-IDF: QEMU] _ESPIDF: O

ey Explanations

- First, let's talk about how to create a new project in the already installed ESP-IDF.

« Click on the ESP-IDF icon, then click "New project”

) File Edit Selection View Go Run Terminal Help €
-) wetcome [E—
—

Y ——

@ ® select curent E5p-1DF version

@ ¥ ESP-IDF: Select Flash Method . .

@ Seect ot s (COM, t usse. Welcome to Espressif IDF extension
© Select Monitor Port to Use (COM, t.
10 Seect Prject Conigurtion
€3 set Espressif Device Target (IDF_TA. ¥ show Welcome on extension startup

Version: 1.102

£ SOK Configuration Editor (menuco.
B Ful dean

5 Build Project) .
$ Flash Device Quick actions
2 Monitor Device

P pebug

& ESP-IDF:Bu, Fiash and Moritor
[Open ESP-IDF Terminal

@ Configure extension Tutorials

B Execute Custom Task
£ start/stop QEMU server
& [0penocD server)

> Advanced

£7 New project Documentation
& Import project
A& Show examples

A Components manager

> DOCUMENTATION SEARCH RESULTS
> DEVICE PARTITION EXPLORER

> APPLICATION TRACER

> APPLICATION TRACER ARCHIVES

> RAINMAKER

Then a version of the ESP-IDF environment that you configured in the previous class
will pop up.

Select the 5.4.2 version that you previously set up.

Fle Gt sdecion View Go Run Temina Help T
ESP-IDF: EXPLORER) welcome ESP-IDF Welcome X Use ESP-IDF jAMy_APP\IDF_MY\v5.4.2\esp-idf ESP-IDF v5.42
e
@ B Seec urent Project wertpace,
curent 5P 0F vrsion
E5P-D:Slct Fish Method . .
5 Seector o Use M,y Welcome to Espressif IDF extension
& Select Monitor Port to Use (COM, t
10 Sect Prjct configstion
€ set Espressif Device Target (IDF_TA. ¥ show Welcome on extension startup

Version: 1.102

& SDK Configuration Editor (menuco.
W Full Clean

2 Build Project . .

8 Flash Device Quick actions
3 MritorDevice

> Debu -
& 9)
& ESP-IDF: Build, Flash and Monitor 4@ Configure extension gE

£ Open ESP-IDF Terminal
@ B Execute Custom Task
@ & star/stop QEMU Server
@ & 10penocD server]

> Advanced

£7 New project Documentation
 Import project T

A Show examples

A Components manager

Then, enter this configuration interface. Hereg, fill in and set the name, path, target chip,
serial port, and the folder name for the subsequent used component files of your

newly created project.

Finally, select the template.

23 solc Curnt Projectverkspace

New Project

Project Name

peripheral

» Choose ESP-IDF

) File Edit Selection View Go Run Terminal

ESP-IDF: EXPLORER New Project X
 CoMMANDS

@ B3 Select Current Project workspace .

Choose Template

New Project

) ® Select current ESP-IDF version

W ¥ ESP-IDF: Sele Method

) © Select Port to Use (COM, tty, usbse.
& Select Moritor Por to Use (COM, .

) 10 select Project Configuration

W O et Espressif Device Target (IDF_TA

¥ @ SDK Conliguration Editor (menuco.

¥ @ Ful Cean

@ £ build Project

@ § Flash Device

@ O Monitor Device

@ & Debug

) & ESP-IDF:Buid, Flash and Montor

xtension
Edersion X
ESP-IDF_ plate By Name
espressif.esp-idf-extension-1.10.2

T

P

e

B

« After selecting "Hello World", click "Confirm Creation” (you can also take a detailed look
at the official introduction of this interface).

) fle wt sdecion view Go fun Teminal Help

New Project
Create project using template hello_world

get-started

Hello World Example
e e Bt

Seethe REs0H e upperlevel ‘eampes direc

How to use example

Follow detaiet nsructions provided spciicaly or

Example folder contents

e prsect ello workd cotsineone s e i Clanguage The s ocatedin foldr

e eddystone sender
e i deice cemo
e bescon

« Thus, we have successfully created the new project.

) Fle Edit Selection View Go Run Terminal Help
eooRER € hello_world_mainc X
 wessonor helk
> deveontainer
> wscode
> buid
M CMakeliststd
hello_world_mainc
= dangd
| M cmaketistsixt
& pytest hello_worldpy
MEmd
<dkconfig

app_main(

printf("Hello

chip_info.fea
= chip_info.revision / 100;
chip_info.revision % 160;

%d.%, ", major_rev, minor_rev);
, &flash_size) I= E

> ourume
> TimeLne
> PROJECT COMPONENTS.

2 t) (1024 * 1024),
50 & @EspDrisaz GUAT O CoMis Oepipt @ B S =

E5P-IDF: QEMU)

« Subsequently, we will modify the code based on this project and add the necessary
components we need to use in the subsequent courses.

« Now, we can modify the hello_world _main.c function.

« Since in this class, | want to achieve the loop printing of "hello world:i" and continuously
increment i, | deleted this sample code and replaced it with the code | wrote myself.

D oo

 LESSONO1

€ hello_world_main.c X

> devcontainer
> wscode
> buid
an app_main(void)
MakeLists xt
C hello_world_mainc
£ dangd
1 CMakeLsts txt
» pytest hello_worldpy
READMEmd
£ sdkconfig
= sokconfigi

£
VTaskDelay (1060 /

+ Next, we will provide a detailed explanation of this code to help everyone have a clear
understanding.

» When this code runs on the ESP32-P4, it outputs "Hello world” with an increasing

counter every 1 second through the serial port. It utilizes the delay mechanism of
FreeRTOS to achieve a non-blocking loop.

+ The program first imports stdio.h to use "printf()" for outputting debugging information.
Then, it includes FreeRTOS.h and task.h, allowing the use of task management and
delay functions provided by FreeRTOS. Based on this, the main function uses "printf()"
to print the content and controls the loop rhythm using "vTaskDelay()" to achieve
outputting information every 1 second without blocking the operation of other system

tasks.

« In ESP-IDF, the entry function of the program is not main(), but app_main().

« This function will be automatically called by the IDF framework.

Note: app_main is actually a FreeRTOS task (the main task), so you can write an
infinite loop in it.

oid app_main(void

printf(“He
vTaskDelay (10

« "i"is a counter, with an initial value of 0.

« Itincrements after each loop.

oid app_main(

p
vTaskDelay(1eee

« printf("Hello world: %d\n", i++);
« Output "Hello world: i" to the serial port.

« i++: First use the value of i, then increment i by 1.

oid app_main(void)

printf (“Hello
vTaskDelay (18

+ vTaskDelay(1000 / portTICK_PERIOD_MS): This function delays the current task for a
certain period of time.

« Parameter explanation:
+ 1000: The duration of the delay (in milliseconds).

+ portTICK_PERIOD _MS: The number of milliseconds corresponding to one tick in the
system.

« For example, if FreeRTOS is configured such that 1tick =1 ms, then 1000 /1=1000 ticks =
1second.

+ Therefore, vTaskDelay (1000 / portTICK _PERIOD _MS); is equivalent to delaying for 1
second.

main >

app_main(

printf(“He
vTaskDelay (16

Complete Code

Kindly click the link below to view the full code.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/LessonQl-Print_Hello_World

Programming Steps

« Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.
(Connect UARTO)

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson01-Print_Hello_World

« In order of priority, select the ESP-IDF version 5.4.2 that you are currently using.
* We are using serial flash programming, so select UART.

+ Since the serial port number displayed may vary depending on your device, after
clicking 3, select the serial port that belongs to your own device.

« Make sure that you are using the esp32-p4 chip.

€ hello_world_mainc X

> build

~ main

printf("Hello w
VTaskDelay (1660 /

> OUTLINE
> TIMELINE
> PROJECT COMPONENTS

Xl & [5 <7 UART s g S x 5 > IDF: QEMU] _ [ESP)

After configuring 1, 2, 3, and 4 as mentioned above, we will proceed to compile the
project to check if there are any issues with the code.

First, click on 1in the picture below, which represents the function of compiling the
code.

Wait for a while, after the code is compiled, you will be able to see the following
information in the terminal, indicating that your code has been compiled successfully.

> ounme sl e €0 reserved senc
dsta Tike the bootloater,

Then, click the "Burn” button.

TERMINAL

Y5 ounme

> TmeuNE
> PROJCT COMPONENTS
5 & ©eporsa2 GURT OO Oepos © 8 5 [F] O H 6 B B ®0A0 @mid B D> ESP-IDF QEMU]_[ESPIDF: OpenOCD Server]_Ln 13, Col 1

08255 bytes (.bin may be padded langer)
e total sizes may be smaller than those in the technical reference manual due to reserved memory and application configuration. The total flash size
fault, as it camnot be relisbly determined due to the presence of other data like the bootloader, partition table, and application partition size.

After waiting for a while, you will be able to see from the displayed information on the
output that the code has been uploaded successfully.

Sot.py -p poRT 11230

ore default resat —-after hard_reset --port COMLA urite flash ——Flash mods dio --Flash size 248 -Flash freq Som Gx2660 bootloadar/bootloader. bin
{tion-table bin

default_reset -after hard_reset urite_flash “§Flash_args

> ounme
> Twene
50 & misr-orse: trus 0 cowne > 5 0 2 @0 5 > £57-D7 Q) E5707-0per0CD)

+ Of course, you can also see from the upload process displayed on the terminal that
your code has been uploaded successfully.

) Fie it Seecion View Go fun Teminal e

[a———

it (“Hello world: S\, i)
Viskoelay (1600 /

+ Next, all you need to do is to open the serial port monitor, and then you will be able to
see that "hello world" is being printed.

) Fle Edit Selecton View Go Run Teminal Help

exvLoE € hello_world_mainc X
© wsssoNor main > € hello_world_mainc >

> deveontainer

> ascode
> buid
M CMakeliststt CRLIG
€ hello_world mainc 1-0
ihile (1) {
D M Cmakelistso printf("Hello world: %d\n”,
e VTaskDelay (1000 / portTX

= dangd

PROBLEMS OVIPUT DESUGCONSOLE TERMNAL FORTS

Compressed 22248 bytes to 13691...
lirote 22240 bytes (13691 conpressed) at 008062090 in ©.7 seconds (effactive 249.8 kbit/s)
Hash of data verified.

Compressed 208668 bytes to 107236. ..

Wirote 208608 bytes (107236 conpressed) at @xee010090 in 3.1 seconds (effective 532.3 Kbit/s).
Hash of data verified

Compressed 3672 bytes to 163

Wirote 3072 bytes (103 compressed) at €xe088090 in ©.1 seconds (effective 201.4 kbit/s)...
Hash of data verified

> oumume

Leaving.
PLITS Hard resetting via TS pin...
> PROJECT COMPONENTS

) Fle Edt Selection View Go Run Terminal Help 1 lesson0l

BwwoRER € hello_world_mainc X

~ wEssonot
> devcontainer
> wscode
> buid
M CMakelistsixt
€ hello_world_mainc
ntf("Hello world: %d\n", 1
VTaskbelay (1000 / port

TeRMINAL

Hello world:

> ourune
> TmeLNe Hello world:
> PROJECT COMPONENTS
; ESP-IDF: QEMU] _[ESP-IDF: OpenOCD Server] Ln 13, Col 1

Xl e o 42 ¢ UaRT 13 Oespitpt @ @ 5 § O > & B B ®0ho

So, that's all for this lesson. In the next class, we will gradually increase the difficulty
level. We will teach you how to use components, how components are related to the
main function, and how to have the main function utilize the interfaces within the

components.

Lesson 02
Turn on the LED

Introduction

In this class, we will start to explore the most important component in ESP-IDF.

In this class, we will use the bsp_extra component we have written ourselves to control
the level of the UARTI interface on the Advance-P4, so that the LED connected to the
UART! interface will light up for one second and then go off for one second.

Hardware Used in This Lesson

Introduction to the UARTI1 Interface on Advance-P4

SR RN

e HEHFH
5

On our Advance-P4 board, the UARTI interface is identified by the name "UART". We
should look for an interface that can be used for serial communication. Moreover, during
the initial design phase, this UARTI interface can also be used as a regular GPIO port. That
is, we can treat the RX and TX pins on this interface as two regular GPIO ports.

Introduction to GPIO

+ The ESP32-P4 chip offers 55 general-purpose input/output (GPIO) functions, providing
flexibility and adaptability for a wide range of applications. The key features of these
GPIOs include:

1. Multi-functionality: Each GPIO pin can not only be used as an input or output, but can
also be configured as various roles through 10 MUX (refer to Chapter 2 for details),
such as PWM, ADC, 12C, SP|, etc. This enables the ESP32-P4 to adapt to various
peripheral connections.

2. High current output: The GPIO pins of ESP32-P4 support up to 40mA of current output,
allowing direct driving of low-power loads such as LEDs. This reduces the complexity of
external driver circuits.

3. Programmability: Through the ESP-IDF (SDK) development framework, users can
flexibly configure the input/output mode, pull-up/pull-down parameters, and other
settings of each GPIO to meet specific application requirements.

4. Interrupt support: GPIO pins support interrupt functionality, which can trigger interrupts
when the signal changes. This is suitable for real-time response applications such as
button detection and sensor triggering.

5. Status indication: GPIO pins can be used as LED indicators, achieving status
visualization through simple high/low level switching. This helps users debug and
monitor system operation.

The GPIO functions of ESP32-P4 provide powerful hardware support for developers. In this
chapter, we will delve into the application and configuration of GPIO through an example
of lighting an LED.

Introduction to LED

« LED is a highly efficient and durable miniature semiconductor device that emits light
when an electric current passes through it. It has the advantages of high energy
conversion efficiency, low heat generation, and environmental friendliness. They are
commonly used in indicator lights, display screens, and lighting equipment. LEDs have
fast response times and a wide range of color options, making them widely used in
electronic products. In the ESP32-P4 lighting demonstration, GPIO control simplifies
and makes it intuitive to switch the LEDs, helping users better understand their
practical applications.

1. The principle of LED light emission

LED devices are light-emitting components based on solid-state semiconductor
technology. When a forward current is applied to a semiconductor material with a PN
junction, the recombination of charge carriers within the semiconductor releases energy
in the form of photons, thereby generating light. Therefore, LEDs are cold light sources,
unlike lighting based on filament, which generates heat and thus avoids problems such
as burning out. The following chart illustrates the operating principle of LED devices.

Transparent epoxy encapsulation
,~ LED chip

Wedge bracket
Cathode rod with launch

bowl
Anode rod

LED structure diagram

In the above chart, the PN junction of the semiconductor exhibits the characteristics of
forward conduction, reverse blocking, and breakdown. When there is no external bias
and the junction is in a thermal equilibrium state, no carrier recombination occurs within
the PN junction, and thus no light emission is produced. However, when a forward bias is
applied, the light emission process of the PN junction can be divided into three stages:

Firstly, carriers are injected under forward bias;
Secondly, electrons and holes recombine within the P region, releasing energy;

Finally, the energy released during the recombination process is radiated outward in the
form of light. In summary, when current passes through the PN junction, electrons are
driven to the P region by the electric field. There, they combine with holes, releasing
excess energy and generating photons, thereby achieving the light-emitting function of
the PN junction.

Note: The color of the light emitted by an LED is determined by the band gap width
of the semiconductor material used. Different materials will produce light of
different wavelengths, thus being able to generate light output of various colors.
This efficient light-emitting mechanism has made light-emitting diodes widely
adopted in lighting and indication applications.

2. Principle of LED Lighting Driver

LED driving refers to providing appropriate current and voltage to LEDs through a stable
power supply to ensure their normal lighting. The main driving methods for LEDs are
constant current driving and constant voltage driving, among which constant current
driving is more favored as it can limit the current. Due to the fact that LED lights are very
sensitive to current fluctuations, exceeding their rated current may cause damage.
Therefore, constant current driving ensures the operation of LEDs by maintaining a stable
current flow. Next, we will study these two LED driving methods.

1. Current injection connection. This refers to the working current of the LED being
provided externally, and the current is injected into our microcontroller.

The risk here is that the fluctuations of the external power supply can easily cause the
microcontroller pins to burn out.

Vv R
V3 Bor LED 7,

I-——D—N_< IMCU_GPIO

2. Power current configuration. This refers to the voltage and current provided by the
microcontroller, and the current output will be applied to the LED. If the LED is driven
directly by the GPIO of the microcontroller, its driving capability is relatively weak and
may not be able to provide sufficient current for driving the LED.

R
LED 510R
— [——<CIMCU_GPIO

L 4

GND

The LED circuit on the ESP32-P4 development board adopts the "current receiving”
configuration. This approach avoids the microcontroller directly powering and
supplying current to the LED, thereby effectively reducing the load on the
microcontroller. This enables the microcontroller to focus more on performing other
core tasks, thereby enhancing the performance and stability of the entire system.

Operation Effect Diagram

« After running the code, you will be able to observe that the LED connected to the UARTI
interface will light up for one second and then go off for one second.

@ Cro@nel'

SKU:0HE@LP@SD
ESP32 P4 vance HMI Display 5.8 V@.1
S

CETHH

.
SRR

Key Explanations

Now let's talk about how the overall code framework is structured and connected after
adding the bsp_extra component?

With this question in mind, let's explore it together.

First, click on the Github link below and download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson02-Turn_on_the%20LED

Then, drag the code of this lesson into VS Code and open the project file.

Advance-P4 x |+
€ A G O > ThsPC > FNE() > AdvancePd > Search Advance-P4 a
© New ¥ © O @ W N Sot = View D Preview

Tre

9inch

File folder

lesson01

Lesson02 9/19/2025 8:06 PM File folder

Cod

£5P32-P4-Advance.zip 91920251103 A Compy 149,196 K8

Arduino1s

The code in the subsequent courses will also be opened in this way.

From now on, there will be no further explanation on how to open the code.

« After opening it, you can see the framework of this project.

~ LESSONO2

In the example of this class, a new folder named
"bsp_extra” was created under "LESSONO2/peripheral”.

build Inside the "bsp_extra" folder, a new "include” folder, a

main

e "CMakelists.txt" file, and a "Kconfig” file were created.
lake!

ynfig.projbuild . R . . .
maine The "bsp_extra” folder contains the "bsp_extra.c” driver
eral\ bsp_extra file, and the "include” folder contains the "bsp _extra.h”

header file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the GPIO
driver functionality.

The "Kconfig” file loads the entire driver and GPIO pin
definitions into the sdkconfig file within the IDF platform
(which can be configured through the graphical
interface).

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson02-Turn_on_the%20LED

Initialization of GPIO code

» The GPIO source code consists of two files: "bsp_extra.c” and "bsp_extra.h"

» Next, we will first analyze the "bsp_extra.h” program: it contains the relevant definitions
and function declarations for GPIO pins.

- In this component, all the libraries we will use are placed in the "bsp_extra.h” file, so
they can be managed uniformly.

« Below is the interface definition in the header file, which provides unified macros and
function interfaces for the implementation file (.c).

- This is the content of "bsp_extra.h” (which is also what needs to be done in every .h
file).

« Next, we will analyze the code in the "bsp_extra.c” file: including the initialization
configuration and functional code for the LED pins.

- First, include the "bsp_extra.h” that we just explained, so that we can use the macros
and header files declared in "bsp_extra.h".

+ The gpio_extra_init() function is used to configure GPIO48 of the ESP32-P4 as an
output pin.

rr_t gpio_extra_init()

+ Define the return type: esp_err_t, which is the standard error code type of ESP-IDF.

« Variable err: Stores the return value of the function call, initially set to ESP_OK
(success).

« gpio_config_t gpio_config: Prepare a configuration structure, which contains various
settings for the pin.

« .pin_bit_mask = (1ULL << 48) — Select GPIO48.
+ .mode = GPIO_MODE_OUTPUT — Configure as output mode.
+ .pull_up_en / .pull_down_en = false — Do not enable the internal pull-up/pull-down resistors.

+ .intr_type = GPIO_INTR_DISABLE — Disable interrupts.

+ Call gpio_config() — Actually apply the configuration to the hardware.

+ The gpio_extra_set_level() function is used to set the level (high or low) of this pin,
thereby controlling external devices such as LEDs.

gpio set level(48, level);

return ESP_O

+ Function parameter level: Boolean value. True indicates a high level (1), and false
indicates a low level (0).

« Call gpio_set_level(48, level): Set GPIO48 to the corresponding level.

CMkalists.txt file

« The function of this example routine mainly relies on the bsp_extra driver. To
successfully call the contents within the bsp_extra folder in the main function, a
CMakelists.txt file must be created and configured within the bsp_extra folder.

« The configuration details are as follows:

)

+ In ESP-IDF, each component directory (such as peripheral) must have a CMakelists.txt
file, which mainly performs two tasks:

- Declaration of Source File

main.c CMakeLists.txt X

idf_component_register(component_sources}

SRCS specifies the .c files to be compiled within this component.

INCLUDE _DIRS specifies the paths of header files, allowing other components to
#include.

- Define dependencies

If your peripheral module needs to use the IDF library (such as a driver), write it in the
REQUIRES section, for example:

“.c")

component_sources}
DI include"”

main.c

"peripheral/CMakelists.txt" is what tells ESP-IDF: which source files and header files are
included in the peripheral component, as well as which libraries it depends on.

If this file is missing, the code in the peripheral directory will not be compiled into your
project.

Note: In the subsequent lessons, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make a few modifications to this existing file to
incorporate more drivers into the build system.

main

« The main folder is the core directory for program execution, and it contains the
executable file main.c of the main function. Add the main folder to the CMakelists.txt
file of the build system.

EXPLORER main.c

main >

d led blink task(void *puParameters)

mainc
~ peripheral\ bsp_extra gpio_extra_init();

tra set level(1
kDelay(1008 /

gpio_extra_set_level
vTaskDelay(100@ /

« This is the entry file of the entire application. In ESP-IDF, there is no int main(), but the
program starts running from void app_main(void).

+ Let's first explain main.c.

« Introduce the types of FreeRTOS and the task APIs(such as xTaskCreate, vTaskDelay,
etc.).

+ Our peripheral header files (placed in the "peripheral” component).

+ "bsp_extra.h" should declare interfaces such as gpio_extra_init() and
gpio_extra_set_level().

« Initialize GPIO (implemented in our peripheral/bsp_extra)

» When explaining the "bsp_extra.c” file, it was explained that here we can directly call it
for use.

id led blink_task(void *pvParameters)

gpio extra_init();

Then it enters the while loop, causing the LED light to repeatedly t for one second
and off for one second.

Next, it calls the function for turning on or off the LED in the "bsp_extra.c” file.
Just by modifying parameter 1 or 0, it will take effect.

1: High level (on) 0: Low level (off)

oid led blink task(void *pvParameters)

{
gpio_extra_init();

while (1)

jd
gpio_extra set level(1);
vTaskDelay(1e@e / portTIC

gpio_extra_set_level(8);
vTaskDelay(1688 / portTIC

gpio_extra set level(1);
vTaskDelay (1008 / portTICK |

gpio_extra_set level(8);
vTaskDelay (1868 / portTIC

app_main is the program entry point of ESP-IDF (called after system startup).

In FreeRTOS, create a task named "led_blink_task”, which will execute the

led_blink_task function with a priority of 5 and using a 2048-byte stack to implement
the LED blinking logic.

0id led_blink_task(void *pvParameters)
while (1)
{
gpio_extra_set_level(1);
vTaskDelay (1008 / portTICK |

gpio_extra set level(8);
vTaskDelay(1808 / portTICK |

id app_main(void)

xTaskCreate(led_blink_task, "led_blink_task", 2048,

- xTaskCreate(led_blink_task, "led _blink_task", 2048, NULL, 5, NULL); Parameter
meanings:

« led_blink_task: Entry function of the task
+ "led_blink_task": Task name (string)

« 2048: Stack size of the task (on ESP-IDF, it is usually measured in bytes, and 2048 is a
common value)

« NULL: Parameters passed to the task

+ 5:Task priority (5)

« NULL: Pointer to task handle (NULL should be passed if not needed)
« Now let's take a look at the CMakelists.txt file in the main directory.
« The function of this CMake configuration is as follows:

- Collect all the .c source files in the main/ directory as the source files for the
component;

+ Register the main component with the ESP-IDF build system and declare that it
depends on the driver (an internal driver of ESP-IDF) and the custom component
bsp_extra;

« This way, during the build process, ESP-IDF knows to build bsp_extra first, and then
build main.

CMaketists.od X

SE main ${CMAKE SOURCE DIR}/main/*.c

1df_component_register((${main

> build

~ main

CMakalists.txt

Note: In the subsequent courses, we will not start from scratch to create a new
CMakelists.txt file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson02-Turn_on_the%20LED

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson02-Turn_on_the%20LED

Programming Steps

« Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

I iz |
@ CroEPan

SKU:DHEQLOOSD
ance HMI Display 5.0 V@.1
AR

Then, switch the toggle switch on the 5-inch Advance-P4 to the UARTI position.

Only in this way can the UARTI interface be used.

i iz |

@ CroEPanel

SKU:DHE@LQ@SD
ESP32 PL-Advance HMI Display 5.8 V@.1
Uomn=r

miliiaiie

PEERGRA

+ This is the design on the hardware side.

@ CroEPane y

SKU:DHEQLOOSD
HMI y 5.0

ESP32 PL-Advance

T

_l!:'.:nu‘

Switch to UARTI1 port:

Among the three interfaces shown in the figure, only the UARTI interface can be used at
this time.

Alternatively, the expansion header at the bottom can also be used.

That is, either the UARTI interface or the expansion header can be used, but not both.

Switch to Wireless Module port:

Among the three interfaces shown in the figure, only the wireless module can be used at
this time.

Alternatively, the expansion header at the bottom can also be used.

That is, either the wireless module or the expansion header can be used, but not both.

summary:

The UARTI interface and the Wireless Module can only be used when switched to the
corresponding port.

The expansion header at the bottom can be used regardless of the position of the mode
switch, but it cannot be used simultaneously with the above interfaces. (When used
simultaneously, only one of the three interfaces can be selected.)

Note: The H2 and C6 wireless modules can be used simultaneously with UARTI.

The Lora, 2.4GHz, and WiFi-Halow wireless modules can be used with UARTI, but not
simultaneously.

Here, following the steps in the first section, we first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

Then here we need to configure the SDK.

Click the icon in the picture below.

C bsp exrah
C bsp_exrac
M CMakeliststt
£ dangd

M ChakeListstxt
D READMEMd

< sdkconfig gpio_extra_set_level(8);

£ <okconfigold VTaskDelay(1600 / o

gpio_extra_set_level(1);
VTaskDelay(1600 /

app_main(void)

xTaskCreate(led blink task, “led blink task”, 2043,

> ourune

> TMene

> PROJECT ComPONENTS

B B ESPDFvSA2 &Y UART§ COMIA_ O espizpt [B]

ESP-IDF: QEMU] _[ESP-IDF: OpenOCD Server] _1n26, Col 1_Spaces: &

+ Wait for a moment for the loading process to complete, and then you can proceed
with the relevant SDK configuration.

€ mainc SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager
“ Log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFusa Bit Manager

Build type
Application build type &

Default (binary application + 2nd stage bootloader)
Enable reproducible build
No Binary Blobs

Bootloader config
Bootloader manager

Usetime/date stamp for bootloader @

Project version (&

1

Bootloader optimization Level
Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity ©®

Info

Timestamp @

Millseconds Since Boot

Discard Reset

« Then, search for "flash” in the search box. (Make sure you

as mine.)

€ mainc SDK Configuration editor X | M i

flash

Build type
v Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C+ + exceptions
~ Component config
Application Level Tracing
v Bluetooth
Common Options
Console Library
v Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations.
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistenca
Common ESD-ralated

Discard

Bootloader config
Serial Flash Configurations
Allow app acjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ®

« Enable the support for flash chips of XMC (READ DOCS FIRST) ()

Security features
Enable flash encryption on boot (READ DOCS FIRST) ()

Serial flasher config
Disable download stub ®

Flash SPI mode
Qo
Flash Sampling Mode ()
STR Mode
Flash SPI speed
20MHz
Flash size ©
16MB
Detect flash size when flashing bootloader
Before flashing @
Reset to bootioader

After flashing ©

Reset after flashing

+ After the configuration is completed, remember to save your settings.

€ mainc SDK Configuration editor X M Ci

flash

Build type
~ Bootloader config
Bootloader manager
 Log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager

Discard

Bootloader config

Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) &

o/ Enable the support for flash chips of XMC (READ DOCS FIRST) @

Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub

Flash SPI mode ©
Qo
Flash Sampling Mode @
STR Mode:
Flash SPI speed @
soMH:
Flash size @
16 M8
Detect flash size when flashing bootloader ©

Before flashing ©

Reset to bootioader

flash settings are the same

« After that, we will compile and burn the code (Which was explained in detail in the first
class)

led_blink_task(

gplo_extra_init();

{_blink task, "led

« After waiting for a while, you will be able to see the LED connected to UARTI on your
Advance-P4 turning on and off, remaining off for one second, and repeating this
process over and over again.

Lesson 03
UART3-IN interface (external power supply)

Introduction

In this class, we will introduce the UART3-IN interface. There will be no code in this class.
Based on the code from the previous class (which turned on the LED), we will explain to
you what uses this UART3-IN interface has.

SP32 PL-Advance HMI Display 5.0 Ve.
B e

CHHH

e S N

At this moment, everyone can see that the UART3-IN and UARTO interfaces. In the
previous lesson, when we were burning the code, we learned that the UARTO pin is used
for uploading the code. At the same time, you can also see that after connecting the

UARTO interface, the power indicator next to it lights up, indicating that power supply is
still available.

Then we come back to the UART3-IN interface. This interface is similar in function to the
UARTO interface we just discussed. It can supply power, but it cannot upload code.

The UARTO interface is connected to the serial port burning chip, making code burning
relatively convenient.

However, the UART3-IN interface does not have a serial port burning chip. It can only be
used for power supply and serial port operations.

So, here we will explain how the UART3-IN interface can be used as a power supply
function.

You need to prepare a power supply, along with two Dupont wires. One wire connects the
VCC pin of UART3-IN to the positive terminal of the power supply, and the other wire
connects the GND pin of UART3-IN to the negative terminal of the power supply.

Note: The voltage and current used here are provided by a programmable power
supply. You only need to ensure that the externally supplied voltage is 5V and the
current is 2A, then connect them to the corresponding VCC pin and GND pin on
UART3-IN (connect the positive terminal to VCC and the negative terminal to GND).

Make sure your wires are connected correctly, then turn on the power switch to supply
power.

At this point, you will be able to see the LED light we turned on in the last lesson. It is also
blinking now, indicating that the power supply has been successful.

Of course, in addition to serving as an input power interface, USRT3-IN can also be used
as a normal serial port. However, it should be noted that when connecting UART3-IN,
since UART3-IN cannot provide power externally, the side connected to UART3-IN needs
to be able to supply power itself.

Lesson 04
Serial port usage

Introduction

In this class, we will start teaching you how to use the serial port component. We will
communicate with the Wi-Fi serial module through the UARTI interface on the
Advance-P4.

The Advance-P4 connects to the Wi-Fi module via the serial port. After sending the AT
command to the Wi-Fi module, it enables the Wi-Fi module to connect to the Wi-Fi
network.

Hardware Used in This Lesson

The UARTI interface on the Advance-P4

KU:DHEQ4L 0050
1 Display 5.8 Ve.1

- SKU:DHE@L@QSD
ESP32 PL-Advance HMI Display 5.0 V@.1

T

EERERN

Operation Effect Diagram

After running the code, you will be able to see the AT commands you sent on the monitor
of ESP-IDF, as well as the responses returned to you by the Wi-Fi module via the serial
port. (Green represents the Advance-P4's sending, and white represents the responses
from the Wi-Fi module)

vTaskbelay (p

£ (1connected)

1000));

1CKS(1000));

VTaskDelay (pds 10 T

WIFI DISCONNECT
WIFT CONNECTED
WIFI GOT 1P

outue
> TvEUINE
> PROJECT COMPONENTS

Key Explanations

The main focus of this class is on how to use the serial port. Here, we will provide
everyone with a new component called bsp_uart. This component is mainly used for
initializing the serial port, configuring the serial port, and providing related interface
usage. As you know, you can call the interfaces we have written at the appropriate time.

Next, we will focus on understanding the bsp_uart component.
First, click on the Github link below to download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson04-Serial _port_usage

« Then, drag the code of this lesson into VS Code and open the project file.

« After opening it, you can see the framework of this project.

In the example of this class, a new folder named

e
> build

~ main

"bsp_uart” was created under the "peripheral” directory.
Inside the "bsp_uart” folder, a new "include” folder and a
"CMakelists.txt" file were created.

The "bsp_uart” folder contains the "bsp _uart.c” driver file,
and the "include” folder contains the "bsp_uart.h" header
file.

The "CMakelists.txt" file will integrate the driver into the
build system, enabling the project to utilize the serial
communication functionality written in "bsp_uart.c”.

Serial port communication code

« The driver code for serial port communication consists of two files: "osp_uart.c’ and
"bsp_uart.h".

+ Next, we will first analyze the "bsp_uart.h” program.
» "bsp_uart.h”is a header file for serial port communication, mainly used to:

« Declare the functions, macros, and variables implemented in "bsp_uart.c” for external
programs to use

- Enable other .c files to call this module simply by including "#include "bsp_uart.h

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson04-Serial_port_usage

+ In other words, it is the interface layer, exposing which functions and constants can be
used externally, while hiding the internal details of the module.

« In this component, all the libraries we need to use are placed in the "bsp_uart.h” file for
centralized management.

« Then comes the declaration of the variables we need to use, as well as the declaration
of the functions. The specific implementations of these functions are in "bsp_uart.c”.

« They are all uniformly placed in "bsp_uart.h" for ease of calling and management.
(When they are used in "bsp_uart.c’, we will understand their functions.)

r *data);

+ We can see that there are two sets of serial port pins here. The first set is UART_IN,
which are the TX and RX pins of the UART3-IN interface, as shown in the figure. (This
was not used in this lesson. We provided these pins to facilitate your future use.
However, it should be noted that this interface cannot supply external power.)

Ll
@ CroEPane

SKU:DHE@LQ@SD

rHTT

!l!l;ﬁil‘

« The other group is the UARTI interface used in this class. As we mentioned before, this
interface can not only be used as a regular GPIO port, but also as a serial port. This
class will be using this interface.

- Let's take a look at "bsp_uart.c” again, and see what each function specifically does.

« bsp_uart: The bsp_uart component encapsulates the ESP32 UART hardware and
provides unified interfaces for initialization, data transmission, reception, and status
management, shielding the details of the underlying driver, enabling upper-layer tasks
(such as WiFi AT control tasks) to communicate with external devices through UART
stably and reliably.

Then the following functions are the interfaces we call to implement screen
display.

uart_init():

« This function is responsible for initializing UART2 of ESP32-P4 and configuring its
communication parameters, including baud rate, data bits, stop bits, parity bits, and
flow control mode. It also installs the UART driver and specifies the TX/RX pins.

-+ By encapsulating the underlying uart_driver_install(), uart_param_config(), and
uart_set_pin(), it shields the hardware details, allowing the upper-layer tasks to not
need to worry about the cumbersome operations of UART initialization.

« After calling this function, the UART hardware is ready and can perform data
transmission and reception. It is usually called during system startup or before
communication is needed.

« There are a total of 3 serial port interfaces on our Advance-P4, namely UARTO, UART],
and UART3-IN.

« UARTO is our default interface for power supply and uploading code. By default, it is
UART_NUM_O.

« Then there are UART_NUM_1 and UART_NUM_2 left.

« Here, we can choose either of these two ports as we like, because we only use one
serial port interface here. So | choose UART_NUM_2.

« If you also use the UART3-IN interface, make sure that the port number and pin you
bind correspond and do not conflict.

ar *data)

strlen(data);
uart_write bytes(UART.MUM 2, data, len);

install(UART NUM 2, 1624 * 2, e, @,

et_pin(UARTINUMIZ|, Un

uart_param_config(UART_NUM2, &uart_con

sendData(const char *data):

« This function is used to send string data to UART2. It first calculates the length of the
string, and then calls uart_write_bytes() to send the data to the UART hardware. The
function returns the actual number of bytes sent, which is convenient for the upper
layer to determine whether the transmission was successful. It encapsulates the
underlying driver interface, allowing upper-level tasks or modules to safely send
commands or data by simply calling SendData(), without having to handle the buffer
and byte length every time.

char *data)

len = strlen(data);
C int = uart_write_bytes(UART_NUM_2, data, len);
return txBytes;

C bsp_uarth X

peripheral > bsp. >include > € bsp_uarth > [E) UART_IN_EXTRA GPIO_RXD

#define
#define U
#define
#define

#define
#define

#define
#define

UART_SCAN = 1,
UART_DECODE,
UART_ERR,

} uart_state;

» That's all about the components of bsp_uart. Just make sure you know how to call
these interfaces.

+ Then, if we need to make a call, we must also configure the "CMakelists.txt" file located
in the "bsp_uart” folder.

« This file is placed in the "bsp_uart” folder and its main function is to inform the build
system (CMake) of ESP-IDF: how to compile and register the "bsp _uart’ component.

EXPLORER main.c 25, E CMakelists.txt X
~ LESSONO4 peripheral > bsp_u: CMakeLists.txt

> .devcontainer FILE URSE component_sou

> .wscode

> build

idf_component_register(SRCS ${component_sources}

~ main REQUIRES driver)
CMakeLists.txt
main.c
~ peripheral\ bsp_uart
~ include
C bsp_uarth
bsp_uart.c
CMakeLists.txt
£ .dangd

+ The reason why this is called "driver” is that we have called it in the "bsp_uart.h” file (for
other libraries that are system libraries, there is no need to add anything).

C bsp_uarth X

rth > [E U

Main function

« The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

» Add the main folder to the "CMakelists.txt" file of the build system.

ineout & total < len - 1

s (UART_NUM 2, (uints_t *)(buffer + total), len - total - 1, 20 /

TMELNE

- This is the entry file for the entire application. In ESP-IDF, there is no int main(), but the
program starts running from void app_main(void).

« In the ESP-IDF framework, app_main() is the main entry point of the entire program,
equivalent to the main() function in standard C.

+ When the ESP32-P4 powers on or restarts, the system will execute app_main() to start
the user tasks and application logic.

« Let's explain main.c

+ Function: Calls the interfaces in the bsp _uart component to allow the FreeRTOS
scheduler to run the wifi_task, and send AT commands to control the wifi module to
connect to the wifi.

"bsp_uart.h™

This file imports the custom UART encapsulation component "bsp_uart’, providing
interfaces such as UART initialization, data transmission, data reception, and status
management, enabling upper-layer tasks to conveniently communicate with external
devices via UART.

#include "freertos/FreeRTOS.h™:

This file imports the basic header file of the FreeRTOS kernel, providing basic operation
functions and type definitions such as task scheduling, time management, semaphores,
and queues, which are necessary for using FreeRTOS.

#include "freertos/task.h":

This file imports the interfaces related to task management in FreeRTOS, including
functions such as xTaskCreate() for creating tasks, vTaskDelay() for task delay, and
vTaskDelete() for task deletion, used for multi-task scheduling and management.

#include "string.h™

This file imports the string processing functions of the C standard library, such as strlen(),
strstr(), and snprintf(), for string length calculation, substring search, and string
formatting operations.

#include "esp_log.h™

This file imports the logging system interface provided by ESP-IDF, used for printing
debug information, error information, and system status. It provides functions such as
ESP_LOGI(), ESP_LOGE(), and ESP_LOGD().

main >

+ The name (SSID) of the WiFi was defined, which is used in the program to construct AT
commands to enable the module to connect to the specified WiFi network.

« The password (Password) of the WiFi was also defined, which, along with the SSID, is
used in the AT commands to connect to the WiFi network.

+ Define a constant to represent the maximum length of the buffer for receiving AT
command responses, which is 512 bytes. This ensures that the received data will not
exceed the boundary.

« Define a static string as the log tag (Tag), which is used by log functions such as
ESP_LOGI() and ESP_LOGE() to distinguish the outputs of different modules, facilitating
debugging and problem location.

2
b

WIFI_AT"

uart_read_response(char *buffer, size _t len, TickType_t timeout):

« The "uart_read_response()” function is the core function in the bsp_uart component
for receiving data from the UART. It repeatedly calls the ESP32's "uart_read _bytes()"
interface to store the data received by UART2 into the buffer provided by the user. It
also supports timeout control.

+ The function accumulates the actual received bytes each time it reads and adds \0 at
the end of the buffer to ensure that the returned data is a valid C string. It not only
prevents buffer overflow but also continuously waits for data within the specified time,
making it suitable for reading AT command responses or other data returned by
external devices. This enables upper-level tasks to safely and reliably obtain the
received data without directly operating the underlying UART driver.

| uart_read_response(*buffer, size t len, TickType_ t timeout)

< timeout && total < len - 1)

t *)(buffer + total), len - total - 1,

send_at_commcmd(const char *cmd, TickType_t timeout):

+ The "send_at_command()" function is a high-level wrapper function in the "bsp_uart"
component, used to send commands to the AT module and wait for a response.

- It first sends the AT instruction passed by the user to the UART using the "SendData()"
function, and then sends a carriage return and line feed character as the command
terminator; then it calls "uart_read_response()" to read the data returned by the
module and save it in the buffer, while also printing the log for debugging purposes.

« The function checks if the returned string contains "OK". If it does, it means the
command execution was successful and returns "true”; otherwise, it returns "false”
indicating a command failure.

This function encapsulates the complete process of sending, receiving and result
judgment, enabling the upper-level tasks to safely and simply operate the AT module
through a single interface, without having to deal with the details of the underlying
UART reading and writing as well as response parsing.

ool send_at_command(const cha
~ response[
endData(cmd

SendData(”

, timeout);

connect_wifi():

.

The "connect_wifi()" function is a high-level encapsulation function used to enable the
ESP32 to connect to a specified WiFi network through the AT module.

First, it builds the AT command for connecting to WiFi, "AT+CWMODE=], 'SSID’,
'PASSWORD", in a 128-byte buffer and prints a log message indicating that the WiFi
name is being attempted to connect.

Then, it calls the "send _at_command()" function to send the command and waits for
the module’s response, setting the timeout to 5 seconds.

The function determines whether the connection was successful based on the
response result: if the response is "OK’, it prints the "WiFi Connected" log and returns
true; if the connection was not successful, it prints an error log and returns false.

This function encapsulates the complete process from building the AT command,
sending the command to judging the connection result, allowing the upper-level tasks
to directly call it to achieve WiFi connection without handling the underlying UART and
command parsing details.

¢ bool Jconnect_wifi()

char cnd[128];
OGI(TAG, “Connecting to WiFi: %s”, WIF
if (send at_command(cmd, pd CKS(5008)))

OGI(TAG, "WiFi Connected");
urn true;

"Failed to connect Wi

wifi_task(void *ar

This function calls all the interfaces we discussed earlier.

« The function wifi_task() is a FreeRTOS task that communicates with the AT WiFi module
via UART to achieve WiFi connection and initialization of the TCP server.

« The task first initializes the UART,; if it fails, it deletes itself to ensure system stability;

oid Wifi_task(void *arg)
{

if (uart_init() !=
GE(TAG, "UART init failed");

vTaskDelete
return;

connected =

t i=@; i<5; i)
connect_wifi()

connected = true;

break;

vTaskDelay(p

Iconnected

send_at_command ("AT+CIFSR", pdS

send_at_command("AT+CIPMUX=1", pdMs_

+ Then set the module to the AP + STA mode and reset it to make the configuration take

effect.
ifi_task{void *arg)
if (uart_init() ! 0K

GE(TAG, "UART init failed");

vTaskDelete(NULL) ;

return;

send_at_command ("AT+Ck
send_at_comna R
wTaskDelay(

connected = 3
nt 1= 8 i< 55 ies)

connect_wifi()

connected = true;

break;

vTaskDelay (pdHs_T0

« Then, the process will repeatedly attempt to connect to the specified WiFi, up to 5
times. Each failure will cause a 2-second delay. If the connection is still unsuccessful in

the end, an error message will be printed and the task will be deleted.

oid wifi_task(void *arg)
{
if (uart_init() !=
E(TAG, "UART init failed");
vTaskDelete(HULL);

return;

send_at_command ("AT+CHE

send_at_command("A
vTaskDelay (pdMs_

nnected = £

ti=0;1ics5;im)
connect_wifi()
connected = true;
break;

vTaskDelay(pdHs ICKS (2000)) ;

!connected

OGE(TAG,
vTaskDelete(HULL

After the connection is successful, it obtains the module's IP address, enables the
multi-connection mode, and starts the TCP server to listen on port 80.

send_at_command ("AT=Cl

send_at_command("

vTaskDelay (pdis_TO

o0l connected = false;

for (int i = @; i < 5; i++)
if (connect_wifi()

connected = true;

break;

vTaskDelay(paks_TO_TICKS(280@));

f (!connected

ESP_LOGE(TAG, "Cannot connect to WiFi, stopping task™);
vTaskDelete(HULL);

send_at_command("AT+CIFSR", pdHMS_TO_
send_at_command ("AT+CIPMUX=1"

send_at_command ("AT+CIPSERV

Finally, it enters an infinite loop, retaining the interface for subsequent processing of
TCP requests, and reducing CPU usage through delay, thereby completing the entire
process of WiFi network management and services.
f (!connected)
OGE(TAG, " ot connect to WiFi, stopping task");

vTaskDelete(NUL

send_at_command("AT+CIFSR", pdHS_TO_TICKS
send_at_command ("AT+CIP}

send_at_command ("AT+CT

vTaskDelay(pdHs_TO_TICKS (1860)) ;

Then comes the main function app_main.

app_main() is the entry function of the ESP-IDF program, similar to the main() function
in a standard C program. In this code, its role is very clear: it calls xTaskCreate() to
create a FreeRTOS task named "wifi_task’, with the task function being wifi_task,
allocating 4096 bytes of stack space, having a priority of 5, not passing any task
parameters, and setting the task handle to NULL (not saving the task handle).

The core meaning of this line of code is to encapsulate the WiFi initialization and TCP
server logic into an independent task that runs under the management of the
FreeRTOS scheduler. This keeps the main program entry point simple while ensuring
that the WiFi connection task can be executed in parallel without blocking other tasks.

app_main{vo

xTaskCreate(wifi_tas

» Now let's take a look at the "CMakelists.txt" file in the "main” directory.
+ The function of this CMake configuration is as follows:

. Collect all the .c source files in the "main/" directory as the source files for the
component;

» Register the 'main” component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_uart”.

« This way, during the build process, ESP-IDF knows to build "bsp_uart” first, and then
build "main”.

EXPLORER main.c CMakelists.txt main X

< LESSONO4
${CMAKE_SOURCE_DIR}

idf component_regist

build
~_main
CMakeLists.txt

main.c

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

1 o //, o) N/ ~ A— /[AL I-AA\ve =Yo I~ ~h-E<, —DPA— N |- - Ja —QNNxAL0N-IPS-
https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-£S P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson04-Serial _port_usage

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson04-Serial_port_usage

Programming Steps

« Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

&
€
©
c
&
€

= ESP32 P4
FHHHH

PR

- Then, connect an ESP8266 wifi module to the UARTI interface.

+ (Connect the VCC of UARTI interface to the VCC pin of the wifi module)

+ (Connect the GND of UARTI interface to the GND pin of the wifi module)

« (Turn the TX of UARTI interface to the RX pin of the wifi module) (Cross connection)

« (Turn the RX of UART! interface to the TX pin of the wifi module) (Cross connection)

SKU:DHE@L107(]

Then, switch the toggle switch on the 5-inch Advance-P4 to the UARTI position.

Only in this way can the UARTI interface be used.

5 e CHFH
Eigm Ilfly‘l".

Switch to UART1 port:

Among the three interfaces shown in the figure, only the UARTI interface can be used at
this time.

Alternatively, the expansion header at the bottom can also be used.

That is, either the UARTI interface or the expansion header can be used, but not both.

Switch to Wireless Module port:

Among the three interfaces shown in the figure, only the wireless module can be used at
this time.

Alternatively, the expansion header at the bottom can also be used.

That is, either the wireless module or the expansion header can be used, but not both.

summary:

The UARTI interface and the Wireless Module can only be used when switched to the
corresponding port.

The expansion header at the bottom can be used regardless of the position of the mode
switch, but it cannot be used simultaneously with the above interfaces. (When used
simultaneously, only one of the three interfaces can be selected.)

Note: The H2 and C6 wireless modules can be used simultaneously with UARTI.

The Lora, 2.4GHz, and WiFi-Halow wireless modules can be used with UARTI, but not
simultaneously.

+ Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

EXPLORER

LEssoNo4

ze_t len, TickType_t timeout)

< timeout 8& t len - 1

*)(buffer + total), len - total - 1, 20 /

, TickType_t timeout)

> ouTuNE
> TIMELINE

« Here, following the steps in the first section, we first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

« Then here we need to configure the SDK

+ Click the icon in the picture below.

exvioRER Cmane X
> devcontainer ude
> wscode e

> buikd o
M CMikelitsixt

« periphersl bsp_uart

© include

M CMakelists xt
angd uart_read_response(char *buffer, size t len, Ticky
M CMakeliststrt
D READMEmd total - 05
nt read_bytes =

o TickType t start = xTaskGetTickCount();

figold
hile ((TaskGetTickount() - start) < timeout & total < len - 1
read_bytes - uart_read_bytes(UART_IH 2, (uints_t *)(buffer + total), len - total - 1,
if (read_bytes > 6,

total += read_bytes;

buffer[total] - "\e';
return total;

send_at_comand(; ar *cnd, TickType_t timeout)

SendDatalcn
> ouume SendData("\r\a");
> e
e uart_read_response(response, AT_RESPOISE HAX, tiseout);
5l & @eeorsaz oumr Ocoms Ocops (0] 8 £ 4 O p 6 B B ©0A0 Sui B D [ESP-DF GEMUL _ESP-DF OperOCD Serve] 21, Col 6 Spaces:

« Wait for a moment for the loading process to complete, and then you can proceed
with the relevant SDK configuration.

main.c SDK Configuration editor X

Discard

Build type Build type

~ Bootloader config
Bootioader manager

Application build type ©

rormat Default (binary application + 2nd stage bootioader)

Serial Flash Configurations Enable reproducible build @
Security features
P — No Binary Blobs @
Boot ROM Behavior
Serial flasher config
Partition Table Bootloader manager
~ Compiler options J Use time/date stamp for bootloader
Replace ESP-IDF and project paths i binaries
Enable C:++ exceptions Project version ©
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations Info
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format
Legacy 12C Driver Configurations Color ©®
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Bootloader config

Bootloader optimization Level ©

Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity @

Im—ct
Millsaconds Since Boot

Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©)

as mine.)

SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C+ + exceptions
~ Component config
Application Level Tracing
v Bluetooth
Common Options
Console Library
v Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations

+ After the configuration is completed, remember to save yo

flash settings are the same

Discard

Bootloader config
Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) (O
« Enable the support for flash chips of XMC (READ DOCS FIRST) ()

Security features
Enable flash encryption on boot (READ DOCS FIRST) ()

Serial flasher config

Disable download stub ®
Flash SPI mode
Qo
Flash Sampling Mode ()
STR Mode
Flash SPI speed
20MHz
Flash size ©
16MB

Detect flash size when flashing bootloader

settings.

- After that, we will compile and burn the code (which was explained in detail in the first

class)

« Here, we would like to introduce to you another very convenient feature. With just one
button press, you can perform the tasks of compiling, uploading, and opening the
monitor all at once. (The prerequisite is that the entire code is error-free.)

> devcontainer

> wscode

> build

M CMakeLists.xt

¢ mainc
 peripheral\ bsp.uart
+ include

C bspuarth

€ bsp_uartc

M CMakeListsxt

© uart_read_response(char *buffer, size t len, TickType_t timeout)

read_bytes

dkconfigold TickType_t start = xTaskGetTickCount();

while ((xTaskGetTickCount() - start) < timeout & total < len - 1)

read_bytes = uart_read_bytes(UART_NUM_2, (uint8_t *)(buffer + total), len

- total - 1, 20 / port
f (read_bytes > @

total += read_bytes;

buffer[total] = ‘\0
return total;

send_at_command(const char *cud, TickType t timeout)

response|

N SendD3%a(cnd) ;
> ourune SendData¥\r\n");
> TiMEUNE

> PROJECT COMPONENTS

uart_read_resPanse(response,
B & ESP-DF\542 17 UART

. timeout);
SooMi4 Oepizpt @ 8 5 6 O (8]0

®0A0 Goud T D

[ESP-IDF: QEMU] _ [ESP-IDF: OpenOCD Server]

+ After waiting for a while, the code compilation and upload were completed, and the
monitor also opened.

After burning the code, you will be able to see the AT commands you sent through the
monitor on ESP-IDF, as well as the responses returned to you by the wifi module via the

serial port. (Green is sent by Advance-P4, and white is the response from the wifi
module)

€ mainc

vTaskDelay(pdhs 5(2000)) 5

 (Iconnected

TAG,
VTaskDelete;

ommand 1000

command 1000));

command;

WIFI DISCONNECT
WIFI CONNECTED
WIFI GOT 1P

> ourue

TiveLINE

PROJECT COMPONENTS.
X &

Lesson 05
Touchscreen

Introduction

In this class, we will gradually start to use multiple components together. We hope this
will help everyone gain a deeper understanding of ESP-IDF and ESP32-P4.

In this class, we will use two components from the Advance-P4 category, namely
bsp_display and bsp_i2c, to enable the screen to be touchable, and you will also be able
to see the coordinates of your touch through the monitor.

Hardware Used in This Lesson

The touchscreen on the Advance-P4

Touchscreen schematic diagram

Touchscreen Electrostatic Software
Sensor Field Controller i

Device
Instructions

Controller
Detects Touch
Y Location

-

First, let's look at the Touchscreen Sensor and Electrostatic Field sections. Inside the
touchscreen sensor, there is a grid-like electrode structure composed of conductive
layers. These electrodes interact with each other, forming a uniform electrostatic field in
the screen area. When a finger touches the screen, since the human body is conductive,
the finger will form a new capacitance with the conductive layer on the screen. The
appearance of this capacitance will interfere with the originally uniform electrostatic
field, causing a significant distortion in the distribution of the electrostatic field in the
area near the touch point, and subsequently resulting in changes in the capacitance
value of the electrodes in that area.

Then, we come to the core function of the Controller. The GT911 takes on this role as the
controller. It continuously scans all the electrodes on the touchscreen and precisely
detects the changes in the capacitance of each electrode. Based on the detected data
of the different capacitances of the electrodes, the GT911 runs a specific algorithm
internally, analyzing these data to calculate the X and Y coordinates of the touch point
on the screen, which is the coordinate detection process illustrated in the diagram as
"Controller Detects Touch Location”.

After that, the GT911 sends the calculated touch point coordinate information to the
connected main processor (such as an ESP32 microcontroller) according to the pre-set
communication protocol (such as 12C, SP, etc.).

Finally, the main processor receives the coordinate data and further processes and
parses these data using software.

At the same time, in combination with the "Device Instructions” (device instruction Iogic),
the software maps and correlates the touch coordinates with specific elements in the
device interface (such as buttons, sliders, etc.). Thus, when the user touches the screen,
the device can accurately identify whether it is clicking a button, sliding the screen, or
other operations, and make corresponding interaction responses, thereby achieving
smooth touch interaction functionality.

Operation Effect Diagram

After running the code, you will be able to see the coordinates returned by the ESP32-P4
to you through the monitor on the ESP-IDF at the moment when you touched the screen.

BRLORER
~ LEssonos
> devcontainer
> wscode
> build
~ main
e 6 12C initialization failed”);
! idf_componentymi
main.c
> managed_components
~ peripheral
~ bsp_displ
SP'I :pay - initialization failed
« include
C bsp_display.h
bsp_display.c
CMakelistsxt
« bepizc XTaskCreate(touch_task, "touch task’, 4896, NULL, 5, &touch task_handle);
« include :
e "Touch application started successfully");
sp.i2c.
bsp_i2cc
CMakelistsxt
dangd
CMakelists.txt
dependencies.ock

TERMINAL
sdkeonfig

sdkconfig.old

> PROJECT COMPONENTS il

EIESP-IDFv542 TYUART QCOMI4 Oepi?2pd & B £ § O £ & B ®OA0 @Buld £ D

Key Explanations

Now there are two components in this class (bsp_display and bsp_i2c). How should we
handle the overall framework?

It's actually not difficult. Once you understand how one component is used, the two
components are similar. First, click on the Github link below to download the code for this
lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson05-Touchscreen

« Then, drag the code of this lesson into VS Code and open the project file.

Q_ Search the web or type a URL

Advance-p4 X o+

€ Y G @ > ThisPC > FAME() > AdvancePd > Search A

@ New % © @ uj N Sort = View

9.inch

lesson01

File folder

Lesson02

libraries

Lesson04 File folder

Arduinots

In the example of this class, a new folder named
"bsp_display” was created under the "peripheral’
directory. Inside the "bsp_display” folder, a new "include”
folder and a "CMakelists.txt” file were created.

The "bsp_display” folder contains the "bsp_display.c”
driver file, and the "include” folder contains the
"bsp_display.h” header file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the
touchscreen functionality written in "bsp _display.c”.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson05-Touchscreen

Screen touch driver code

» The screen touch driver consists of two files: "bsp_display.c” and "bsp _display.h".
» Next, we will first analyze the "bsp_display.h” program.

- "bsp_display.h"is a header file for the display and touch screen driver module, mainly
used for:

« Making the functions, macros, and variable declarations implemented in
"bsp_display.c” available for use by external programs

« Allowing other .c files to simply include "bsp_display.h” to call this module

« In other words, it is the interface layer, exposing which functions and constants can be
used externally, while hiding the internal details of the module.

- In this component, all the libraries we need to use are placed in the "bsp_display.h’ file
for centralized management.

> set_coor Aa ab, ¥

« Inthis case, we need to fill in the version of esp_lcd_touch_gt9llin the
idf _component.yml file located in the main folder. Since this is an official library, we
need to use the official library to achieve the touch function of the GT911 screen on our
Advance-P4.

~ LESSONO4 main > ! idf componentyml
> .devcontainer
> wscode
> build
~ main
CMakeLists.txt
idf_compenentymi
main.c
~ managed_companents
> espressit_esp_led_touch
> espressif_esp_led_touch gto11

When the project is compiled in the future, it will download the esp_lcd_touch_gtoll
library version 1.1.3. After the download, these network components will be saved in the
"managed_components” folder. (This is automatically generated after filling in the
version number.)

» Then we will return to the "bsp_display.h" file.

» We can see that the "bsp_i2c.h" file is also included in it.

s/task.h”
d_touch gto11.h"
h”

> .deveontainer
> wscode
> build
~ main
CMakelists txt
idf_componentyml
main.c
> managed_components
~ peripheral
~ bsp_display
~ include
bsp_display.h
bsp_display.c
CMakeLists.txt
 bsp_izc 0 t, #¥_VA_ARGS_)
> include .) ESP_LOGD(: i ## VA ARGS_)
(fmt, ...) ESP_LOGE(t, ##_VA ARGS_)
bsp_i2c.c
CMakeLists.txt
“dangd
CMakelLists.txt

Because our GT911 screen touch driver uses 12C for communication control.

Then, we declare the variables we need to use, as well as the functions. The specific
implementation of these functions is in "bsp_display.c”.

« They are all unified in "bsp_display.h” for ease of calling and management.

(fmt) ESP_LOGI(
(fmt.) ESP_LOGD(
(fmt) ESP_LOGE(

get_coor(

set_coor(

« Let's take a look at "bsp_display.c” again, and see what each function does
specifically.

set_coor:

This is an internal utility function used to update the global variables touch_x, touch_y,
and is_pressed, recording the latest touch point coordinates and press status. It is not
called externally and is only used within this file to store touch data.

get_coor:

This is an external interface function used to return the current touch point coordinates
and press status to the caller. By calling this function, upper-level applications can know
the latest coordinates of the touch screen and whether it is pressed.

touch_init:

If you need to use the screen touch functionality, you must call this function in the main
function.

This is the touch screen initialization function. Its main function is to configure the 12C bus
and the parameters of the GT911 touch chip, and then create the handle of the touch
screen driver. If the main 12C address initialization fails, it will try the backup address to
ensure that the GT911 can be correctly recognized and driven. If successful, it returns
ESP_OK; if failed, it returns the corresponding error code.

touch_read:

This is the touch data reading function. Its main function is to read the raw data of the
current touch point from the GT911, and then extract the touch point coordinates,
intensity, and number of touch points.

If a touch is detected, it updates the global coordinates and prints debugging
information; if no touch is detected, it sets the status to "invalid coordinates (Oxffff, Oxffff)
and not pressed”. Finally, it returns ESP_OK or the error code.

This is the component of the screen touch function. Just know how to call these
interfaces.

Then, if you need to call it, we must configure the "CMakelists.txt" file in the bsp_display
folder.

This file is placed in the bsp_display folder and its main function is to tell the build
system (CMake) of ESP-IDF how to compile and register this component.

(Here, we will explain in detail the construction of this "CMakelists.txt". In the future, we will
only tell you how to add and delete those libraries and components.)

« The following line of code will recursively search all the .c files in the current directory
(and its subdirectories), and then place the results in the variable
component_sources.

« Thisis a macro provided by ESP-IDF, used to register a component.

« SRCS specifies the source files that the component needs to be compiled. Here, it
refers to all the .c files that were just found.

« Specify the search path for header files.

- Itindicates that the header files in the "bsp_display/include” folder (such as
"bsp_display.h"”) will be made available for use by other components.

- This way, other components only need to #include "bsp_display.h" to find the header
files.

+ Specify the other components that the bsp_display component depends on.

+ This means: Before compiling bsp_display, esp_lcd_touch_gt9ll (the GT911 touch
driver) and bsp_i2¢ (our own 12C wrapper) must be compiled first.

« At the same time, the dependencies will be automatically added during linking.

(In the future, when we modify other projects, simply add or remove the relevant
components.)

${component_sources
DE_DI 1u

+ Thereason why esp_lcd_touch_gt911 and bsp_i2c are used here is that we called
them in the "bsp_display.h” file (if the other libraries are system libraries, then there is
no need to add them)

C bsp_displayh X

12C driver code

» Now that the relevant content of the screen touch driver has been explained, let's take
a look at the content related to the 12C component.

« In"bsp_i2c.h", the same process is followed to declare and define the used libraries,
variables, and functions, making it convenient to call them when using them.

bspi2ch X

« In"bsp_i2c.c’, the library, variables and functions in "bsp_i2c.h" are fully utilized to
implement the related functions.

- For the functions in "bsp_i2c.c”, all you need to know is how to use them.

print_binary:

Converts a 16-bit integer to a binary string (16 bits, with leading 0s padded), mainly used
for printing values in binary form during debugging.

print_byte:

Converts a byte (8 bits) to a string format like 0bXXXX YYYY (high 4 bits + low 4 bits),
facilitating intuitive viewing of the binary content of the byte during debugging.

i2c_init:

Initializes the 12C bus: configures the 12C port, SDA/SCL pins, clock source, filtering
parameters and pull-up resistors, then creates an 12C master bus handle (saved in the
global variable i2c_bus_handle), preparing for subsequent device communication.

i2c_dev_register:

Registers a slave device on the 12C bus (based on the 7-bit device address), and returns
the handle of the device. When reading from or writing to this device in the future, this
handle needs to be passed in.

i2c_read:

Reads a certain number of data from the specified 12C device, and stores the result in the
read_buffer. The underlying call is i2c_master_receive.

i2c_write:

Writes a certain number of data to the specified 12C device, the underlying call is
i2c_master_transmit.

i2c_write_read:

First writes a register address to the 12C device (read_reg), then reads the data from the
corresponding register (read_buffer). This is a common process for reading registers,
used to "select” the register before reading the value.

i2c_read_reg:

Performs the operation of "writing register address + reading data” at once
(implemented by calling i2c_master _transmit_receive), which is more concise than
i2c_write_read.

i2c_write_reg:

Writes a byte data to a certain register of the 12C device (register address + data), often
used for configuring peripheral register.

Let's talk about the role of the "CMakelists.txt” file in the "bsp_i2c” folder.

This "CMakelists.txt" is a build configuration file in the ESP-IDF framework used to
manage the 12C driver components. Its main function is to tell the build system how to
compile and integrate this 12C driver component.

As mentioned earlier, here we only need to modify the components and libraries we
are using at this point.

peripheral > CMakeLists.txt
FIL JRSE component_sources "*.c")

idf_component_register(SRCS ${component_sources}
TN DIRS "include™
esp_timer)

« Here, in the "bsp_i2c.h" file, we have utilized "driver/i2c_master.h" and "esp_timer.h".

bsp_i2ch X

Main function

« The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

» Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER

~ LESSONO4
> deveontainer
> wscode
> build
~ main
CMakeLists.txt
idf_componentyml
mainc
> managed_components TaskHandle_t touch_task_handle - NUL

« peripheral
oid touch_task(void *param)

~ bsp_display ¢

e while (1) {

if (touch_read() ==
bsp_display.c uint16_t x, y;
CMakelists.txt bool pressed;
~ bsp_i2c get_coor(8x, &y, &pressed);

bsp._displayh

~ include
bsp_i2ch
bsp i2c.c }
CMakelists.txt
£ .dangd vTaskDelay(pdHs_TO_TICKS(58));
CMakeLists txt b

if (pressed)
E OGI(TAG, "Touch at X=%d, Y=%d", x, y);

+ This is the entry file of the entire application. In ESP-IDF, there is no "int main()", but the
program starts running from "void app _main(void)".

- Let's first explain main.c.

+ esp_log.h: Provides the logging printing interface of ESP-IDF (such as ESP_LOGI,
ESP_LOGE, etc.).

- freertos/FreeRTOS.h and freertos/task.h: Functions and task management interfaces
related to FreeRTOS.

"bsp_i2¢.h": Custom I12C driver, initializes the 12C bus and reads/writes devices.

» "bsp_display.h™ Custom touchscreen driver interface, provides functions such as
touch_init, touch_read, get_coor, etc.

main >

t touch_task_handle = NULL;

oid touch_task(void *param)

bool pressed;
get_coor(8x, &y, &pressed);

« TAG: Log identifier, used to distinguish the source of the log.

+ touch_task_handle: FreeRTOS task handle, used to manage the touch reading task.

main >

 t touch_task handle = NULL;

d touch_task(void *param)

Infinite loop, reading touchscreen data every 50ms.

touch_read(): Read GT911 touchscreen data and update internal coordinates.
get_coor(&x, &y, &pressed): Obtain the current touch coordinates and pressing status.
If a touch is detected (pressed = true), print the touch coordinates.
vTaskDelay(pdMS_TO_TICKS(50)): Put the task to sleep for 50ms to avoid frequent

polling occupying CPU.

D touch_task(void *)

AG “"TOUCH_APP"

TaskHandle_t touch_task_handle = NULL;

d touch_task(void *param)

while (1) {
if (touch_read() — ESP_D
uintl6_t x, y;
bool pressed;
get_coor(&x, &y, &pressed);

if (pressed) {

LOGI(TAG, "Touch at Xx=%d, Y=Xd", x, y);

i}

vTaskDelay(pdrs ICKS(58));

Then comes the main function app_main.
It first prints the information about the program startup.

0id app_main(veoid)

touch application™);

Call the initialization code in "bsp_i2c.c” to initialize the 12C bus, which is used for
communication with the touch screen chip.

id app_main(void)
"Starting touch application™);
if (i2c_init

return;

+ Call the initialization screen touch code in "bsp_display.c” to initialize the GT911 touch
screen.

« If it fails, print the error log and retu

main > € mainc > @ app_main(void)
id touch_task(void *param)
while (1) {
if (touch_read() == ESP_
if (press
ESP_LOGI(TAG, "Touch at X=%d, Y=%d",
b

vTaskDelay(pdHS_TO TICKS(58));

d app_main(void)

g touch application”);

zation failed”

itialization failed”);

The following code is also familiar to you. You have encountered it in previous courses.
The function of this line of code is to create and start a task named "touch_task” in
FreeRTOS, allowing it to periodically read touch screen data in an independent thread.

At the same time, through the "touch_task_handle” handle, this task can be managed
later.

oid app_main(void)

xTaskCreate(touch_task, "touch task”, 4896, NULL, 5, &touch task handle);

"Touch application started successfully™);

» Now let's take a look at the "CMakelists.txt" file in the "main” directory.

+ The function of this CMake configuration is as follows:

« Collect all the .c source files in the "main/" directory as the source files for the
component;

« Register the main component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_display” and the custom component
"bsp_i2c’;

« This way, during the build process, ESP-IDF knows to build "bsp_display” and "bsp_i2c”
first, and then build "main”.

EXPLORER - C CMakelLists.txt main X

SE main ${CMAKE_SOURCE_DIR}/main/*.c

idf component_registery(main

build
~ main

CMakeLists.txt

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt” file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson05-Touchscreen

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson05-Touchscreen

Programming Steps

+ Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

*ll[lulllJ

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

if (i2c_init

> OUTLINE
> TIMELINE
> PROJECT COMPONENTS if (touch_init) {
¥ ©) EESP-IDFvSA2 YPUART O COMI4A $respizpd W (W] £ & 00 » & B B ®s

« Then, following the steps in the first section, select the ESP-IDF version, the code upload
method, the serial port, and the chip to be used.

+ Then here we need to configure the SDK.

+ Click the icon in the picture below.

> OUTLINE
> TIMELINE
» PROJECT COMPONENTS) 1
X E) S ESP-IDFv542 Y7 UART ¢ COM14 $F esp3zp 0] g > & B B ®elo

+ Wait for a moment for the loading process to complete, and then you can proceed
with the related SDK configuration.

€ mainc SDK Configuration editor X

Discard

Build type Build type
v Bootioader config byp

Application build type ©
Bootloader manager

Default (binary application + 2nd stage bootioader)
Serial Flash Configurations
Security features
Application manager No Binary Blobs ©
Boot ROM Behavior .
Serial flasher config Bootloader config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions Eoretiebcaly)
~ Component config
Application Level Tracing 1
) s e] (@)
Common Options

Enable reproducible build ()

Bootloader manager
 Usetime/date stamp for bootloader

Console Librar
o oar Con'zgmam - Size (-Os with GCC, Oz with Clang)
TWAI Configuration Log
~ Legacy ADC Driver Configuration =
Legacy ADC Calibration Configuration ErTirn e (s (@)
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations e
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format ~
Legacy 12 Driver Configurations Color ©
Legacy PCNT Driver Configurations.
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations =
eFuse Bit Manager
EsPILS Serial Flash Configurations
AADC and ADC Calibration N

e ———— Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST)

Timestamp (&

+ Then, search for in the search box. (Make sure your flash settings are the same
as mine.)

€ mainc SDK Configuration editor X

Discard

Build type
~ Bootloader config . . N
O Serial Flash Configurations
v log
Format
I P TS Enable the support for flash chips of XMC (READ DOCS FIRST)
Ssct:ﬂwfesm res Security features
o Enable flash encryption on boot (READ DOCS FIRST) ®
Boot ROM Behavior
Serial “35"1"“’"“9 Serial flasher config
Partition Table Disable download stub @
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C+ + exceptions

Bootloader config

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©

Flash SPI mode

~ Component config
Application Level Tracing)
S — Flash Sampling Mode ©
Common Options
Console Library STR Mode
 Driver Configurations Hash sPIspeed @
TWAI Configuration
+ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations Before flashing ®
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eruse Bit Manager Reset to bootioader
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Qo

Detect flash size when flashing bootloader ©

After flashing ©

Reset after flashing

« After the configuration is completed, be sure to save your settings.

SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager
~ Log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
v Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Common FSp-relater

Discard

Bootloader config

Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST)

Enable the support for flash chips of XMC (READ DOCS FIRST)

Security features
Enable flash encryption on boot (READ DOCS FIRST)

Serial flasher config
Disable download stub

Flash SPI mode (;
ao
Flash Sampling Mode
STR Mode
Flash SPI speed @
80 MHz
Flash size @
16 M8
Detect flash size when flashing bootloader
Before flashing @
[—
After flashing ()

Reset after flashing

Then we will compile and burn the code (as detailed in the first class).

Here, we would like to introduce to you another very convenient feature. With just one
button press, you can perform the compilation, upload, and open the monitor at once.

(This is provided that t

> deveontaine
> wicode
> build
M CMakelists
idf_componentym!
> managed_components
~ peripheral
« bsp._display
~ include
p_displayh
bsp_display.c
M CMakelists xt
- bsp_izc

> PROJECT COMPONENTS
D ESPIDFVSA2 TYUART O COMI4 Oespi2ps @ B

he entire code is error-free.)

t touch_task_handle ~
touch_task(void *param)

touch

get_coor(&x, By, &pressed);
if (pressed) {
)

VTaskDelay:
app_main(:

12¢_init!

DF: QEMU]

[ESP-IDF: OpenOCD Server]

« After waiting for a while, the code compilation and upload process was completed,
and the monitor also opened. By touching the Adcance-P4 screen, you will be able to
see the coordinates of the screen you touched displayed.

L, 5, &touch_task_handle);

TERMINAL

configold

5 oUTLNE
TIMELINE
PROJECT COMPONENTS
¥ UART © COM14 < 3 P > & 0 @Buld £ D [ESP-IDF: Of

Lesson 06
USB2.0

Introduction

In this class, we are expanding on what we learned in the previous class.

Before studying this class, please make sure you understand the implementation of the
touch function in the previous class. This will be of great help to your learning of this
class.

As you know, in the previous class, we already learned the two components, bsp_display
and bsp_i2c. It was because we fully utilized these two components that our Advance-P4
screen could be made touchable.

In this class, we will add a new component, bsp_usb, on top of these two components.
This will enable us to use the USB2.0 interface on our Advance-P4 to act as a mouse.
When you slide on the screen of the Advance-P4, you will be able to see that the mouse
on your computer also moves accordingly.

Hardware Used in This Lesson

USB 2.0 on the Advance-P4

UART

USB

Operation Effect Diagram

After running the code, you will be able to see that when you slide the screen on the
Advance-P4, the mouse on your computer also moves accordingly, and at the same
time, you can see the relevant coordinates printed on the monitor.

> ouTUNE

> TIMELINE

Key Explanations

+ Now, this class is about adding the bsp_usb component based on the project from the
previous class, so that we can slide and touch the Advance-P4 screen and control the
computer mouse.

« The previous touch function has already been realized using the bsp_usb and bsp_i2c
components from the previous class.

+ Next, we will focus on understanding the bsp_usb component.
« First, click on the Github link below to download the code for this lesson.

https.//github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson06-USB2.0

« Then, drag the code of this lesson into VS Code and open the project file.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson06-USB2.0

« After opening it, you can see the framework of this project.

! idf_componen
(D In the example of this class, a new folder named
nanaged_components " g " : " g
gEc-cotng bsp_usb" was created under the “peripheral” directory.

Inside the "bsp_usb" folder, a new "include” folder and a

~ peripheral

"CMakelists.txt" file were created.

The "bsp_usb" folder contains the "bsp _usb.c” driver file,
and the "include” folder contains the "bsp_usb.h" header
file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the USB2.0
transmission functionality written in "bsp_usb.c”.

USB 2.0 driver code

« The USB2.0 driver consists of two files: "bsp_usb.c” and "bsp_usb.h".
« Next, we will first analyze the "bsp_usb.h" program.
« "bsp_usb.h"is the header file of the USB2.0 driver module, mainly used for:

» Making the functions, macros and variable declarations implemented in "bsp_usb.c”
available for external programs to use

+ Allowing other .c files to simply include "#include "bsp_usb.h" " to call this module

« In other words, it is the interface layer, exposing which functions and constants can be
used externally while hiding the internal details of the module.

« In this component, all the libraries we need to use are placed in the "osp_usb.h" file for
unified management.

#include
#include

11

« Inthis case, we need to fill in the version of esp_tinyusb in the idf _component.yml file
located in the main folder.

« Since this is an official library, we need to use the official library to achieve the USB 2.0
transmission function on our Advance-P4.

~ LESSONOS ELS main > ! idf_componentyml
> .devcontainer
> .vscode
> build
~ main
CMakelLists.txt
idf_componentym|
main.c
~ managed_components
> espressif_esp_lcd_touch
> espressif_esp led_touch gt11
> espressif_esp._tinyusb
> espressif_tinyusb
~ peripheral
~ bsp_display
~ include
bsp_display.h
bsp_display.c
CMakelLists.txt

+ When the project is compiled in the future, it will download the 1.1 version of the
esp_tinyusb library. After the download, these network components will be saved in
the "managed_components” folder. (This is automatically generated after filling in the

version number.)

Then comes the declaration of the variables we need to use, as well as the declaration
of the functions. The specific implementations of these functions are in "bsp_usb.c".

« They are all unified in "bsp_usb.h" for the convenience of calling and management.

send_hid_mouse_delta(ints_t delta x, intS_t delta y);

is_usb_ready(};

rr_t usb_init(u8

- Let's take a closer look at "bsp _usb.c”, examining the specific functions of each one.

+ bsp_usb: This is a simple USB HID (mouse) module based on TinyUSB, including HID
descriptors, TinyUSB callbacks, and external initiolization/sending interfaces.

« Although these three functions have empty implementations, they must exist.

« They are callback interfaces for USB HID devices to communicate with the host —
tud_hid_descriptor_report_cb is used to return the HID report descriptor,
tud_hid_get_report_cb handles the GET_REPORT request from the host,

tud_hid_set_report_cb handles the SET_REPORT request or OUT data from the host.

tud_hid_descriptor_report_cb:

This callback is called by TinyUSB when the host requests the HID report descriptor
through the control transfer. The function should return a pointer to a static or global
descriptor array; in your implementation, it directly returns hid_report_descriptor,
suitable for scenarios with only one HID interface.

tud_hid_get_report_cb:

This is the callback for handling the host's GET_REPORT request: when the host wants to
read the "input/characteristic” report from the device side, TinyUSB will call it. The
function should fill the buffer with the report data and return the actual length; currently,
you return 0 (indicating no provision), and TinyUSB will handle this request as a STALL.

tud_hid_set_report_cb:

This callback is called when the host initiates a SET_REPORT (or sends data through the
OUT endpoint). The application should parse the contents of the buffer based on
report_id / report_type and perform the corresponding actions.

Then the following function is the interface we call to implement the USB 2.0 transfer
function.

usb_init() — Initialize USB HID mouse device
send_hid_mouse_delta() — Send mouse movement data

is_usb_ready() — Determine if USB is available

send_hid_mouse_delta:

This is an external sending interface used to send the mouse movement increment
through HID to the host: The function first checks tud _hid_ready() (whether the device
has been enumerated and the HID is available), and if ready, it calls
tud_hid_mouse_report(..) to send a mouse report containing the X/Y increment.

is_usb_ready:

This is a simple query function that returns the result of tud _hid_ready() to determine if
the TinyUSB HID interface is ready to send reports to the host (that is, whether the device
has successfully enumerated and the HID interface is available).

usb_init:

This function constructs tinyusb _config_t (containing string descriptors, configuration
descriptors, etc.) and calls tinyusb_driver_instoll(&tusb_cfg) to install the TinyUSB driver;
it is responsible for starting the USB subsystem and exposing the HID device to the
operating system (the host).

The above bsp_usb component has realized the HID mouse function in the USB 2.0
device mode, enabling the ESP32P4 to simulate mouse operations.

That's all about the bsp_usb component. Just know how to call these interfaces and
you're good to go.

Then, if we need to make a call, we must also configure the "CMakelists.txt" file located in
the "bsp_usb” folder.

This file is placed in the "bsp_usb” folder and its main function is to inform the build
system (CMake) of ESP-IDF: how to compile and register the "bsp_usb” component.

EXPLORER main.c 5 ! idf_componentym CMakelists.txt X
 LESSONOS peripheral > bsp,

> devcontainer IRSE component_sources “*.c"

> .vscode

> build

~ main

CMakeLists et

1df _component_register{(SRCS ${component_sources}

! idf componentyml

main.c
> managed_components
* peripheral
v bsp_display
~ include
C bsp_displayh
bsp_display.c
CMakeLists.txt
v bsp_i2c
~ indude
C bsp_izch
bsp.i2c.c
CMakeliststxt
~ bsp_usb
~ include
C bsp_usbh
bsp_usb.c
CMakeliststxt
= .dangd
CMakelists.txt

- The reason why it is called esp_tinyusb here is that we called it in the "bsp_usb.h" file
(for other libraries that are system libraries, there is no need to add anything).

main.c df_componentys 5 C bsp_usb.h X

peripheral > bsp_usb > include > € bsp_ usbh > ...

#ifnd

#include
#include
#include
#include "
#include

#include "
#include
#define
#define

#define
#define

#define HID_ITF

send_hid mouse_delta(int8 t delta x, int8 t delta y);

Main function

The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER mainc X

~ LESSONOS main

nt

.

This is the entry file of the entire application. In ESP-IDF, there is no "int main()", but the
program starts running from "void app_main(void)".

Let's first explain main.c.

esp_log.h: Log printing in ESP-IDF (such as ESP_LOGI/ESP_LOGE, etc.).

freertos/FreeRTOS.h and freertos/tosk,h: Task management in FreeRTOS.

bsp_i2c.h: Initialize 12C for commmunication with the touch screen.

bsp_display.h: Obtain the touch screen coordinates.

"bsp_usb.h" USB HID mouse driver interface

main.c X

main

t touch_task_handle =

id touch_mouse task(void *param)

+ TAG: Log tag.
« touch_task_handle: FreeRTOS task handle, used to manage the touch mouse task.

main.c

The touch_mouse_task function:

This function, named touch_mouse_task, serves to convert the finger movements on the
touch screen into USB HID mouse movements. It continuously reads the touch screen
coordinates and press status within an infinite loop. When the touch screen is pressed
and the USB HID device is ready, it calculates the incremental movement (delta) of the
finger and sends the mouse movement report to the computer via
send_hid_mouse_delta; when the finger is released, it resets the previous coordinates.
The entire process cycles at a 10ms interval, achieving a mouse sampling rate of
approximately 100Hz.

oid touch_mouse_task(void *param)
{

ESP_LOGI(TAG, “"Touch mouse task started");

t prev_x = @xffff;
_t prev_y = exffff;
prev_pressed = false;

while (1) {
touch_read() == ESP_OK
t X, ¥;
b pressed;
get_coor(&x, &y, &pressed);

if (pressed && is usb_ready()) {
if (prev_pressed 8&& prev x != oxffff && prev_ y != exffff) {

t delta_x
6 t delta_y t int t)prev_y;

send_hid_mouse_delta(delta_x, delta y);
ESP_LOGI(TAG, "Mouse move: AX=%d, AY=%d", delta_x, delta_y):

1
L

prev_x = x;
prev_y = y;
} else if (lpressed) {

prev_x = Bxffff;
prev_y = exffff;
}

prev_pressed = pressed;

The workflow of the touch_mouse_task code:

Calll touch_read() to obtain the touch screen status.

Use get_coor() to get the current coordinates (x, y) and the pressed state pressed.
If the screen is pressed and the USB is ready:

Calculate delta_x = x - prev_x, delta_y =y - prev_y.

Call send_hid_mouse_deltq(delto_x, delta_y) to send mouse movement.

Update prev_x/prev_y.

Reset prev_x/prev_y when releasing the touch.

Delay 10ms to achieve a 100Hz sampling rate.

Then comes the main function app_main.

app_main is the main entry function of the program. Its function is to initialize the system
peripherals and start the touch mouse task. It sequentially completes the initialization of
the 12C bus, the initialization of the touch screen, and the initialization of the USB HID
subsystem. If any initialization fails, it records the error and exits.

After successful initialization, it creates a FreeRTOS task named touch_mouse_task to
continuously read the touch screen input and convert it into mouse movement signals,
and finally starts the entire touch mouse application.

oid app_main(

T
{
ESP_LOGI(TAG,

if (i2c_init 1= ES|
ESP_LOGE(TAG,

return;

if (touch_init
ESP_LOGE(TAG,

ret

(usb_init I= ESP O
ESP_LOGE(TAG,
return;

xTaskCreate(¥ ULL, S, &touch_task_handle);
f (touch
ESP_LOGE(TAG,

ret

» Now let's take a look at the "CMakelists.txt” file in the "main” directory.
+ The function of this CMake configuration is as follows:

- Collect all the .c source files in the "main/" directory as the source files for the
component;

« Register the main component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_display”, the custom component "bsp_i2c",
and the custom component "bsp_usb".

« This way, during the build process, ESP-IDF knows to build "bsp_display”, "bsp_i2c", and
"bsp_usb” first, and then build "main”.

main.c CMakeLists.txt X

main

> build
~ main

CMakelists.txt

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To
SB2.0

https://github.com/Elecrow

en/tree/master/example/V1.0/idf-code/lesson0¢

uch

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson06-USB2.0

Programming Steps

« Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

entyml
omponents
touch_mouse
ESP_LOGI(TAG,

OxXFFFE;
£

1= OXFFFF

, delta x, deltay);

> outune

TIMELINE

PROJECT COMPONENTS
IDF v542 ¢ UA

« Here, following the steps in the first section, first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

« Then here we need to configure the SDK.

+ Click the icon in the picture below.

> OUTUINE

> TIMELINE
> PROJECT COMPONENTS (touch_init {
») ESESPIDFv542 TYUART © COM14 {5} esp32p s ¢ 0 H O B B @edo

« Wait for a moment for the loading process to complete, and then you can proceed
with the related SDK configuration.

SDK Configuration editor X

Discard Reset

Build type
Application build type ©
Default (binary application + 2nd stage bostioader)
Enable reproducible build @
inary Blobs @
Bootloader config

Bootloader manager
 Use time/date stamp for bootloader ©

Proj
1

Bootloader optim

Log

Bootloader lo

Info

eFuse Bit Manager

P-Tl
ADC and ADC Calibration ~
jher frequency (READ HELP FIRST) (

+ Then, search for "flash” in the search box. (Make sure your flash settings are the same
as mine.)

SDK Configuration editor X

Discard

i Bootloader config
~ Bootloader config X N .
e Serial Flash Configurations
v Log
Format
e Enable the support for flash chips of XMC (READ DOCS FIRST)
STy e Security features
Cpp T RO s Enable flash encryption on boot (READ DOCS FIRST) ®
Boot ROM Behavior
Serial flasher config Serial flasher config
Partiton Table Disable download stub
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C+ + exceptions
~ Component config
Application Level Tracing)
Sy —. Flash Sampling Mode ©®
Common Options
Console Library STR Mode
 Driver Configuations e
TWAI Configuration
© Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration EDXa
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations
Legacy PCNT Driver Configurations TR @
Legacy SDM Driver Configurations

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©

Flash SPI mode (

Qo

Flash size ©
16MB

Detect flash size when flashing bootloader @

Legacy Temperature Sensor Driver Configurations

Reset to bootloader
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

After flashing ©

Reset after flashing

« Then, search for "hid" in the search box.

SDK Configuration editor X

hid Discard

B“": Wﬁ“ oo Compiler options
BZZ“:;::":;E, Replace ESP-IDF and project paths in binaries
~ log
Format
Serial Flash Configurations X
Security features Component config
Application manager ESP HID
) B Task stack size for ESP HID BR/EDR ©
Serial flasher config
Partition Table
~ Compiler options

V/ Replace ESP-IDF and project paths in binaries

208
Replace ESP-IDF and project paths in binaries Task stack size for ESP HID BLE @
Enable C+ + exceptions
Component config
Application Level Tracing
~ Bluetooth TinyUSB Stack

CELTE T Human Interface Device Class (HID)
Console Library
s A TinyUSE HID interfaces count @

TWAI Configuration

- Legacy ADC Driver Configuration

Legacy ADC Calibration Configuration

4096

After the configuration is completed, be sure to save your settings.

+ Then we will compile and burn the code (as detailed in the first class).

Here, we would like to introduce to you another very convenient feature. With just one
button press, you can perform the compilation, upload, and open the monitor at once.
(This is provided that the entire code is error-free.)

> OUTUNE
> TIMELINE
> PROJECT COMPONENTS
B ESP-DFVSA2 Y UART O COM

ESP-IDF: QEMU] _[ESI

« After waiting for a while, the code compilation and upload were completed, and the
monitor also opened.

« At this point, please remember to use another Type-C cable to connect your

Advance-P4 through the USB2.0 interface. Only in this way can you use the USB2.0
protocol for communication.

UART

USB

+ When you slide the screen of the Advance-P4, the mouse on your computer also
moves along. At this moment, your Advance-P4 becomes your new mouse.

Meanwhile, you can also see the corresponding coordinates printed on the monitor
when you turn it on.

L0
LESSONOS

> devcontainer

peripheral
bsp_display

include

C bspusbh

MakeLists.txt if (touch_read()

langd
M CMakeListstxt

dependenci

TERMINAL

Lesson 07
Turn on the screen

Introduction

In this class, we will start by teaching you how to turn on the screen. Then, while turning
on the screen backlight, we will display "Hellow Elecrow” on the screen. Of course, you can
replace it with whatever you want.

The main focus of this class is to teach you how to turn on the screen backlight and turn
on the screen, in preparation for the subsequent courses.

Hardware Used in This Lesson

The screen on the Advance-P4

Display Screen CXM090IPS-D27 Schematic Diagram

Upper polarizing filter

yo =

Color Filter

Liquid crystal layer

TFT substrate

Lower polarizing filter

o p e

Firstly, the backlight (usually an LED array) emits a white surface light source, providing
the basic light for display.

Then, the lower polarizer polarizes and filters the light from the backlight, allowing only
light of a specific polarization direction (such as horizontal) to pass through, forming
linearly polarized light. Next, the light reaches the TFT substrate, where the thin-film
transistors (TFTs) on the substrate act as switching devices, controlling the electrical
state of the liquid crystal molecules in the corresponding pixel area based on the applied
voltage, thereby changing the alignment direction of the liquid crystal molecules.

Liquid crystal molecules have optical anisotropy and electric field response
characteristics. The change in their alignment direction modulates the polarization state
of the passing polarized light. Subsequently, the light enters the color filter, which is
composed of red, green, and blue primary color filter units.

only light corresponding to the color of the filter units (for example, only red light can
pass through the red filter unit) can pass through, generating primary color light. Finally,
the upper polarizer (whose polarization direction is perpendicular to that of the lower
polarizer, such as horizontal for the lower polarizer and vertical for the upper polarizer)
filters the light that has passed through the color filter again.

Only light with a polarization direction consistent with the allowed direction of the upper
polarizer can pass through.

Through the precise control of the liquid crystal molecules in each pixel by the TFT
substrate, the polarization state of the polarized light is adjusted. Combined with the
color filtering of the color filter and the polarization selection of the upper and lower
polarizers, different pixels present different brightness and colors, ultimately forming a
visible color image.

Operation Effect Diagram

After running the code, you will be able to visually see that "Hello Elecrow” is displayed on
the screen of the Advance-P4.

Hello Elecrow

Key Explanations

« The main focus of this class is to turn on the screen for display. Here, we will provide
everyone with a new component called bsp_illuminate. This component is mainly
responsible for driving the screen, turning on the backlight, and performing related
displays. As you know, you can call the interface we have written at the appropriate
time.

+ Next, we will focus on understanding the bsp_illuminate component.

« First, click on the Github link below to download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-£SP32-P4-HMI-Al-Display-800x480-IPS-To
uch-Screen/tree/master/example/V1.0/idf-code/Lesson07-Turn_on_the_screen

« Then, drag the code of this lesson into VS Code and open the project file.

« After opening it, you can see the framework of this project.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson07-Turn_on_the_screen

In the example of this class, a new folder named
"bsp_illuminate” was created under the "peripheral”
directory. Inside the "bsp_illuminate” folder, a new
"include” folder and a "CMakelists.txt” file were created.

The "bsp_illuminate” folder contains the
"bsp_illuminate.c” driver file, and the "include” folder
contains the "bsp_illuminate.h” header file.

bsp_illuminate.h

il The "CMakelists.txt" file will integrate the driver into the

build system, enabling the project to utilize the screen
display functionality described in "bsp_illuminate.c”.

« There are also two other components, bsp_i2c and bsp_stc8hikxx.

+ bsp_i2cis the I12C component. Here, an I12C control expansion chip STC8HIK17 is
needed, and then STC8HIKI17 will control the backlight of the screen.

+ bsp_stc8hlkxx is the control interface required by the expansion chip. This expansion
chip can control the backlight of the screen, the power ampilifier enable, etc. We will
remind you again when we use it later.

» You can see that there is another component called "components” above. This one is a
component we downloaded from the internet. After downloading, we modified its code
based on it to adapt to the display requirements of our RGB screen. (You can use it
directly without any modifications.)

Screen display code

» The driver code displayed on the screen consists of two files: "bsp_illuminate.c” and
"bsp_illuminate.h".

+ Next, we will first analyze the "bsp_illuminate.h” program.
+ "bsp_illuminate.h" is a header file for the screen display module, mainly used for:

+ Making the functions, macros, and variable declarations implemented in
"bsp_illuminate.c” available for use by external programs.

« Allowing other .c files to simply include "bsp_illuminate.h” to call this module.

In other words, it is the interface layer, exposing which functions and constants can be
used externally while hiding the internal details of the module.

In this component, all the libraries we need to use are placed in the "bsp_illuminate.h”
file for unified management.

«+ Such as esp_lcd_ek79007.h, esp_Ivgl_port.h, and Ivgl.h (these are libraries under the
network component)

In this case, we need to fill in the versions of esp_lcd_ek79007, esp_Ivgl_port and Ivgl
in the idf_component.yml file located in the main folder.

Since these are official libraries, we need to use the official libraries to achieve the
screen display function on our Advance-P4.

EXPLORER main.c uminate.c

~ LESSONOT OEBEL® main > ! idf componentyml
~ components
> espressif_esp_led touch_gta11
> espressif__esp_vgl_port
~ main
CMakel ists.txt
idf_component.yml
main.c
~ managed_components,
> espressif _cmake_utilities
> espressif__esp_lcd_ek73007
> espressif__esp _led touch

> lvgl_hgl

+ When the project is compiled in the future, it will automatically download the
esp_lcd_ek79007 library version 1.0.2 and the Ivgl version 8.3.11.

After the download is completed, these network components will be saved in the
managed _components folder. (This is automatically generated after filling in the
version numbers.)

Here we have commented out esp_lcd _touch_gt911 and esp_Ivgl_port because we
have already prepared them in the components folder and made the necessary
modifications in their code. Everyone can just use it directly.

LESSONO7 main > ! idf componentyml
v components
> espressif__esp_led_touch_gt911
> espressif_esp Ivgl_port
~ main
CMakelists.bxt
! idf_componentyml
main.c

~ managed_components
Then, include the components in the outer CMakelists.txt file.

(These are the custom components we use)

Peripheral: Components such as bsp_illuminate that we wrote ourselves

Components: The network components will be modified after download and adapted
to our 5-inch screen.

EXPLORER main.c bsp_illumina CMakeListstxt X C bsp_illuminate.h

LESSONO7 CMakeLists.txt
For more information about build system see
: # https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/build-system. html
main.c # The following five lines of boilerplate have to be in your project’s
¥ managed_components # (Makelists in this exact order for cmake to work correctly
> espressif_emake_utilities cmake_minimum_required(VERSION 3.16)
> espressif_esp_lcd_ek79007
> espressif_esp_led_touch

~ main

include ($ENV{IDF_PATH}/tools/cmake/project . cmake)
Set (EXTRA_COMPONENT_DIRS “peripheral” "components™)

> Ivgl_lvgl ¢
project(P4_Lesson@7)

~ peripheral
~ bsp_izc
v include
C bspiZch
bsp_i2c.c
CMakeLists.txt
£ Kconfig
~ bsp_illuminate
v include
C bsp_illuminateh
bsp_illuminate.c
CMakeLists txt
 bsp_steahilon
~ include
C bsp_steahilooch
bsp_steshikoce
CMakeLists.txt
= Keonfig
CMakeLists.txt
= dependencies.lock

Then comes the declaration of the variables we need to use, as well as the declaration
of the functions. The specific implementations of these functions are in
"bsp_illuminate.c”.

They are all uniformly placed in "bsp_illuminate.h” for ease of calling and
management. (When used in "bsp_illuminate.c”, we will understand their functions
later.)

It includes:

LCD parameter definitions: including screen resolution (800x480), color bit depth
(16-bit), pixel clock (18 MHz), and synchronization signal timing (HSYNC, VSYNC, etc.).

Pin definitions: Lists the GPIO pin numbers used for the LCD data lines (D0-D15), clock,
and synchronization signals.

Color constants: Define common colors (red, green, blue, white, black, gray).

Function declarations: display _init() is used to initialize the LCD display, and
set_lcd_blight() is used to set the backlight brightness of the screen.

1v_color_make

60 * 1008)

display init();
set_lcd blight(uint32 t brightness);

Let's take a look at "bsp_illuminate.c” again. We'll examine the specific functions of each
one.
bsp_illuminate:

This component provides underlying driver support for the subsequent application layer
(such as in app_main where it displays "Hello Elecrow”). It enables you to draw and
display using the LVGL API without having to worry about the details of the hardware
driver.

Then the following functions are the interfaces we call to implement the screen display.
blight_init / set_lcd_blight — Control the backlight.

display_port_init / display_port_deinit — Manage the display interface resources.
Ivgl_init — Start the LVGL framework.

display_init — Provide the encapsulation of the overall display initialization process.

BT
blight_init:
This function is used to initialize the backlight control hardware of the LCD.

At present, no actual PWM configuration has been performed (only a success return is
given), but typically here:

Configure the backlight control pin as an output;

Initialize the PWM channel and the timer;

Have the ability to adjust the brightness through duty cycle.

Subsequently, the actual brightness adjustment is achieved through the function
set_lcd_blight().

set_lcd_blight(uint32_t brightness) :

This function adjusts the LCD backlight brightness based on the input brightness value (0
-100):

Call the function stc8_set_pwm _duty() internally to modify the duty cycle of the PWM
signal;

The higher the duty cycle, the brighter the backlight will be.
When brightness is 0, the backlight is completely turned off.

This enables us to flexibly adjust the screen brightness within the application.

display _port init(void):

This function completes the hardware initialization of the display interface, and mainly
includes the following steps:

Configure RGB interface parameters:

This includes data bit width, DMA alignment, synchronization signal pins (HSYNC, VSYNC,
DE), pixel clock, resolution, timing parameters, etc.

Create and register the panel driver:

esp_lcd_new_rgb_panel() creates the LCD panel object, and esp_lcd_panel_init()
performs the hardware initialization.

Set up PSRAM frame buffer:

By setting flags.fo_in_psram = true, place the frame buffer in the external PSRAM to
avoid insufficient memory.

Summary: This function establishes a communication bridge between the ESP32 and the
EK79007 display controller.

Ivgl_init() :

This function is the core of the graphical interface system and is responsible for initiating
the LVGL graphics library.

The main workflow is as follows:
Initialize LVGL tasks and timers: Create the LVGL running task using Ivgl_port_init().

Registering display device: Use disp_cfg to register the previously created LCD panel as
an LVGL output device;

Configuration of display parameters: including resolution, color format, refresh mode,
etc.

Enable the anti-tearing mechanism to ensure no flickering when the image is refreshed.

Result: LVGL has successfully been bound to the hardware display, and the system can
now display the LVGL graphical interface.

display_init() :

This is the main entry function of the entire display system, which is executed in a fixed
sequence:

blight_init() — Initializes the backlight control module;
display _port_init() — Initialize the hardware display interface;
Ivgl_init() — Initializes the graphics display system.

If any step fails, an error message will be immediately returned to ensure the system's
security and stability.

Final Result: Once the display _init() function is successfully executed, the entire display
system can enter the visual working state, preparing for the display of the LVGL graphical
interface.

That's all about the components of bsp_illuminate. Just remember how to call these
interfaces and you'll be fine.

Then, if we need to make a call, we must also configure the "CMakelists.txt" file located in
the "bsp_illuminate” folder.

This file is placed in the "bsp_illuminate” folder and its main function is to inform the build
system (CMake) of ESP-IDF: how to compile and regjister the "bsp_illuminate”
component.

EXPLORER main.c sp_illumina CMakeListstt X € bsp_illumin;

LESSONOT [EN=Nd) peripheral > bsp_illuminate > M CMakelLists.txt

~ components FILE(GLOB_RECURSE component_sources "*.c")
> espressif_esp_lcd_touch_gt911

> L L idf_component_register(SRCS ${component_sources}
© mET INCLUDE_DIRS “include™
SR REQUIRES driver esp_lcd_ek79867 lvgl esp lvgl port bsp_i2c bsp_stc8hilox)
! idf_componentymi
mainc
~ managed_components
> espressif_cmake_utilities
> espressif_esp_lcd_ek79007
> espressif_esp_led_touch
> lvgl_hvgl
v peripheral
~ bsp.izc
~ include
C bsp_i2zch
bsp_i2c.c
CMakeListsitet
£ Keonfig
~ bsp_illuminate
~ indlude
C bsp_illuminateh
bsp_illuminatec
CMakelists.txt

+ Thereason why it is driver, esp_lcd_ek79007, lvgl, esp_Ivgl_port,bsp_i2c and
bsp_stc8hlkxx is that we called them in "bsp _illuminate.h” (for other libraries that are
system libraries, there is no need to add them)

main.c C bsp_illuminateh X

main.c bsp_illuminate.c X

peripheral > bsp_illuminate > bsp_illuminate.c > g vgl initQ)

"bsp_illumin
stc8hikx

+ After talking about the bsp_stc8hlkxx component for such a long time, now let's take a
look at what this component actually achieves.

+ The header file bsp_stc8hlkxx.h is mainly used for communication and control with the
STC8HIKXX chip via the 12C bus on the ESP32 platform. The file first introduces the
necessary system and driver header files, then defines log output macros, basic data
type aliases, and a series of register addresses, function enumerations, and structures
related to the STC8 chip. It mainly includes three functional modules: battery
management (obtaining battery voltage, power, and charging status), GPIO control
(reading input pin levels, setting output pin states), and PWM control (adjusting the
duty cycle of devices such as LCD backlight).

The file finally declares the corresponding I12C initialization function and various
operation interface functions, enabling upper-layer applications to conveniently
implement communication and control of the STC8HIKXX peripheral chip through a
unified APL.

main.c bsp_stcBh1loo, bsp_stcBhikooch X bsp._illuminate.c bsp_illuminate.h

peripheral > bsp_stcBh1kex > include > € bsp_stcBhikch

#define

DR_BATTERY
DR_GET_GPIO
DR_SET_GPIO

- Now let's take a look at the content in the bsp _stc8hilkxx.c file.

1. stc8_i2c_init()

This function is used to initialize the 12C communication with the STC8HIKXX chip. It first
calls the i2c_dev_register() function to register the device with the 12C slave device
address of STC8 (STC8_I2C_SLAVE_DEV_ADDR) in the system, and saves the returned
device handle to the global static variable stc8_handle. If the registration fails, it outputs
the error message through the log macro and returns ESP_FAIL; if the registration is
successful, it returns ESP_OK.

The main function of this function is to establish the communication channel for all
subsequent read and write operations based on 12C, and it is the initialization entry of the
entire STC8 module driver.

2. stc8_battery _info_get(Battery_info_t *bat_info)

This function is used to read battery information from the STC8HIKXX chip via the 12C bus.
The current implementation adopts the method of reading byte by byte. It reads the
required number of bytes for the entire Battery_info_t structure starting from the register
address STC8_REG_ADDR_BATTERY in a loop. After reading each byte, the data is written
into the bat_info buffer. If an error occurs during the reading process, the function will
immediately record the error log and return the error code; if all bytes are successfully
read, it will return ESP_OK.

Through this function, the upper-level application can obtain complete battery
information including battery voltage, percentage of charge, charging status, and LED
indication status.

3. stc8_gpio_get_level(int gpio_num, uint8_t* level)

This function is used to obtain the level status of the specified GPIO input pin on the
STC8HIKXX chip. The function first checks whether the input gpio_num is within the valid
range (i.e, less than STC8_GPIO_IN_MAX). If it is out of range, it returns an error and
outputs a log. Then, it reads the level value (high or low) of the corresponding pin from
the register address STC8_REG_ADDR_GET_GPIO + gpio_num using the i2c_read_reg()
function, and stores it in the passed level pointer. If the reading fails, it prints the error
message and returns a failure status; otherwise, it returns ESP_OK.

This function is mainly used to detect the level changes of external input signals on the
STC8.

4. stc8_gpio_set_level(int gpio_num, uint8_t level)

This function is used to control the level state of the output GPIO pins on the STC8HIKXX
chip. It first checks whether gpio_num is within the valid range of output pins (less than
STC8_GPIO_OUT_MAX). If it exceeds this range, it records an error log and returns
ESP_FAIL. Then, it uses i2c_write_reg() to write the specified level value (usually 0 or 1) to
the corresponding register address STC8 _REG_ADDR_SET_GPIO + gpio_num, thereby
changing the logic state of the output pin. If the write fails, it outputs an error log and
returns an error code; if it succeeds, it returns ESP_OK.

Through this function, various peripheral control functions such as controlling the
touchscreen reset, camera reset, audio amplifier enable, and LCD backlight switch can
be achieved.

5. stc8_set_pwm_duty(int pwm_num, uint8_t duty)

This function is used to set the duty cycle of a certain PWM channel on the STC8HIKXX
chip. It first checks if pwm_num is less than STC8_PWM_MAX to ensure the requested
channel is valid. If it is invalid, it records an error and returns a failure. Then, the function
calls i2c _write_reg() to write the specified duty cycle value duty to the register address
STC8_REG_ADDR_SET_PWM + pwm_num, to adjust the duty cycle of the PWM output
signal and thereby control the brightness or power of external peripherals such as LCD
backlight. If an error occurs during the writing process, the function outputs an error log
and returns a failure code; if successful, it returns ESP_OK.

The main purpose of this function is to implement remote brightness or intensity control
of the internal PWM module of STC8 through 12C.

Main function

The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER sp. ate. bsp_illuminate.c

- LESsONO4

This is the entry file of the entire application. In ESP-IDF, there is no "int main()". Instead,
the program starts running from the "void app_main(void)" function.

Let's first explain main.c.

On the ESP32-P4, it completes the acquisition of the power LDO — initialization of the
screen driver — turning on the backlight — displaying the text "Hello Elecrow” in the
center of the screen using LVGL.

"bsp_illuminate.h": This is a header file of the board support package (BSP), which
encapsulates the initialization of LCD display screens and backlight control interfaces
related to hardware, allowing the main program to directly call these functions without
needing to concern about the underlying register operations.

“Ilvgl.h": This is the main header file of the LVGL graphics library, providing functions for
creating and managing GUI objects, setting styles, layouts, and event handling, enabling
you to display text, graphics, and animations on the screen.

"freertos/FreeRTOS.h": This is the core header file of FreeRTOS, defining the basic types,
macros, and data structures of the operating system, providing underlying support for
task scheduling, time management, and memory management.

"freertos/task.h": This is the header file of FreeRTOS task management, providing API for
creating, deleting, suspending, and delaying tasks, enabling the program to achieve
concurrent execution of multiple tasks.

"esp_log.h" This is the header file of the log printing interface of ESP-IDF, providing log
output of different levels (INFO, ERROR, etc.), enabling developers to debug and track the
running status of the program.

"osp_stc8hlkxx.h": We have custom-written the expansion chip components. In this
class, we will call the interface that has been written to control the screen backlight.

main >

Ivgl_show_hello_elecrow():

Function: Create a centered label on the current screen of LVGL and display the text
"Hello Elecrow”. Also, set the font size/color and other styles for the text. (If modifying the
content, replace "Hello Elecrow") Key points:

First, call lvgl_port_lock(0) to attempt to acquire the LVGL mutex lock (0 indicates
non-blocking immediate return), to prevent concurrent modification of LVGL objects. If
the lock acquisition fails, the function simply returns and prints an error - this might not
display the text because other tasks may hold the lock.

Use Iv_scr_oct() to obtain the current screen object and set the background to white
(LV_PART_MAIN).

Create a label, set the text, initialize the static Iv_style_t label_style and set the font
(lv_font_montserrat_42), color to black, background transparent, and then add the style
to the label.

Finally, call lv_obj_center() to center the label, release the LVGL lock Ivgl_port_unlock()
to allow the LVGL rendering task to continue working.

(The font Iv_font_montserrat_42 must be enabled and linked to the project during LVGL
build, otherwise there will be compilation/linking or runtime issues.)

I_show_hello_elecro

lvgl_show_hello_elecrow(void) {

vgl_port_lock(®) !=
AT OR("LVGL lock

1v_obj_t *screen = lv_scr_act();
1v_obj_set_style bg color(screen, L

bj_t *hello_label =
(hello_label ==

1vgl_port_unlock
return;

1v_label_set_text(hello_label, "He

t label style;
1v_style_init(&label_style);
1v_style set text font(&label style, &lv_font montserrat 42);
1v_style set text_color(&label style, LV
1lv_style set_bg opa(&label style, LV _OPA TRANSP);

1v_cbj_add_style(hello_label, &label_style, LV_PART_MAIN);
1v_obj_center(hello label);

1lvgl port unlock();

Open the configuration and deactivate the font.

SDK Configuration editor X

font Save | Discard

Remember to save it finaly.
init_fail_handler(const char *module_name, esp_err_t err):

Function: When the initialization of a certain module fails, this function will enter an
infinite loop and print the error message (including the module name and error code
string) once per second.

ar *module_name, err) {

module_name, esp_err_to_name(err));

system_init(void):

The "system _init()" function is responsible for completing the initialization tasks of the
system, mainly including the initialization of the LCD display screen, backlight, and 12C
bus-related hardware. The function first initializes the 12C bus and establishes 12C
communication with the STC8HIKXX chip. If the initialization fails, it calls
"init_fail_handler()" to enter an infinite error printing loop;

then it initializes the LCD display screen and turns on the LCD backlight, setting the
brightness to the maximum value of 100. Similarly, in case of initialization failure, it will
enter an error handling loop.

The entire function ensures that the hardware is ready before the upper-level application
calls LVGL or controls the backlight, and outputs corresponding log information at each
successful step to guarantee the controllability and reliability of the system.

init_fail handler(’

Then comes the main function app_main.

Function: Program entry point. It prints the start information, calls system_init() to
complete the initialization of hardware and display, then calls
Ivgl_show_hello_elecrow() to draw the text, and finally prints the success message. Key
points:

The function system_init() is blocking and critical: if it fails, it will enter an infinite loop in
the init_fail_handler() and the app_main will not proceed.

The function Ivgl_show_hello_elecrow() simply returns after creating the LVGL object;
the actual image is refreshed to the screen by LVGL's own rendering task or tick
(depending on the implementation of lvgl_port).

system_init();

ello_elecrou(

Now let's take a look at the "CMakelists.txt" file in the "main” directory.
The function of this CMake configuration is as follows:

Collect all the .c source files in the 'main/" directory as the source files for the
component;

Register the "main” component with the ESP-IDF build system and declare that it depends
on the custom component "bsp_illuminate”.

Then, the "bsp_illuminate” will link the components in the "CMakelists.txt" file within
"bsp_illuminate™

This way, during the build process, ESP-IDF knows to build "bsp_illuminate” first, and then
build "main”.

EXPLORER =ee n c CMakelists.bd X

- LESSONO7 GEBEOLA main > M CMak
4 Shifts FILE(GLOB_RECURSE main ${CMAKE_SOURCE_DIR}/main/

idf_component_register(SRCS ${main}
REQUIRES bsp_illuminate)

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson07-Turn_on_the screen

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson07-Turn_on_the_screen

Programming Steps

+ Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

@ Cro@ne

SKU:DHEQLB0SD

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

main.c
systen_init(
lay_init();

init_fail_handler:

id app_main(

en_init();

p.illuminate.h v ow_hello_elecrou:

illumin:

© coM4 O

« Here, following the steps in the first section, first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

« Then here we need to configure the SDK.

+ Click the icon in the picture below.

» OUTLINE

> TIMELINE
> PROJECT COMPONENTS
EBESP-IDFv54.2 € UART Q COM14 £

» Wait for a moment for the loading process to complete, and then you can proceed
with the related SDK configuration.

SDK Configuration editor X

Discard Reset

Build type
Application build ty

Default (binary application + 2nd stage bootioader)

Bootloader config
Bootloader manager

After the SDK configuration is enabled, search for "CONFIG_IDF _EXPERIMENTAL_FEATURES"
in the search box, check the box, and then save the configuration.

onfiguration editor X

CONFIG_IDF_EXPERIMENTAL_FEATURES

Make exp

 After setting "CONFIG _IDF _EXPERIMENTAL_FEATURES", then search for PSRAM. Set it in
sequence here to enable the 200M PSRAM, so that the screen can display a picture.

« Finally, remember to save the successfully configured configuration.

« Only by enabling the PSRAM option can there be sufficient RAM allocated to the screen.
Enabling the CONFIG _IDF _EXPERIMENTAL_FEATURES option allows you to select 200M
PSRAM and use a higher RAM speed

C mainc SDK Configuration editor X ponen C bsp_illuminatec

Build type Component config
> Bootloader config Hardware Settings
Security features Sleep Config

Pull-up PSRAM CS pin n light sleep
Application manager
LDO Regulator Configurations

Boot ROM Behavior .

¥ Reserve one LDO regulator channel for PSRAM (READ HELP) ©

Serial flasher config LDO regulator channel that used to power PSRAM and MPLL (READ HELP) ()

Parttion Table 2
> Compiler options PSRAM power domain voltage

Component config 197

ESP PSRAM

7 supportfor extemal p5AM @ _|
PSRAM config

Line Mode of PSRAM chip in use ©

16-Line-Mode PSRAM

Set PSRAM clock d ©
Enable Executable in place from (XiP) from PSRAM feature (READ HELP) (D
Enable PSRAM ECC (D
v Initialize SPI RAM during startup ®
/ Pre-configure memory protection for PSRAM (D
Ignore PSRAM when not found (
SPI RAM access method (O
Make RAM allocatable using malloc(as well

V. Runmemory test on SPI RAM initalization)

« In order to meet the font size requirements for LVGL as specified in the previous code,
here we need to search for "font’, open the font, so that we can use the font set by
LVGL.

1vgl_port_unlock();
return;

1v_label set text(hello_label,

style t label style;
1v_style_init(&label_style

1v_style_set_text_font(&label style, &IV fontimontserrat 42)) ;
1v_style_set_text_color(&label_style,

1v_style_set_bg opa(&label_style, LV_OPA_TRANSP)

SDK Configuration editor X ! idf componenty; bsp_illuminate.c illuminate.h
font save | Discard

Build type Enable Montserrat 30 @
> Bootioader config Enable Montserrat 32
Security features Enable Montserrat 34 ©
Application manager enable Montserrat 36 @
Boot ROM Behavior Enable Montserrat 38 ©
Serial flasher config Enable Montserrat 40 @

Partition Table Enable Montserrat 42 @

N
Compiler options Enable Montserrat 44 ©

TR Enable Montserrat 46 ©

Enable Montserrat 48

Enable Montserrat 12 sub-pixel ©

Enable Montserrat 28 compressed

Enable Dejavu 16 Persian, Hebrew, Arabic letters (O
Enable Simsun 16 CK @

Enable UNSCIl 8 (Perfect monospace font)

« Then, search for "flash” in the search box. (Make sure your flash settings are the same
as mine.)

Discard Reset

Bootloader config

Serial Flash Configurations
app adjust Dummy Cy

 Enable th
Security features

Enable flash encryption o

Serial flasher config
Disable download stub ®

Flash SPI mode @

After the configuration is completed, remember to save your settings.

« Then we will compile and burn the code (as detailed in the first class).

« Here, we would like to introduce to you a very convenient feature. With just one button
press, you can perform the compilation, upload, and open the monitor at once. (This is
provided that the entire code is error-free.)

COM14 O

+ After waiting for a while, the code compilation and upload were completed, and the
monitor also opened.

« At this point, please remember to use another Type-C cable to connect your
Advance-P4 through the USB2.0 interface. This interface provides a maximum current
of about 500mA from the computer's USB-A port. When the Advance-P4 is using more
external devices, especially the screen, it requires a sufficient current source. (It is
recommended to use a charger for connection.)

UART

USB

« After the burning process is completed. You will be able to see that your Advance-P4
screen lights up, and the message "Hello Elecrow” appears in the center of the screen.

Hello Elecrow

Lesson 08
SD Card File Reading

Introduction

In this lesson, we will start teaching you how to use the SD card on the Advance-P4
development board to perform read and write operations on files stored in the SD card.

Hardware Used in This Lesson

SD card on the Advance-P4

KU:DHEQ4L 0050
1 Display 5.0 Vo.1

Operation Effect Diagram

After running the code, you will be able to visually see that a file named "hello.txt"
appears in the SD card, with the content "hello world!" already written in it.

Key Explanations

« The focus of this lesson is how to use the "SD card’, how to initialize it, and how to read
and write files.

» Here, we will prepare another new component "bsp_sd" for everyone. The main
function of this component is to implement the aforementioned file read and write
operations.

« You only need to know when to call the interfaces we have written in it.
» Next, let's focus on understanding the "bsp_sd" component.

« First, click the Github code link below to download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson08-SD_Card_File_Reading

« Then drag the code of this lesson into VS Code and open the project files.

« After opening, you can see the framework of this project.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson08-SD_Card_File_Reading

In the example of this course, a new folder named
bsp_sd is created under the peripheral directory. Within
the bsp_sd folder, a new include folder and a
"CMakelists.txt" file are created.

L= The bsp_sd folder contains the driver file "bsp_sd.c, and
~ peripheral’, bs|

- the include folder contains the header file "bsp_sd.h".
™ cluge

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the SD card
read/write functionality implemented in "bsp_sd.c”.

Code for SD Card File Reading and Writing

» The code for SD card file reading and writing consists of two files: "bsp_sd.c” and
"bsp_sd.h".

« Next, we will first analyze the "bsp_sd.h" program.

« "bsp_sd.h"is the header file of the file read-write module, and its main functions are as
follows:

« Declare the functions, macros, and variables implemented in "bsp_sd.c” for use by
external programs.

+ Allow other .c files to call this module simply by adding the directive #include
"bsp_sd.h".

« In other words, it serves as an interface layer that exposes which functions and
constants are available to the outside, while hiding the internal details of the module.

« In this component, all the libraries we need to use are included in the "bsp_sd.h" file,
enabling unified management.

.

Next, we declare the variables and functions we need to use. The specific
implementation of these functions resides in "bsp_sd.c"

Concentrating these declarations in "bsp_sd.h" is for the convenience of calling and
management. (We will learn about their specific roles when they are used in
"bsp_sd.c".)

*filename);

*filename, cha
*filename);

Filename);

t sd_init();

Now let's look at the specific functions of each function in "bsp_sd.c".

The "bsp_sd” component provides significant support for everyone to use file
read-write interfaces in the future. By understanding the functions of these functions
clearly, you can flexibly read from and write to the SD card file system.

It includes the custom header file "bsp_sd.h", which defines function declarations, log
macros, constants, and paths.

"card” stores information such as the status, capacity, and speed of the SD card
device.

"sd_mount_point" is the file system mounting directory of the SD card.

sd_mount_point[] = SD

rr_t create file(const char *filename)

create_file:

Use fopen(filename, "wb") to create a file in binary write mode;Close the file immediately
after successful creation; Return ESP_FAIL if opening fails.

Function: Ensure that an empty file exists on the SD card.

st char *filename)

g , filename);
*file = fopen(filename,
(!file)

write_string _file:

Open the file in text write mode using fopen(filename, "w");
Write the string using fprintf(file, "%s", data);

Close the file after writing.

Function: Save a section of text (string) into a file on the SD card.

t Write string fild(const char *filename, char *data)

read_string_file:

Open the file for reading;

Use "fgets()" to read a line of text;

Check if there is a newline character "\n", and if so, replace it with a string terminator;
Print the read content.

Function: Read a line of text content from the file and output it to the "log".

48 esp err_t d = char *filename)
{
SD_INFO("Reading file ¥s", filename);
FILE *file = fopen(filename, "r");
if (1file)

“Failed to open file for reading string");

return ESP_FAIL;

e’
"Read a line from file: '%s'", line);

SD_INFO("Read from file: '%s'", line);
return ESP_OK;

Note: The maximum number of characters that can be read here is 64. If you need
to read more characters, you will need to adjust the size.

esp_err_t read string file(ar *filename)
0("Reading file %s", filename);
*file = fopen(filename, "r"};
“Failed to open file for reading string");

return ESP_FAIL;

char line[EXAMPLI
fgets(line,
fclose(file);

C mainc r sp_sd.c Chspsdh X

peripheral > h > B SD_MOUNT_POINT
ifndef _|

<string.h>
#include <sys/unistd.h>
#include <sys/stat.hy
#include “esp_wfs_fat.h"”
#include "sdmmc_cmd.h
#include "driver/sdmmc_host.h"

#define 5

#define
#define
#define

#define
#define

write_file:

Open the file in binary write mode ("wb");

Use "fwrite()" to write the "data” in memory to the file;

If the number of bytes written is not equal to "size", it indicates a write failure;
Finally, close the file.

Function: Suitable for writing binary data or image files.

err_t write file(const char *filename, char ?

write_file_seek:

Open the file;

Call "fseek()" to move the file write pointer to the specified offset;
Then execute "fwrite()";

Return an error if the operation fails.

Function: Write data at a specific position in the file, commonly used for log appending or
data block replacement.

80 esp_err_t Wpite filelseek(const char *filename, void *data, size_t size, int32_t seek
{
size_t success_size = 9;
*file = fopen(filename, "l
if (Ifile)

led to open file for writing™);

if (fseek(file, seek, SEFK SET) != 8

iled to seek file™);

success_size = furite(data, 1, size, file);
if (success_size != size)

.
{

fclose(fi.

else
r
{

read_file:

Open the file;

Use "fread()" to read a fixed-size data from the file;

If the number of bytes read does not match the expected value, an error is reporte
Otherwise, close the file and return success.

Function: Read binary files or fixed-length data blocks.

118 esp err_t read file(ar *filename, char *data, size t size)
{
size t success_size = 8;
FILE *file = fopen(filename, “"rb")
(1file)

d to open file for reading
success_size = fread(data, 1, size, file);
if (success_size != size)
{
fclose(file);

else
r

fclose(file);
D_INFO("File read success™);

read_file_size:

Read all data blocks in the file in a loop;

Accumulate the "size” to get the total number of bytes of the file;
Output the total size of the file.

Function: Calculate the file size and verify the correctness of writing.

rr_t read_file size(co *read_filename)

buffer[1824]
((read_success_size sizeof(buffer), read_file)) > 8)

read_write_file:

Open the source file (for reading) and the target file (for writing);

Read 1024-byte content from the source file in blocks;

Write the content to the target file;

Check whether the number of written bytes is consistent with the number of read bytes;
Finally, close the files and output the message indicating successful copying.

Function: Implement file copying operation.

r *read_filename, char *write_filename)

fopen(read_filename,
write file = fopen(write_filename,
(!read_file)

(lwrite_file)

uffer[1624];
((read_succe ize = fread(buffer, 1, (buffer), read_file)

write . 8 write(buffer, 1 ad_success_size, write file

sd_init:

Create an "esp_vfs_fat_sdmmc_mount_config_t" configuration structure to set:
« "format_if_mount_failed = false” — Do not automatically format;

» "max_files = 5" = Maximum 5 files can be opened simultaneously;

« "allocation_unit_size = 16 * 1024" — Each cluster size is 16KB;

Initialize "sdmmc _host_t" and "sdmmc_slot_config_t"

« Set clock, command, and data line pins;
+ Set bus width (I-line mode);

+ Reduce the clock frequency to 10MHz to improve stability;

Call "esp_vfs_fat_sdmmec_mount()" to mount the SD card file system to "/sdcard”;
If successful, print card information.

Function: Mount the SD card and establish the "FAT" file system.

196 esp_err_t sd_init()
{
esp_err_t err _OKS
vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed e
.max_files = 5,
.allocation_unit_size

sdmmc_host_t hos

host.slot = S _SLOT_
host.max_freq_kh 10000;
sdmmc_slot_config t slot_config = S
slot_config.cl

slot_config.cmd

slot_config.de = GPIO NUI
slot_config.width = 1;
slot_config.flags

return

sdmmc _card_print_info(
return err;

get_sd_card_info:

Print detailed information such as the type, capacity, and speed of the SD card to the
console.

oid get_sd_card_info()

sdmmc_card_print_info(stdout, card);

format_sd_card:

Call "esp_vfs_fat_sdcard_format()" to format the "FAT" file system;

Output an error message if formatting fails.

Function: Clear the SD card file system and reformat it.

237 esp_err_t format_sd_card()
{

esp err_t err =

err = esp_vfs Fat sdcar‘d format(sd_mount_point, card);

S (%s)", esp_err_to_name(err));

That concludes our introduction to the "bsp_sd" component. It's sufficient for everyone
to understand how to call these interfaces.

If you need to call them, you must also configure the "CMakelists.txt" file under the
"bsp_sd" folder.

This file, placed in the "bsp_sd" folder, mainly functions to tell the build system
(CMake) of "ESP-IDF" how to compile and register the "bsp_sd" component.

 LESSONOB SD CMakeLists.bxt
> wscode RECURSE component_sources "*.c"
> build

— idf_component_register(SRCS §{component_sources}

INC IRS "include

~ include REQUT fatfs)

main.h
CMakeLists.txt
main.c
~ peripheral\ bsp_sd
~ include
bsp_sd.h
bsp_sd.c
CMakelists.txt

+ The reason why "fatfs" is involved here is that we have called it in "bsp_sd.h" (other
libraries that are system libraries do not need to be added).

main.c SDK Configuration editor bsp_sd.c

peripheral e bsp_sd.h > B3 SD_MOUNT_POINT

Main function

« The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER C mainc X figurat t C bsp.: M 1 C bsp_sd

+ LESSONOB 5D ai main.c >
5 szmmin sd_task(void *param)
> build
2 main id init_fail(cons *name, esp_err_t err)
~ include hile (1
C mainh
CMakeLists.txt ATN_E %s initi. 0 failed [%s]", name, esp_err_to_name(err));
C mainc VTaskDelay(1668 /
~ peripheral \ bsp_sd
v include
C bspsdh
C bsp_sdc
CMake fakeLists.txt
£ dangd
gitignore
M CMakeLists xt
£ debuglog

£ dependencieslock

« This is the entry file of the entire application. In ESP-IDF, there is no int main(), and the
program starts running from void app_main(void).

- Let's first explain "main.c”.

« When the program runs, the general process is as follows:

Initialization Phase

sd_init() — Detects and mounts the SD card.

File Operation Phase
Users call encapsulated functions such as:
write_string_file() to write data;

read_string_file() for reading and verification;

Debug Log Output

All operations have "SD_INFO()" log output for debugging purposes.

Exception Handling

If file opening, reading, or writing fails, it will immediately return "ESP_FAIL" and print an
error log.

» Next, let's explain the main code file "main.c”.

- First, it includes the custom main header file "'main.h". This header file usually contains
log macros, peripheral initialization declarations, SD card-related function
declarations, and more.

» In essence, including this file enables the current "main.c” to call system initialization
functions and SD card functional functions.

« Below is the content included in "main.h":

BXPLORER main.c mainh
| tEssonos-sp main > indude > € mainh > ...

> vscode ¥ifndef _mAT
- #define _MAIN |
~ main
~ indlude

mainh

CMakeLists bxt

Extensions (Ctrk+Shift+X) - 1 requires update

~ include
bsp_sdh
bsp_sdic
CMakeLists.txt
= dangd
gitignore
CMakeLists.txt
£ debuglog
£ dependencieslock

« The following defines a FreeRTOS task handle.

- Itis used to record the created SD card test task "sd_task”, facilitating system
management.

TaskHandle_t sd _task_handle;

« The following is a FreeRTOS task function, whose main function is to repeatedly test the
read and write functions of the SD card.

0id sd_task(void *param})

i

esp_err_t err = ESP_OK;

char *file_hello =
~ *data = "hello world!

get_sd_card info();

err = write_string_file(file_hello, data);

if (err !-= ES

AIN_ERROR("Write file failed");
continue;

vTaskDelay(2@@ / portTIC

err = read_string_file(file_hello);
if (err != ESP_O

ATIN_ERROR("Read file failed");

vTaskDelay(16@8 / p
AIN_INFO("SD card

vTasiDelete ULL);

Among them:

"file_hello" is the file path (usually "/sdcard/hello.txt")

"data” is the string content to be written to the file.

Note: If your file name is too lon

the read and write operations will eventually fail.
You can do the following:

Click "SDK Configuration Editor".

M CMakeLists.tit
€ mainc char *Filelells - S T_POINT "/hello. txt";
~ peripheral\ bsp_sd hello world!
~ include
Testing sp_sd.h
C bsp.sdc
M CMakeLists.txt
£ cangd
gitignore
M CMakelists.txt
debuglog
£ dependencies ock
B partitions.csv
README.md
sdkconfig

get_sd_card_info();

while (1)

|_ERROR("Write
continue;

sdkconfig.old VTaskDelay(200 /

err = read_string_file(filehells);
r 1

oK

0R("Read file failed”);

VTaskDelay (1608 / p
ATN "SD card tes
vTaskDelete

> ouTune

> TImELINE init_fail(ar *name, es

_err_t err)
> PROJECT COMPONENTS

ESP-IDFv542 Y UART © COM14 Oespi2ps [& | @ s 50 & 6B ®0A0 BBuid & D [ESP-IDF: QEMU]

C mainc SDK Configuration editor % c

file |

s
Build type
v EEElEey FAT Filesystem support
Bootioader manager Number of volumes @
© Log
Format
Serial Flash Configurations :
Security features
Application manager

800t ROM Behavior Long flename buffer on stack
Serial flasher config
Parttion Table Sector size ©
Compiler options
Replace ESP-IDF and project paths in binaries 4096
Enable C++ exceptions
Component config CHETAZ
Application Level Tracing
~ Blvetooth USG50
~ Bluedroid Options Max long filename length @
BT DEBUG LOG LEVEL
Enable BLE 5.0 features(please disable BLE 42 if enable BLE 5.0)
Enable BLE 4.2 features(please disable BLE 5.0 if enable BLE 4.2)
Common Options
ESP BLE Mesh Support
Console Library

Long filename support &

255

API character encoding ©

AP uses ANSI/OEM encoding
Driver Configurations.

TWAI Configuration
Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration 0

Legacy MCPWM Driver Configurations Timeout for acquiring a fl lock, ms ©

Legacy Timer Group Driver Configurations

Legacy RMT Driver Configurations 0000

Legacy 125 Driver Configurations

Legacy I2C Driver Configurations

Number of simultaneously open files protected by lock function

/ Use separate cache for each file ©

+ This way, you can adapt to longer file names.

» Then, the subsequent operations in the "sd_task” function are as follows: first, obtain
the SD card information, then write the data you want to write into the file with the
specified path and name, and delay for 200ms. This delay is to wait for the write
operation to stabilize and succeed, so that you can smoothly read out the content you
wrote.

init_fail(*name, esp_err_t err)
A
d

vhile (1

"%s initialization fail 1", name, esp_err_to_name(err));
vTaskpelay(1eee /

+ When the module initialization fails (such as the SD card not being inserted, wrong
wiring, etc.), it will cyclically print error logs and block the program.

« The function is to prevent the execution of tasks in an error state from continuing.

« The code here calls "sd_init" from the "bsp_sd" component to initialize our SD card,
which is a prerequisite for performing operations on the SD card.

« Then there is the main function app_main.

+ ESP-IDF projects start executing from app_main():
° Print startup information;
- Call Init() to complete SD card initialization;

- Create a task with: xTaskCreatePinnedToCore(sd_task, "sd_task", 4096, NULL, 5,
&sd_task_handle, 1);

- Name: sd_task

- Stack size: 4096 bytes
- Priority: 5

- Runson CPU corel

«+ Print "SD card test begin” to indicate that the test task has started.

id app_main(

xTaskCreatePinnedToCore(sd_task, . 4096 5, &sd_task_handle, 1);

- Finally, let's understand the "CMakelists.txt" file in the "main” directory.
« The role of this CMake configuration is:
- Collect all ".c" source files in the 'main/" directory as the component's source files;

> Register the "main” component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_sd".

.

This way, during the build process, ESP-IDF knows to first build "bsp_sd” and then build
"main”.

- LESSONOE-SD DHRLA
n ${CMAKE_SOURCE_DIR}/ma

idf_component_registe

CMakelists.txt

main.c

Note: In subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make some minor modifications to this existing file to
integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

github.com/Elecrow-RD/-Crow 2l-Advanced-5inch-ES

Pane P4-HMI-Al-Display-800x480-IPS-To

en/tree/master/example/V1.0/idf-code/lesson0)_Card_File Reading

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson08-SD_Card_File_Reading

Programming Steps

+ Now the code is ready. Next, we need to flash it to the ESP32-P4 to observe the actual
behavior.

« First, connect the Advance-P4 device to your computer via a USB cable.

SKU:DHE@L 0050
nce HMI Display 5.0 V0.1
s

0
4 o ERREFEERE
1‘ Em L S S

- Before starting the flashing process, first delete all files generated during compilation
to restore the project to an "unbuilt” initial state. (This ensures that subsequent
compilations are not affected by your previous build residues.)

app_main(

xTaskCreatepinnedToCore(sd_task, , 5, 8sd_task_handle, 1);

> oUTUNE
> TIMELNE
> PROJECK COMPONENTS

3 ESP-IDF 542 {7 UARI

ESP-IDF: QEMU) _ [ESF

First, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

Next, we need to configure the SDK.

Click the icon shown in the figure.

> OUTLINE
> TIMELINE

> PROJECT COMPONENTS

« Wait for a moment while it loads, and then you can proceed with the relevant SDK
configurations.

mainc SDK Configuration editor X txt

parameter Discard Reset
Build type Build type
~ Bootloader config

Application build type @

Bootioader manager

“ Log

Format

Serial Flash Configurations Enable reproducible build
Security features i
Application manager RoEnm S @
Boot ROM Behavior

Bootloader config

Default (binary application + 2nd stage bootioader)

Serial flasher config
Partition Table Bootloader manager
~ Compiler options Usetime/date stamp for bootloader
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
~ Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
+_Driver Configurations

Project version @
1
Bootloader optimization Level

Size (-Os with GCC, -Oz with Clang)

Subsequently, search for "flash” in the search box(Ensure your flash configuration
matches mine).

SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager
v log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
v Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations

Discard

Bootloader config
Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SP1 Flash for higher frequency (READ HELP FIRST) ®

o Enable the support for flash chips of XMC (READ DOCS FIRST) @

Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub ®

Flash SPI mode
Qo

Flash Sampling Mode &
STR Mode

Flash 5Pl speed ©
20MHz

Flash size ©

Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations

16MB
Legacy 125 Driver Configurations

« After completing the configuration, remember to save your settings.

« Then we can compile and flash the code (as detailed in the first lesson

+ Here we'd like to introduce a very convenient feature: there's a single button that can

execute compilation, uploading, and opening the monitor all at once. (This works on
the premise that the entire code is error-free.)

> TIMELINE
» PROJECT COMPONENTS

EYESPIDFv542 Y UART Q CcoM14 Desplzpa & & £~ § 0O £ (& B @oA0 SBuld & D

+ After waiting for a while, the code compilation and upload will be completed, and the
monitor will open automatically.

« Once the code runs, you will be able to visually see that a file named "hello.txt” appears
in the SD card, with the content "hello world!" already written inside.

XTaskCreatePinnedToCore(sd_task, "sd_task", 4696, s, #sd_task_handle, 1);

10.00 Miz)

2, capacity=61069312 read_bl_len-9

Lesson 09
LVGL Lighting Control

Introduction

In previous courses, we separately lit an LED, implemented touch testing, and lit up the
screen.In this lesson, we will use LVGL to create two buttons to control the LED connected
to the UARTI interface for turning on and off operations.

Pressing the ON button can turn on the LED, and pressing the OFF button can turn off the
LED.

Hardware Used in This Lesson

The UARTI interface on the Advance-P4 is connected to an LED.

(AN ERERY

RSN UEE!

Operation Effect Diagram

After running the code, when you press the "LED ON" button on the Advance-P4, you will
be able to turn on the LED; when you press the "LED OFF" button, you will be able to turn off
the LED.

LED Controller

LEDON

LED Controller

Key Explanations

« Now, the focus of this lesson is on how to use LVGL to create button objects and display
the LVGL interface on the screen to achieve interactive effects.

« First, click the GitHub link below to download the code for this lesson.

v-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-I1PS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson09-LVGL_Lighting_Control

+ Then drag the code for this lesson into VS Code and open the project file.

+ Once opened, you can see the framework of this project.

It can be seen that the components we use in this lesson
are all those explained in previous sessions:
main.h

AakeLists.txt

idf_component.yml + bsp_i2c: Provides I12C driver support required for

+ bsp_display: Touch-related driver.(Lesson05)

ET touch functionality.(Lesson05)

» managed_components

» bsp_extra: Used to control the LED connected to the
UARTI interface.(Lesson02)

» bsp_illuminate: Responsible for screen initialization,
screen lighting, and LVGL initialization.(Lesson07)

+ bsp_stc8hlkxx: Control the expansion chip to control
the backlight of the screen.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson09-LVGL_Lighting_Control

LVGL Initialization Code

The components used in this lesson have been explained in detail in previous courses.
Here, we will only describe the LVGL initialization in detail.

Ivgl_init() is the core initialization function of the entire graphic display system.

It mainly completes the following tasks:

- Initializes the LVGL operating task environment (task/timer)

- Registers and binds the display driver (Display) with LVGL's rendering layer

- Registers and binds the touch input driver (Touch) to the LVGL input system

The purpose of doing this is to ensure that LVGL's graphic rendering, screen refreshing,
and touch event handling are correctly linked with the underlying hardware.

t display_port_init

-Er‘r‘ = lvgl port_init(&lvgl cfg);

This part starts the LVGL task and timer through Ivgl_port_init(), completing the
following:

- Allocating stack space for the LVGL main task (LVGL task);
o Setting the task priority;
> Configuring LVGL's periodic refresh timer;

- Defining the maximum sleep time (i.e, the time the LVGL main loop sleeps when idle);

Significance:

« The LVGL task continuously calls Iv_timer_handler() to refresh the Ul process

animations, and respond to events.

-rotation
-swa

.direct_mode - t

.avoid_tearing

1vgl_port_add disp_rgb{&disp cfg,|&lvel reb_cfg);

.

This step registers the display screen with LVGL through Ivgl_port_add_disp_dsi(),
serving as a bridge between "LVGL" and the "screen”.

« The initialization content includes:

> jo_handle: The physical communication interface of the screen (such as "MIPI", "SPI",
"RGB", etc.)

o panel_handle: Screen panel driver handle
- buffer_size: Frame buffer size (used for rendering images)

- double_buffer: Whether to use double buffering (prevents tearing and improves
refresh smoothness)

o hres/vres: Screen resolution
- color_format: Color format (e.g., "RGB565")
- rotation: Screen rotation/mirror configuration

o flags:

- buff_dma, buff_spiram: Whether the buffer is placed in internal memory or
external "PSRAM"

- full_refresh: Whether to enable full-frame refresh mode

- direct_mode: Whether to directly output LVGL rendering results to the screen
(reducing intermediate layers)

« Significance: All LVGL drawing operations will ultimately be updated to your screen
through this display interface.

g_t lvgl rgb cfg

» &lvgl rgb cfg);

'_ivgl_d
-handle = tp,

touch_indev = lvgl
(my_touch_indev -=

return err;

Register the touch input device with LVGL so that it can receive finger touch events.

The initialization content includes:

- disp: The bound display object (the touch area corresponds to the screen)
- handle: Touch driver handle (such as "FT5x06", "GT9Il", "CST816", etc.)

- Significance: Only in this way can LVGL's internal event system (such as button clicks,
swipes) obtain touch coordinate data. After this part of the initialization, clicking
buttons on the screen will produce visible effects.

« This concludes our explanation of the components.

Main function

« The main folder is the core directory for program execution, which contains the main
function executable file main.c.

+ Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER main.c X € mainh bsp_illuminate.c

LESSONO9 main > main.c > & system_init(void)
> wscode
> build
~ components
> espressif_esp led_touch_gto11
> espressif_esp_Ivgl_port
~ main d btn_on_click event(lv_event_t *e)
~ include)
C mainh =
extra_set_level
CMakeLists.txt Th :'_,ED_L rned O
! idf componentyml|
main.c
> managed_components
@ static void btn_off_click event(lv_event t *e)

#include "main.h”

> bsp_display
> bsp_extra
> bsp.i2c

(void)e;

gpio extra set level(fa
MA ("LED turned O
> bsp_illuminate

This is the entry file of the entire application. In ESP-IDF, there is no int main(), and
execution starts from void app_main(void).

Let's first explain main.c to see how the interfaces in these four components are called
to achieve the LVGL lighting effect. It creates a simple interface on the touch screen,
containing two buttons labeled "LED ON" and "LED OFF" to control the LED on GPIO48.

ic void system init(void
esp_err_t err = ESP_OK;

ATN_INFO("Initializi
err = i2c_init();
if (err != ESP_OK) init_fail_handler("12C", err);

AIN_INFO("I2C init succ)5

vTaskDelay(20@ / portTICK_PERIOD_MS);

err = stc8_i2c_init();

(err 1= ESP_OK) _fail_handler("

INFO("Touch panel init succes

= display linit();
err != ESP_OK) init_fa
€D init succ

= set_lcd_blight(1ee);
f (err 1= ESP_OK) init_fail handler("LCD B
(0 (brightne

- Initialize the "12C" bus for communication with the touch chip.
+ The touch input part of LVGL usually needs to read coordinates via 12C.

- After successful initialization:

+ The system can obtain touch event coordinate data through I12C.

rr ESP_OK)
init_fail handler

Initialize the STC8 expansion chip and connect the 12C control to the STC8 expansion
chip. This will enable the expansion chip to control the screen backlight, laying a solid
foundation.

rr ! 2
init _fail handler(

« Function:

.

Initialize the touch driver and register touch interrupts or polling read mechanisms.

Enable LVGL to receive touch events (clicks, swipes, etc.).

« After successful initialization:

User clicks on the screen can trigger LVGL events.

Function:

"display_init()": Initialize the LCD hardware interface and initialize the LVGL library;

"set_lcd _blight(100)": Turn on the screen backlight brightness (100 indicates maximum
brightness).

.

After successful initialization:

.

The LVGL graphics system starts running, and the screen can display Ul elements.

Function:

Configure "GPIO48" as an output pin;

Control the LED switch through "gpio_extra_set_level(true/false)".

.

After successful initialization:

.

The system can turn the LED on or off through button clicks.

create_led_control
"UIL ¢

Function: Create a concise interface using LVGL:

« Background: white;

« Title: "LED Controller”;

« Two buttons:
- "LED ON": Triggers btn_on_click_event() to turn on the LED;
- "LED OFF"; Triggers btn_off_click_event() to turn off the LED.

Now let's take a look inside this function.

oid create led control ui(

1v_obj_t *scr = 1v_scr_act();
lv_obj set style bg color(scr, 1lv color hex(exFFFFFF), LV_PART MAIN);

1v_cbj t *label = lv_label create(scr);
1v_label set text(label, "LED Controller”);
1v_obj_align(label, LV_ALIGN TOP_MID, B, 56);

1v_obj_set_style text font(label, &lv_font_montserrat_24, @);

1v_obj_t *btn_on = lv_btn_create(scr);

1v_obj_set_size(btn_on, 128, 58);

1v_obj_align(btn_on, LV_ALIGN_CENTER, ®, -48);
1v_obj_add_event_cb(btn_on, btn on click event, LV _EVENT_CLICKED, NULL);

1v_obj_t *label_on - lv_label_create(btn_on);
1v_label set_text(label on,

1v_obj_t *btn_off = lv_btn_create(scr);
1v_obj_align(btn_off, LV_ALIGN_CENTER, @, 4@);
1v_obj_add_event_cb(btn_off, btn_off click_event, LV_EVENT_CLICKED, NULL);

1v_obj_t *label off = 1lv_label create(btn_off);
1v_label set text(label off, "LED OF

Iv_scr_act():

Obtains the currently active screen object (LVGL has only one main screen by default).

You can understand it as "l want to place things on the current screen”.

Iv_obj_set_style_bg_color()

Sets the background color of this screen to white (OXFFFFFF).

oid create_led_control_ui(voic

1v_obj_t *scr = lv_scr_act();
1v_obj_set_style bg color(scr, lv_color_hex(BxFFFFFF), LV_PART_MAIN);

lv_lahel_cr‘aatﬂf scr)s
2 set_text(label, "LED Controller™);
1v_obj_align(label, LV_ALIGN_TOP_MID, @, 58);

1v_obj_set_style_text font(label, &lv_font montserrat_24, 8);

1v_cbj_t *btn_on = lv_btn_create(scr);

1v_obj_set_size(btn_on, 128, 58);

1v_obj_align(btn_on, LV_ALIGN_CENTER, ®, -40);
1v_obj_add_event_cb(btn_on, btn_on click event, LV_EVENT_CLICKED, NULL);

1v_obj_t *label on - Iy label create(btn on);:
1v_label_set_text(label on, ')

This section creates and configures a title text:

'Iv_label_create(scr)": Creates a text label object on the main screen.
Iv_label_set_text(): Sets the text content to "LED Controller".

'Iv_obj_align(): Sets the alignment to top-center, with a downward offset of 50 pixels.
'Iv_obj_set_style_text_font()" Sets the font size to 24pt.

Result: A large-sized title "LED Controller” is displayed centered at the top of the screen.

create_led_control_ui(v

1v_obj_t *scr = lv_scr_act();
1v_obj_set_style bg color(scr, 1lv_color_hex(@xFFFFFF), LV_PART_MAIN);

1v_obj_t *1abel = lv_label creat
1v_label set_text(label, "LED Controller™);
1v_obj_align(label, LV_ALIGN_TOP_MID, ©, 58);

lv_obj_set_style text font(label, &lv_font_montserrat_24, 8);

1v_obj_t *btn_on = lv_btn_create(scr);

1v_obj_set_size(btn_on, 128, 50);

1v_obj_align(btn_on, LV_ALIGN_CENTER, @, -40);
1v_obj_add_event_cb(btn_on, btn_on_click_event, LV_EVENT_CLICKED,

Here, if you want to set the LVGL font size to 24, you need to open the SDK configuration
and activate this font. Then it will be usable.

SOK Configuration editor X € mainh bsp_illuminate.

font Discard

e Component config
v Bootloader config .
Bootloader manager LVGL configuration
v Log Font usage
Format .

Serial Flash Configurations Enable built-in fonts B
S Enable Montserrat
Application manager
Boot ROM Behavior
Serial flasher config Enable Montserrat 12
Partition Table
~ Compiler options

Replace ESP-IDF and project paths in binaries Enable Montserrat 16 ()

Enable C++ exceptions

Component config

Application Level Tracing Enable Montserrat 20 ©

~ Bluetooth i

DS Enable Montserrat 22 ()
BT DEBUG LOG LEVEL
Enable BLE 5.0 features(please disable BLE 4.2 if enable BLE 5.0) 2
Enable BLE 4.2 features(please disable BLE 5.0 if enable BLE 4.2) Enable Montserrat 26 &)
Common Options

ESP BLE Mesh Support

Console Library Enable Montserrat 30

+ Driver Configurations

TWAI Configuration
~ Legacy ADC Driver Configuration Enable Montserrat 34
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations Enable Montserrat 38 ©
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Enable Montserrat 40 (D
\egacy 12C Driver Configurations
Lgacy PCNT Driver Configurations
Leacy SOM Driver Configurations Enable Montserrat 44

1k Tamnaratira Sancar Nriver Confinniratinne

Enable Montserrat 10

Enable Montserrat 14 @

Enable Montserrat 18 &

Enable Montserrat 24 (O

Enable Montserrat 28

Enable Montserrat 32

Enable Montserrat 36

Enable Montserrat 42

Qesppd (&1 @ & ¢ O > 6 B

Iv_btn_create(scr)": Creates a button object and places it on the main screen.
Iv_obj_set_size()" Sets the button size to 120x50 pixels.
'Iv_obj_align(): Aligns the button to the center, with an upward offset of 40 pixels.

'Iv_obj_odd_event_cb()' Binds a button event—when the button is "clicked’, it calls
the 'btn_on_click_event()' function.

Within this function, 'gpio_extru_set_level(true);‘ is executed — turning on LED.

Result: A button is created slightly above the center of the screen, used for "turning on
the light”.

oid create_led_control_ui(void)

1v_obj_t *®scr = 1lv_scr_act();
1v_obj_set_style bg color(scr, lv_color_hex(@xFFFFFF), LV_PART_MAIN);

1v_obj_t *label - v label create|(scr);
1v_label set text(label, "LED Controller”);
1v_obj_align(label, LV_ALIGN TOP_MID, @, 58);

1v_obj_set_style_text font(label, &lv_font montserrat_24, 8);

_obj_set_size(btn_on, 128, 58);
1v_obj_align(btn_on, LV_ALIGN_CENTER, @, -48);
1v_obj_add event_cb(btn_on, btn on_click event, LV_EVENT_CLICKED, NULL);

1v_obj_t *label on = 1lv_label create(btn_on);
1v_label set text(label on, "LED ON");

1v_obj_t *btn_off = lv_btn_create(scr);

1v_obj_set_size(btn_off, 120, 50);

1v_obj_align(btn_off, LV_ALIGN_CENTER, @, 40);
1v_obj_add_event_cb(btn_off, btn off_click_event, LV_EVENT_CLICKED, NULL);

1v_obj_t *label_off = lv_label create(btn_off);
1v_label_set_text(label_off, "LED OF

« This label is a child object of the button (created within the button).

« Its text will be automatically displayed in the center of the button.

+ Result: The text "LED ON" is displayed on the button.

1v_obj _t *btn_on = 1lv_btn create(scr);

lv_obj_set_size(btn_on, 128, 50);

1v_obj_align(btn_on, LV ALIGN CENTER, @, -48);
1v_obj_add_event_cb(btn_on, btn_on_click event, LV_EVENT CLICKED,

1v_obj_t *1label_on = 1v_label create(btn_on);
lv_label set text(label on, "LED ON");

The "OFF" button is created using the same logic.

- Now let's look at the events bound to these two buttons after they are clicked.

j_t *btn_on = lv_btn_create(

1\':0'3 _ali;n‘ tn_on L
1v_obj_add_event_cb(btn_on,

id btn_off_click_event(l:

(void)e;
gpio_extra_set_leve

« Here are the event handlers triggered when the buttons are clicked, which turn the LED
on or off with immediate response.

+ Next is the main function app_main:
+ Role: Serves as the program entry point, prints startup logs;
« Calls system_init() to complete all initializations;

- Enters a loop to keep the program running (LVGL's own tasks execute in the
background).

0id app_main(void

while (1)

vTaskDelay(pdMS_TO TICKS.

- Finally, let's understand the "CMakelists.txt" file in the main directory.
« The role of this CMake configuration is:
« Collects all .c source files in the main/ directory as the component's source files;

« Registers the "main” component with the ESP-IDF build system and declares that it

depends on "bsp_extra”, "bsp_display”, "bsp_illuminate”, "bsp_i2c", "esp_timer" and
"bsp_stc8hikxx".

+ This way, during the build process, ESP-IDF knows to build these five components first,
then build the "main” component.

EXPLORER CMakeLists.txt main X

t
FILE(GLOB_RECURSE main ${CMAKE_SOURCE_DIR}/main/*.c)

idf_component_register(SRCS ${main}
INCLUDE DIRS “include”
REQUIRES bsp_extra bsp_display bsp_illuminate bsp_i2c esp_timer bSplsteaniiood)

Note: In subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/-Cr

vPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

/tree/master/example/V1.0/idf-cod 2sson09-LVGL Lighting Control

uch-

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson09-LVGL_Lighting_Control

Programming Steps

+ Now the code is ready. Next, we need to flash it to the ESP32-P4 to see the actual effect.

« First, connect the Advance-P4 device to our computer via a USB cable.

SKU:DHE04L0050
ESP3! nce HMI Display 5.0 V.
LU
T

FHHHT

Sprrrina

@ CroEPane

¢ SKU:DHE04 005D
ESP32 vance HMI Display 5.0 V0.1
JOUARmOSON

ARRRRRE!

R RNy

Then, switch the toggle switch on the 5-inch Advance-P4 to the UARTI position.

Only in this way can the UARTI interface be used.

5 e CHFH
Eigm Ilfly‘l".

Switch to UART1 port:

« Among the three interfaces shown in the figure, only the UART! interface can be used
at this time.

+ Alternatively, the expansion header at the bottom can also be used.

« That s, either the UARTI interface or the expansion header can be used, but not both.

Switch to Wireless Module port:

Among the three interfaces shown in the figure, only the wireless module can be used at
this time.

Alternatively, the expansion header at the bottom can also be used.

That is, either the wireless module or the expansion header can be used, but not both.

summary:

The UARTI interface and the Wireless Module can only be used when switched to the
corresponding port.

The expansion header at the bottom can be used regardless of the position of the mode
switch, but it cannot be used simultaneously with the above interfaces. (When used
simultaneously, only one of the three interfaces can be selected.)

Note: The H2 and C6 wireless modules can be used simultaneously with UARTI.

The Lora, 2.4GHz, and WiFi-Halow wireless modules can be used with UARTI, but not
simultaneously.

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

) ESP_LOGI(MAL
) ESP_LOGD(
) ESP_LOGE(

fig.old

> OUTLINE
> TIMELINE

« Here, follow the steps from the first lesson to first select the ESP-IDF version, code
upload method, serial port number, and the target chip (ESP32-P4).

Next, we need to configure the SDK

Click on the icon shown in the figure below.

> TIMELINE
> PROJECT COMPONENTS

ESP-IDFv542 YrUART ¢ coMi4 $resplzps [@ 2 ¢ O £ &

Wait for a moment while the configuration loads, and then you can proceed with the
relevant SDK configuration.

SDK Configuration editor X

Discard Reset

Build type
~ Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
~ Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations

« Then, search for "flash” in
as mine.)

main.c SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations

Build type
Application build type ©
Default binary application + 2nd stage bootloader)
Enable reproducible build
No Binary Blobs ©
Bootloader config
Bootloader manager

Use time/date stamp for bootloader
Project version ®

1
Bootloader optimization Level (O

Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity ®

Info

Bootloader config
Serial Flash Configurations

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©

 Enable the support for flash chips of XMC (READ DOCS FIRST)

Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub ®

Flash Pl mode

Qo
Flash Sampling Mode @
STR Mode
Flash SPI speed
80 MHz
Flash size ©
16MB

Detect flash size when flashing bootloader

flash settings are the same

« After completing the configuration, remember to save your settings.
+ Next, we will compile and flash the code (detailed in the first lesson).

« Here, we also want to share a very convenient feature: there is a single button that can
execute compilation, uploading, and opening the monitor in one go. (This works on the
premise that the entire code is error-free.)

» OUTLINE
> TIMELINE

» PROJECT COMPONENTS
B ESP-IDFv542 ¥r UART & COM14 O esp32pd & £ ¢ SlalE B ®1uAo @euid & D

After waiting for a while, the code compilation and upload will be completed, and the
monitor will open automatically.

« At this point, please remember to use an additional Type-C cable to connect your
Advance-P4 via the USB 2.0 interface. This is because the maximum current provided
by a computer's USB-A interface is generally 500mA, and the Advance-P4 requires a
sufficient power supply when using multiple peripherals—especially the screen. (It is
recommended to connect it to a charger.)

UART

USB

« After running the code, when you tap the "LED ON" button on the Advance-P4's
touchscreen, you will be able to turn on the LED; tapping the "LED OFF" button will allow
you to turn off the LED.

LED Controller

LED Controller

Lesson 10
Temperature and Humidity

Introduction

In this lesson, we will teach you how to use the 12C interface on the Advance-P4 board.
We will connect a temperature and humidity sensor to the 12C interface, then display the
values obtained from the sensor on the screen.

The key learning focus of this lesson is the use of the 12C interface. We will reuse the 12C
component and screen display component covered in previous lessons, and additionally
introduce a new temperature and humidity component: bsp _dht20.

Hardware Used in This Lesson

12C Interface on the Advance-P4

(- e TEEFIT
o 6 il

BEEL iR

Temperature and humidity sensor Schematic Diagram

Electrode o>

Moisture
Holding
Substrate

Electrode [>

Solder Pad

+ In the temperature and humidity sensor, humidity detection relies on hygroscopic
materials. These materials absorb or release water in response to changes in
environmental humidity, thereby altering their own electrical properties (such as
resistance, capacitance, etc.). The sensor obtains humidity information by detecting
the changes in the electrical signal between the material and the electrodes.

+ Temperature detection typically uses thermal-sensitive elements (such as
thermistors). When the temperature changes, the resistance value of the
thermal-sensitive element changes. The sensor measures this resistance change and
converts it to obtain the temperature value.

« Finally, it combines the data from both to determine the temperature and humidity
conditions.

Operation Effect Diagram

After running the code, you will be able to visually see the real-time temperature and
humidity collected by the temperature and humidity sensor displayed on the screen of
the Advance-P4.

Lesson10

mainh

dht26_read_data(&measurements) 1=
if (lvgl_port_lock(e))
{

1v_label_set_text(dht26_data, "
1vgl_port_unlock();

if (1lvgl_port_lock(e))
{

value(measurements. temperature, measurements.humidity);

vTaskDelay(160@ / portTICK_PERIOD_MS);

TERMINAL

Temperature = 27.8 C Humidity = 47.0 %

Key Explanations

« The focus of this lesson is on using the temperature and humidity sensor connected
via the 12C interface. Here, we will prepare another new component for you:
bsp_dht20. The main function of this component is to commmunicate with the DHT20
temperature and humidity sensor through the 12C bus, implementing functions such
as sensor initialization, status detection, data reading, and verification to obtain
environmental temperature and humidity data. You just need to know when to call the
interfaces we have written in it.

+ Next, let's focus on understanding the bsp_dht20 component. (The bsp_i2c
component and bsp_dht20 component were explained in detail in previous courses.)

« First, click on the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl0-Temperature _and_Humidit

« Then drag the code for this lesson into VS Code and open the project file.

« Once opened, you can see the framework of this project.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson10-Temperature_and_Humidity

In the example for this lesson, a new folder named
bsp_dht20 is created under the peripheral) directory.
Within the bsp_dht20\ folder, a new include folder and
a "CMakelists.txt" file are created.

The bsp_dht20 folder contains the "bsp_dht20.c” driver
file, and the include folder contains the "bsp_dht20.h"
header file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the
temperature and humidity acquisition functions
predefined in "bsp_dht20.c".

=

Temperature and Humidity Acquisition Code

« The driver code for the temperature and humidity sensor consists of two files:
"bsp_dht20.c" and "bsp_dht20.nh".

« Next, we will first analyze the "bsp_dht20.h" program.

» "bsp_dht20.h" is the header file for the temperature and humidity acquisition module,
and its main purposes are:

> To declare the functions, macros, and variables implemented in "bsp_dht20.c” for
use by external programs. This allows other .c files to call functions from this module
simply by adding #include "bsp_dht20.h"

> In other words, it acts as an interface layer—it exposes which functions and
constants are available for external use while hiding the internal implementation
details of the module.

«+ In this component, all the libraries we need to use are included in the "bsp_dht20.h
file, enabling unified management.

« Then, we declare the variables we need to use, as well as the functions—whose
specific implementations are in "bsp_dht20.c".

» Centralizing these declarations in "bsp_dht20.h" is for the convenience of calling and
management. (We will understand their roles when they are used in "bsp_dht20.c")

DHT20"

mt.) ESP_LOGI(
e .
(fmt:) ESP_LOGDY(]
fmt ESP_LOGE
(f a

- Let's now examine the specific functions of each function in "bsp_dht20.c".

+ The bsp_dht20 component is primarily used to communicate with the DHT20
temperature and humidity sensor via the 12C bus. It implements functions such as
sensor initialization, status detection, data reading, and verification to obtain
environmental temperature and humidity data.

Then the following functions are the interfaces we call to initialize the temperature and
humidity sensor and obtain its readings.

- The 'print_binary’ function: Its role is to convert a 16-bit integer 'value' into a
corresponding binary string. It can be used in scenarios where data needs to be
visually displayed in binary form, such as checking register values or the binary
composition of sensor data.

- The 'print_byte’ function: This function splits an 8-bit byte ‘byte’ into high 4 bits and low
4 bits, then converts them into a binary string prefixed with '0b’ to make the data more
readable. It is useful when debugging 12C communication data that requires
formatted printing of single-byte data, such as status bytes or data bytes returned by
the sensor.

- The 'dht20_reset_register’ function: Its main function is to reset a specified register.
The specific operation is to first read the current value of the register, then rewrite it
according to the requirements of the DHT20 protocol. It can be used when sensor
initialization fails or the status is abnormal, requiring resetting of key registers (such as
calibration or configuration registers like '0xIB', '0xIC’, 'OXIE’) to restore the sensor to
normal working condition.

- The dht20_status function: Sends the 0x71 command via I2C and reads the value of
DHT20's status register to obtain the sensor's current working status, such as whether
calibration is completed or a measurement is in progress. It is used to check if the
sensor status is normal before initialization, confirm if the sensor is ready before
measurement, or troubleshoot to identify the cause of abnormal sensor status.

- The dht20_reset_sensor function: Continuously detects the sensor's status. If the
status does not meet expectations (stotus value does not match 0x18, where 0x18
typically indicates calibration completion and readiness), it repeatedly resets key
registers until the status is normal or the retry limit of 255 times is reached. It is used
during sensor initialization (e.g., called in dht20_begin) to ensure the sensor enters a
working state, or to attempt recovery after sensor communication anomalies.

- The dht20_begin function: Initializes the DHT20 sensor through a process that registers
the sensor's device address via 12C to obtain a handle, then calls dht20_reset_sensor
to check and reset the sensor. It returns an error code if initialization fails. This function
must be called during system startup or before the first use of the sensor; otherwise,
subsequent data reading may fail.

- The dht20_is_calibrated function: Checks if the sensor has completed calibration by
determining whether a specific bit in the status register is 0x18—calibration completion
is a prerequisite for the sensor’'s normal operation. It is used to confirm sensor
readiness after initialization, verify normal sensor status before measurement, and
avoid reading invalid data.

- The dht20_crc8 function: Calculates the checksum of data using the CRC8 algorithm
specified in the DHT20 protocol (polynomial 0x31) to verify the integrity of received
data. It is used after reading sensor data (e.g., in dht20_read _data) to compare the
calculated CRC value with the CRC byte returned by the sensor, determining if errors
occurred during data transmission.

- The dht20_read_data function: Fully implements the temperature and humidity data
reading process, including sending measurement commands (0xAC, 0x33, 0x00),
waiting for the sensor to complete measurement (with timeout detection), reading 7
bytes of data (including status, humidity, temperature, and CRC), and parsing raw
data into actual temperature and humidity values (humidity in percentage,
temperature in Celsius) after CRC verification. This core function of the component is
called when environmental temperature and humidity need to be obtained, but it
requires the sensor to be initialized and calibrated beforehand (confirmed via
dht20_begin and dht20_is_cclibroted).

+ That concludes our introduction to the bsp_dht20 component—you only need to
understand how to call these interfaces.

- If you need to call these interfaces, you must also configure the "CMakelists.txt" file
located in the bsp_dht20 folder.

« This file, placed under the bsp_dht20 folder, mainly functions to tell the ESP-IDF build
system (CMake): how to compile and register the bsp_dht20 component.

EXPLORER akelists. b mainh bsp_dht20c CMakeLists:txt .\bsp_dht20

LESSON10 CMakeListsixt
> wscode F: RSE component_sources
> build

oo 1df_component_register{(sr

~ include £
mainh
CMakelists txt
idf_componentyml
mainc
> managed_components

« Thereason we include bsp_i2c and esp_timer here is that they are explicitly used in
"bsp_dht20.h". (Other system libraries do not need to be added because they are
already integrated into the ESP-IDF framework by default.)

CMakeLists txt sp.illumina bsp._ eh bsp_dht20c bsp_dht20h 8 X

peripheral > bsp_dht20 > include >
> update dht20_value

Main function

+ The main folder is the core directory for program execution, containing the main
function executable file main.c.

» Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER mainc X
- LEssonos main > C main.c> .
> wscode
> build
~ main
CMakelists.xt
icf_componentymi
main.c
> managed_components
~ peripheral\ bsp illuminate
~ include
bsp_illuminate.h
bsp_illuminate.c
CMakeListstxt
CMakeListstet

£ dependencieslock
ic esp_ldo_channel_hand

ic esp_ldo_channel_h

« Thisis the entry file of the entire application. In ESP-IDF, there is no int main(); instead,
the program starts running from void app_main(void).

.

Let's first explain main.c:

First, call the Init function to initialize the following components in sequence: the 12C
bus (the foundation for sensor communication), the STC8 expansion chip (which
controls the screen backlight here), the DHT20 sensor (to complete registration and
status calibration), and the display module. If the initialization fails, report the error in
the loop through init_fail.

After successful initialization, set the screen backlight to 100%, call dht20 _display to
create an LVGL white text label (with a black background, initially displaying default
temperature and humidity), then create the read_dht20 task. This task cyclically
checks the DHT20 calibration status every second (re-initializes if not calibrated),
reads sensor data. If it fails, an error message is displayed on the screen; if successful,
update_dht20_value is used to format and update the LVGL label to display real-time
temperature and humidity.

First is the reference to main.h, where we store the header files used and macro
definitions.

..) ESP_LOGI(MAI
..) ESP_LOGDi(jA
..) ESP_LOGE(MA

Here, it includes libraries for the three components used:

°

bsp_i2c: Since the temperature and humidity sensor communicates via 12C.
> bsp_illuminate: Used for displaying temperature and humidity values on the screen.

e bsp_dht20: For initializing the temperature and humidity sensor and obtaining its
readings.

o bsp_stc8hlkxx: By expanding the chip to control the backlight of the screen.

main.c C main.h X

main

main.c C mainh x

mail

stdio.h, string.h: Provide basic input/output (e.g., printf) and string processing (e.g.,
memset, snprintf) functions, supporting operations such as data formatting.

freertos/FreeRTOS.h: This is the core header file of FreeRTOS, defining the basic
types, macros, and data structures of the operating system, providing underlying
support for task scheduling, time management, and memory management.

freertos/task.h: This is the header file for FreeRTOS task management, providing APIs
for task operations such as creation, deletion, suspension, and delay, enabling the
program to implement multi-task concurrent execution.

esp_log.h: This is the header file for the log printing interface of ESP-IDF, providing
log output at different levels (INFO, ERROR, etc.), enabling developers to debug and
track program running status.

esp_private/esp_clk.h: The private interface for ESP32 clock control (such as clock
frequency configuration), ensuring stable system timing;

o TaskHandle_t read_dht20;: Declares a FreeRTOS task handle, which is used to
manage the lifecycle operations (such as creation and suspension) of the DHT20
data reading task.

- static lv_obj_t *dht20_data = NULL;: Declares a LVGL text label pointer (visible only
within the current file), initially set to NULL. It is used to point to and manipulate the
on-screen label that displays temperature and humidity data.

#include "main.h”

read_dht2e;
t *dht26_data = NULL;

dht20_display():

This function is used to initialize the text label for displaying temperature and humidity
data in the LVGL graphical interface:

First, it acquires the LVGL operation lock via lvgl_port_lock(0) (to avoid multi-task
conﬂicts). Then, it creates a text label object dht20_data at the center of the screen,
configures the label style (transparent background, white 30-point font), sets the screen
to a black opaque background, and assigns the initial text "“Temperature = 0.0 C Humidity
= 0.0 %" to the label. Finally, it releases the LVGL lock, establishing a visual carrier for
displaying real-time temperature and humidity data later.

id dht2e display()
if (lvgl_port_lock(®))

dht20_data - 1lv_label create(lv_scr_act());
label_style;
init(&label style);
, opa(&label_style, LV (
tyle(dht2e_data, &labe
olor(dht26_data,
t(dht2e_data, &

If you want to use the 30-point font of LVGL, you need to enter the SDK configuration and
activate the 30-point font.

SDK Configuration editor X € bsp.i c Y © M CiakeLists.t

Save Discard Reset

Component config

LVGL configuration
Font usage

void update _dht20_value(float temperature, float humidity):

This function is used to update the display content of temperature and humidity data on
the LVGL interface:

First, it checks whether the temperature and humidity display label dht20_data is valid. If
valid, it uses snprintf to format the incoming temperature (temperature) and humidity
(humidity) values into a string in the format of "Temperature = X.X C Humidity = X.X %".
Then, it calls the LVGL interface Iv_label _set_text to update the formatted string to the
label, realizing real-time refresh of data on the screen.

0id update_dht20_value(float temperature, float humidity)
f
if (dht20_data)

char buffer[66];
snprintf (buffer, F(buffer), "Temperature - %.1f C Humidity - %.1f %X", temperature, humidity);
1v_label_set_text(dht2e_data, buffer

void dht20_read _task(void *param):

This function is a FreeRTOS task function that executes periodically (every 1 second) in an
infinite loop: It first checks if the DHT20 sensor is calibrated, and re-initializes it if not. If
data reading fails, it displays an error message on the screen and prints a log. If reading
succeeds, it updates the temperature and humidity data displayed on the screen and
prints detailed logs, enabling continuous acquisition and visual display of sensor data.

void init_fail(const char *name, esp_err_t err):

Function: When initialization of a module fails, this function is entered to run in an infinite
loop, printing an error message (including the module name and error code string) once
per second.

*name, esp_err_t err)

[%]", name, esp_err_to_name(err));

vTaskDelay (1060 / portTICK_PERIOD_MS);

void Init(void):

The "Init()" function is mainly responsible for the initialization of the entire system. It
sequentially completes the initialization of the 12C bus, the 12C interface of the STC8HIKXX
microcontroller, the initialization of the DHT20 temperature and humidity sensor, and the
initialization of the LCD display screen.

At each step, it checks whether the return value is "ESP_OK". If there is a failure, it calls
"init_fail()" to enter the error handling loop. After all peripheral devices are successfully
initialized, the function will set the LCD backlight brightness to 100 (i.e., the maximum
brightness), and output corresponding log information to ensure that the hardware
devices are ready to enter the normal working state.

0id Init(void)
ic esp_err_t err = ESP_OK;

err = i2c_init();
if (err != ESP_OK)

init fail("i2c", err);
vTaskDelay(20@ / portTICK_PERIOD MS);

err = stc8_i2c_init();
if (err != ESP_OK)
init_fail("stc
0(*12¢C and

err = dht2@_begin();
if (err != ESP_OK)
init_fail("dht2e", err);

err — display_init();

if (err != ESP_OK)
init_fail(

AIN_INFO("LCD init

err = set_lcd_blight(188);
if (err 1= ESP_OK) {
init_fail("LcD Backli

0("LCD backlight opened (brightness: 180)");

« Then there is the main function ‘app_main'.

+ The "app_main()" function is the entry point of the program, responsible for the overall

startup process of the system. It first outputs the log "DHT20 test start’, then calls "Init()’
to complete the initialization of various hardware modules, including I12C, sensors, and
display screens.

« Next, it creates and initializes the LVGL interface for displaying temperature and
humidity data through "dht20_display()", and then uses "xTaskCreate()" to start an
independent "dht20_read _task” task to periodically read the data from the DHT20
sensor and update the screen display in real time. Finally, it outputs the log "Start the
test’, indicating that the system has officially entered the working state of data
collection and display.

id app_main(void

L, configMAX_PRIORITIES - 5, &read_dht20);

Finally, let's take a look at the "CMakelists.txt" file in the main directory.

« The role of this CMake configuration is as follows:

o It collects all the .c source files in the main/ directory as the source files of the
component.

o It registers the main component with the ESP-IDF build system and declares that it
depends on the custom components: bsp_dht20, bsp_illuminate, bsp_i2c and
bsp_stc8hikxx.

« In this way, during the build process, ESP-IDF knows to build these four components
first, and then build the main component.

EXPLORER

c)

REQUIRES illuminate bsp_dht2e bsp_stcshikxx)

CMakeLists.txt

Note: In the subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other driver programs into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl0-Temperature_and_Humidity

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson10-Temperature_and_Humidity

Programming Steps

« Now the code is ready. Next, we need to flash it to the ESP32-P4 to see the actual effect.

« First, connect the Advance-P4 device to our computer via a USB cable.

« After connecting the Advance-P4 board, connect the temperature and humidity
sensor to the 12C interface.

« Before starting the preparation for flashing, first delete all files generated during
compilation to restore the project to its initial "unbuilt” state. (This ensures that
subsequent compilations are not affected by your previous build artifacts.)

exvLoRER
~ Lessonto

> vscode

> build

> components

! idf componentymi

© bsp_dhi20
« include
€ bsp_cht2oh
bsp.dht20.c
M CMskelistsxt
> bsp ize
> bsp lluminate
> bsp steshlox
M CMakeListsixt
& dependencieslock
B partitionscsv

3 ESPIDFvsA2 £ UART _§ COM14

O eppt B

Tnit(

D Initvoic)

5p_0K
init_fail

err = display_init
if (err 1= ESPOK
init_fail("disp

err = set_lcd_blight(100);
if (err 1 ESPOK

init_fail("LCD Back

app_main(

dht2e_display();
XTaskCreate(dht20_read_task,

ls] »

> bitrep

[ESP-IDF: QEMU] _ [ESP-IDF: OpenOCD Server]

10 120,Col 1

First, follow the steps in the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

Next, we need to configure the SDK

Click the icon shown in the figure below.

@ CcOM14 (respizpa |B| @ » §

®33A0 SBuid O [

Wait for a short loading period, and then you can proceed with the relevant SDK
configuration.

mainc

Build type
v Bootloader config
Bootioader manager
v Log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
" o

SDK Configuration editor X

Bui

ild type

Application build type &

Default (binary application + 2nd stage bootioader)

Enable reproducible build

No Binary Blobs

Bootloader config

Bootloader manager

J/ Use time/date stamp for bootloader

Project versiol

1

Bootloader optimization Level

Log

Size (-Os with GCC, -Oz with Clang)

Bootloader log verbosity @

Info

Discard

Spaces: 4

Then, search for flash in the search box. (Make sure your flash configuration is
consistent with mine.)

SDK Configuration editor X

Save Discard Reset

Bootloader config

Serial Flash Configurations
P a 3 g o (READ HELP FIRS]

J Enable the suppo
Security features
Enable flash encryption on
Serial flasher config
Disable dow

paths in binaries

 After the configuration is completed, remember to save your settings.

+ Next, we will compile and flash the code (detqiled in the first Iesson). Here, we will also
introduce a very convenient feature: you can execute compilation, upload, and open
the monitor in one go with a single button (this works on the premise that the entire
code is error-free).

ART © cOM14 O

+ Wait for a moment until the code compilation and upload are completed, and the
monitor will open automatically.

« After successful flashing, you will see that the screen of your Advance-P4 lights up,
and the data collected by the temperature and humidity sensor is displayed on the
screen in real time.

al Help Q Lesson10
€ mainc Mc

€ mainh
main > € mainc > § dht20_read_task{void *)
oid dht26_read_task(void *param)
while (1)
else
if (dht26_read data(&measurements) !
if (lvgl_port_lock(@))
{
1v_label set_text(dht28_data, "dht2@ read data error
1vgl_port_unlock:

R("dht2e read data error");

else

if (lvgl_port lock(®))
{

update_dht28_value(| mperature,

5. humidity) ;
1vgl_port_unlock

| INFO("Temperature:\t%.1fC", measurements.temperature);
_INFO("Humidity: \t%.1f¥%", measurements.humidity);
vTaskDelay (1660 / portTICK_PERIOD_MS);

TERMINAL

Temperature =27.8 C Humidity = 47.0 %

Lesson 11
Playback After Recording

Introduction

In this lesson, we will teach you how to use the microphone and speaker on the
Advance-P4 board. We will complete a project: record audio for 5 seconds, then
automatically play back the 5-second audio clip.

Hardware Used in This Lesson

Microphone and Speaker on the Advance-P4

Q) " Rdvance

2y CHHHH
L, B

BEEL iR

e ki
e, E

BEEr i i—[2EE

Microphone and Speaker Schematic Diagrams

diaphragm permanent magnet

>

sound waves electric 5lgnal

00|I

When an audio signal enters in the form of sound waves, it causes the diaphragm to
vibrate. The diaphragm is connected to a coil, which is sleeved around a magnetic core
(located in a magnetic field). The vibration makes the coil move in the magnetic field,
cutting through the magnetic field lines. According to the law of electromagnetic
induction, an electrical signal corresponding to the variation pattern of the audio signal
is generated in the coil, thereby realizing the conversion of sound signails to electrical
signals.(For a speaker, this is the reverse process of converting electrical signals to sound
signals: an energized coil is forced to vibrate in a magnetic field, which drives the
diaphragm to vibrate and produce sound.)

Operation Effect Diagram

After running the code, you will be able to speak near the Advance-P4. The Advance-P4
will use its microphone to record the current sound within 5 seconds, then play it back
automatically.

1 e R
A

FLER N

The 5-second recorded audio is now playing.

Key Explanations

« The key focus of this lesson is the use of two components: bsp_mic and bsp_audio.

« However, here we need to use the bsp_stc8hlkxx that was explained in the previous
course. Here, we are opening the audio output pins because the expansion chip
STC8HIK17 not only controls the screen backlight but also can control the high and low
levels of the audio output pins, that is, whether to turn on the speaker sound.

+ Also, since the expansion chip STC8HIK17 is controlled by the 12C of the main control
ESP32-P4, we also need to initialize the 12C so that we can use the expansion chip to
control.

« Next, we will explain the functions of the definitions and functions in these components
respectively. What you need to know is when to call the pre-written interfaces in them.

« Subsequently, we will focus on understanding these two components: bsp_mic and
bsp_audio.

« First, click the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonll-Playback After Recording

« Then drag the code for this lesson into VS Code and open the project file.

« Once opened, you can see the framework of this project.

~ LESSON11 GEBELA

In the exampile of this lesson, new folders named "bsp _mic"
build and "bsp_audio” are created under "peripheral\".
o main
~ include In the "bsp_qudio\" folder, a new "include” folder and a
main.h "CMakelists.txt" file are created. (The same applies to
"bsp_mic".)

The "bsp_audio” folder contains the "bsp_audio.c” driver file,
and the "include” folder contains the "bsp_audio.h" header
file. (The same applies to "bsp_mic".)

The "CMakelists.txt" file integrates the drivers into the build
system, enabling the project to utilize the audio playback
functions written in "bsp_audio.c” and the audio recording
functions written in "bsp_mic.c”.

Code for "bsp_audio”

Let's first look at the audio playback component, which includes two files: "bsp _audio.c”
and "bsp_audio.h".

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson11-Playback_After_Recording

Next, we will first analyze the "bsp_audio.h” program.
"bsp_audio.h" is the header file for the audio playback module, mainly used to:

Declare the functions, macros, and variables implemented in "bsp_audio.c” for use by
external programs, allowing other .c files to call this module simply by adding #include
"osp_audio.h".

In other words, it acts as an interface layer that exposes which functions and constants
are available to the outside, while hiding the internal details of the module.

In this component, all the libraries we need to use are included in the "bsp_audio.h” file
for unified management.

« Then, we declare the variables we need to use, as well as the functions—whose
specific implementations are in "bsp_audio.c”.

» Having these declarations unified in "bsp_audio.h" is for the convenience of calling
and management. (We will learn about their roles when they are used in
"bsp_audio.c”)

ESP_LOGI(
ESP_LOGD(
ESP_LOGE(.

- Let's take a look at the specific function of each function in "bsp_audio.c”.

» "bsp_audio.h" This project's custom audio module header file defines macros, GPIO
pins, and function declarations.

« It defines a global variable tx_chan with the type i2s_chan_handle_t, which is an 12S
channel handle.

+ This handle represents the audio output channel (TX), and all subsequent audio
playback operations will be performed through this channel.

+ audio_init: This function is used to initialize and enable the 12S audio output channel. It
configures parameters such as sample rate, bit width, clock, and pin settings, enabling
the device to normally play audio data through the 12S interface.

.intr_priority

i2s_new_channel (&chan_cfg, &tx_chan, W

std cfg = {

8,
_DEFAULT,
25_MCLK_MULTIPLE_256,

.data_bit width = I25 DATA BIT WIDTH 16BIT,
.slot_bit_width = I25_SLOT_BIT_WIDTH_AUTO,
.slot_mode = I2S SLOT_MODE STEREO,
.slot_mask = I2S_STD_SLOT_BOTH,

.ws_width = I2S DATA BIT WIDTH 16BIT,

set_Audio_ctrl:

Function: Controls the on/off state of the audio module.

Details:

The function receives a bool type parameter named state to specify the target state.

Internally, the pin STC8_GPIO_OUT_AUDIO_SD is operated by the

stc8_gpio_set_level function:

When state is true, the pin is set to a low level (the level corresponding to !state, which is
false, is usually the low level indicating audio output is enabled).

When state is false, the pin is set to a high level (possibly indicating the audio output is
disabled).

It is speculated that STC8_GPIO_OUT_AUDIO_SD is the "shutdown" control pin of the
audio module, and it controls the enable state of the module through high and low
levels.

+ get_audio_handle: This function is used to obtain and return the handle of the
current 12S audio output channel, allowing other modules to use this handle for audio

data transmission or playback operations.
et getiaudioihandldﬁj

return tx_chan;

That concludes our introduction to the "bsp_audio” component. What's important is
that you know how to call these interfaces.

If you need to use this component, you must also configure the "CMakelists.txt" file
under the "bsp_audio” folder.

This file, located in the "bsp_audio” folder, mainly functions to tell the ESP-IDF build
system (CMake): how to compile and register the "bsp_audio” component.

EXPLORER audio.c CMakeLists.ixt X
LESSON11 DB L& p

> build

~ main

REQUIRES driver bsp_stc8hlkxx)

CMakeLists.bxt

» The reason why "driver” is included here is that we have called it in "bsp_audio.h”
(other libraries are system libraries and do not need to be added).

bsp_audio.c MakeLists.txt bsp_audio.h X

peripheral > bsp_audioh > .

i2s _std.h”
cghlkoc.h”

Code for "bsp_mic"

Let's now look at how audio recording is implemented. Here, we'll directly examine the
composition of functions in "bsp_mic.c”".

First, let's look at "bsp_mic.h".

bsp_audio.c e bsp_audio.h s bsp_mich 9+ X

peripheral > bsp_mich > E] MIC_GPIO_SDIN2

..) ESP_LOGI(MIC_ TAG, fmt, ## VA_ARGS)
...) ESP_LOGD(##__VA_ARGS_)
...) ESP_LOGE(MI t, #%_ VA ARGS_)

(24)
(2s]
16800
(16060 * (16 / 8)) * 1)

esp_err_t mic_init();
esp_err_t mic_read_to_audio(s t rec_seconds);

+ GPIO pins: MIC _GPIO_CLK (clock) and MIC_GPIO_SDIN2 (data input) specify the
physical pins through which the microphone connects to the MCU. Audio sampling
parameters: MIC _SAMPLE _RATE defines the sampling rate as 16 kHz, and BYTE_RATE
calculates the amount of audio data generated per second (32,000 bytes), which is
used for subsequent audio processing and storage management.

.) ESP_LOGI(! t, ##_VA_ARGS_)
ESP_LOGD(fmt, ## VA Al)
..) ESP_LOGE(fmt, ## VA ARGS)

(22)

(25)

16080

({16800 * (16 / 8)) * 1)
mic_init();
mic_read to_audio(size t rec_seconds);

Wel'll stop here with the macro definitions in "bsp_mic.h" for now. During usage, there's
no need to modify these - keep the pins unchanged and maintain the microphone'’s
sampling rate. Next, let's look at "bsp_mic.c”.

Two functions are implemented here to enable microphone recording and playback
through audio output, using 12S PDM mode.

It mainly includes two functions: microphone initialization (mic_init) and recording to
audio playback (mic_read_to_audio).

"bsp_mic.h" The header file for the microphone module, which defines macros, pins,
and function declarations.

rx_chan: A global variable representing the 12S receive channel handle, which will be
used for all subsequent operations involving reading audio data from the microphone.

mic_init: This function is used to initialize the 125 receive channel (in PDM mode) for the
microphone. It configures parameters such as the sampling rate, DMA buffer, GPIO
pins, high-pass filter, and mono audio data format, and enables the channel. This
allows the system to collect audio signals from the digital microphone.

L, &rx_chan);

LOT_MODE_MONO,
.slot_mask DM_SLOT_LEFT,
_hp_en = ¢
-hp_cut_off.
-amplify_nu

_gpio_cfg =

mic_read_to_audio:

This function is used to record audio data from the microphone for a specified number of
seconds and play it back in real time. Here's its detailed workflow:

First, it checks if the recording duration exceeds 60 seconds and calculates the required
buffer size. Then, it dynamically allocates read_buf in SPI RAM to store the original mono
audio data received from the 12S interface, and write_buf to store the processed stereo
data for playback.

The function uses i2s_channel_read to block and read microphone data. For each audio
sample, it performs volume amplification (multiplied by 10) and clipping processing to
prevent overflow. It then copies the mono data to both left and right channels to form
stereo data.

Subsequently, it turns on the power amplifier (set_Audio_ctrl(true)) and plays the
processed audio through the audio output 12S channel. After playback is complete, it
turns off the power amplifier and releases the buffer memory, ensuring the entire
recording and playback process is safe and reliable.

(Please refer to the provided code for detailed implementation.)

esp_err_t mic_read_to_audio(siz

esp_err_t err = ESP_OK;
bytes_read = @;

bytes_write = 8;
(rec_seconds > 6@)

IC_INFO("Exceeding the maximum recording duration”);
rn ESP_FAIL;

rec_size - rec_seconds * BYTE_RATE;
write_handle = get_audio_handle();

heap_caps_malloc(rec_size, MALLOC_CAP_SPIRAM);
read_buf) {

o("mic read_buf fail to apply™);
rn ESP_FAIL;

memset(read_buf, @, rec_size);

*write buf - heap_caps_malloc(rec _size * 2, MALLOC CAP_SPIRAM);
write_buf) {

IC_INFO("mic write_buf fail to apply
return ESP_FAIL;

memset(write_buf, 8, rec_size * 2);
"Start Recording %d of audio data”, rec_seconds):
125 _channel_read(rx_chan, read_buf, rec_size, 8bytes read, portMAX DELAY);

read mic data fail");
return err;

if (bytes_read != rec_size)
{

0("read mic data num erroi
return err;

» Here, the set_Audio_ctrl function from "bsp_audio.c” is called to turn on the power
amplifier pin, enabling sound playback.

€ bsp_audioc ! Maks C bsp_mich 9+ X
e bsp_mic » include > € bsp_mich > ..

#ifndef BSP MIC H_

#define

#include <string.h>
i <stdint.h>

"freertos/FreeRT0S.h"
"freertos/task.h"
“esp log.h”
“esp_err.h”
“driver/gpio.h"
“driver/i2s_pdm.h’]
"bsp_audio.h"

C bsp audioc 2 X| M cm C bspmich
peripheral > bsp_audio > C
esp_err_t audio_init()
12s5_std_config_t std_ctg = {

{
err = i2s_channel init std mode(tx_chan, &std_cfg);

return err;

esp err_t audio_ctrl_init()

return ESP_OK;

esp_err_t set_Audio_ctrl(bool state)

stc8_gpio_set_level (STC8_GPIO_OUT_AUDIO_SD, !state);
return ESP_OK;

Main function

« The main folder is the core directory for program execution, which contains the main
function executable file 'main.c”.

« Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER C mainc
- LEssont1 main > € main.
{} settingsjson
> build
c init_or_halt(: *name, esp_err_t err)
M CMakeliststxt
C mainc £ (err 1= ESP_OK
~ peripheral
~ bsp_audio
v indlude

OR("%s init failed: %s", name, esp_ern_to_name(err));
hile (1) { vTaskDelay(pdMs_TO_TICKS(1600));

C bsp_audioh

C bsp_audio.c

M CMakelListsxt app_main(void)
~ bspic

t err = ESP_OK;
> include = <
3 s err = i2c_init();
if (err 1= ESP_OK
init_or_halt("i2c", err

VTaskDelay (260 / portTICK_PERIOD_MS);

M CMakeLists txt

err = stcs_iac_init();

C bsp_micc

M CMakelistsxt
~ bsp_steahtloo

+ indude

€ bsp_steahoo:

€ b swah Tl err - audio_ctrl_init();
M CMakelistsxt F (ere 1~ ESPOK
£ Keonfig
CMakelistsiit

r_halt
set_Audio_ctrl

B partitions.csv err = audio_init();

> ourune £ (err 1= ESP_OK

> TIMELINE init_or_halt.
> PROJECT COMPONENTS

« Thisis the entry file of the entire application. In ESP-IDF, there is no int main(), and the
program starts running from void app_main(void).

. Let's first explain "main.c”.

« The app_main function is the main entry point of the entire application, responsible for
coordinating the initialization of the audio system and microphone, as well as
handling recording and playback.

- First, there is the reference to "main.h". We store the header files used and macro
definitions in "main.h".
main.c X

main > € mainc > @ init_or_halt{const char *, esp_err_{

#include "main.h”

ic void init_or_halt(const char *name, esp_err_t err)

if (err 1= ESP_OK

(

{
"%s init failed: %s", name, esp_err_to_name(err));
VTeSkDeley(udl’lSﬁTOﬁT]‘kKSilGBB}),‘

° Include C standard libraries and string manipulation libraries to provide basic
functions.

° Include FreeRTOS task and scheduling interfaces for task creation and delay
functions.

o Include ESP-IDF logging and error handling interfaces (esp_log.h, esp_err.h).

> Include header files of the microphone and audio modules to access interfaces
such as mic_init(), mic_read_to_audio(), and audio_init().

EXPLORER

[Lessont1

> build
~ main

(Fmt) ESP_LOGI (MAT
..) ESP_LOGD(;

« The function "init_or_halt" is designed to uniformly check the return status of each
module’s initialization. It ensures the system does not continue running when the
initialization of critical hardware or peripherals fails, thereby preventing undefined
behavior or hardware damage.

« Specifically, it accepts two parameters: the module name "name” and the initialization
result "err”. If "err” is not equal to "ESP_OK", it indicates a failed initialization. In this case,
the function will print a detailed error log (including the module name and error
information) via "MAIN_ERROR’, then enter an infinite loop with a 1-second delay in
each loop iteration to prevent the program from proceeding further.

*name,

fai %s", name, esp_err_to_name(err));
vTaskDelay(pdhS_TO_TICKS(1600));

» Next is the main function "app_main”.

» The "app_main” function serves as the primary entry point of the entire application,
responsible for coordinating the initialization of the audio system and microphone, as
well as audio recording and playback.

It first initializes the audio power amplifier and the 12S playback channel, and uses
"init_or_halt" to check if the initialization is successful. If the initialization fails, the
program will get stuck in an infinite loop. Subsequently, it initializes the microphone
input channel and also verifies the success of this initialization. After that, the program
will record audio for 5 seconds and play it back via 12S. During this process, it prints log
information to indicate the recording and playback status, and records error
messages when errors occur.

Finally, the function enters an infinite loop to keep the task alive, ensuring that the
main program does not exit and thus maintaining the operating environment of the
audio system. On the whole, this function implements a complete sample workflow for
audio recording and playback.

main.c X main.h C ct bs; h b: bsp_mich

main > € mainc >) app_ma

oid app_main(

esp_err_t err = ESP_OK;

err = i2c_init();
if (err != ESP_OK)

init _or_halt("i2c”, err);
vTaskDelay(20@ / portTICK PERIOD MS);

- ste8 izc_init();
if (err != ESP_OK)
init_or_hal
INFO("I2C and
| INFO("Record 55 and pla:
= audio_ctrl_init();
f (err = ESP_OK)
init_or_hal
set_Audio_ctrl(

err = audio_init();
if (err = ESP_OK
init_or_halt(“audio init”

err = mic_init();
if (err != ESP_OK
init_or_halt("mic”,

AIN_INFO("Start 5
err = mic_read to_audi
if (err != ESP_OK
ATN_ERROR(ord/playback error: %s", esp_err_to_name(err));

ck done™);

while (1) { vTaskDelay(pdMs TO TICKS(1eee)); }

- Finally, let's take a look at the "CMakelists.txt" file in the main directory.
+ The role of this CMake configuration is as follows:

- Collect all .c source files in the main/ directory and use them as the source files of
the component;

o Register the main component to the ESP-IDF build system, and declare that it
depends on the custom components "bsp_audio” and "bsp_mic".

+ In this way, during the build process, ESP-IDF will know to build these two components
first, and then build the main component.

IR main >
n ${CMAKE_SOURCE DIR}/
> build

~ main

idf_component_register(

sp_mic)

Note: In the subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonll-Playback After Recording

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson11-Playback_After_Recording

Programming Steps

« Now that the code is ready, next, we need to flash it to the ESP32-P4 to observe the
actual behavior.

« First, connect the Advance-P4 device to your computer via a USB cable.

« Before starting the flashing preparation, delete all files generated during compilation
to restore the project to its initial "unbuilt” state. (This ensures that subsequent
compilations are not affected by your previous operations.)

CMake
H partitio
> OUTLINE
> TIMELINE
> PROJECT COMPONENTS
&3 ESP-ID

« Here, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip first.

« Next, we need to configure the SDK.

« Click the icon shown in the figure below.

® COM14

+ After waiting for a short loading period, you can proceed with the relevant SDK
configurations.

main.c SDK Configuration editor X cMa

ch parameter Discard

Build type Build type

v Bootloader config
Bootloader manager
v Log
Format
Serial Flash Configurations Enable reproducible build @
Security features ~
Application manager No Binary Blobs
Boot ROM Behavior .
Serial flasher config Bootloader config
Partition Table Bootloader manager
~ Compiler options Usetime/date stamp for bootloader @
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions (vt
~ Component config
Application Level Tracing 1
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations

Application build type &

Default (binary application + 2nd stage bootioader)

Bootloader optimization Level
Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity &

Info

+ Subsequently, search for "flash” in the search box. (Make sure your flash configuration
is the same as mine.)

SDK Configuration editor X

Discard

G Bootloader config
~ Bootloader config - . .
e Serial Flash Configurations
v log Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ®
Format
Serial Flash Configurations

Security features Security features

Applicat
S T L 27 Enable flash encryption on boot (READ DOCS FIRST)
Boot ROM Behavior

Serial flasher config Serial flasher config

Partition Table

~ Compiler options
Replace ESP-IDF and project paths in binaries Flash SPI mode ()
Enable C+ + exceptions

« Enable the support for flash chips of XMC (READ DOCS FIRST)

Disable download stub @

~ Component config Qo
Application Level Tracing _
+ Bluetooth Flash Ssampling Mode @
Common Options
Console Library STR Mode
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations Flash size
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations P
Legacy 125 Driver Configurations

Flash SPI speed

80 MHz

After completing the configuration, remember to save your settings.

Next, we will compile and flash the code (detailed steps were covered in the first
lesson).

Here, we also want to share a very convenient feature with you: there is a single button
that allows you to execute compilation, upload, and monitor opening in one go. (This is
on the premise that the entire code is confirmed to be error-free.)

PONENTS

v UART

+ Wait for a moment, and the code will finish compiling and uploading, with the monitor
opening automatically afterward.

« Once the flashing is successful, you can speak near the Advance-P4 device. The
Advance-P4 will use its microphone to record the current sound within 5 seconds, and
then play it back automatically.

* oatme EFEFHITE
L

EER]

The 5-second recorded audio is now playing.

Lesson 12
Playing Local Music from SD Card

Introduction

In this lesson, we will use the bsp_sd component and bsp_audio component (which
were used in previous lessons) to play WAV audio files stored in the SD card.

Hardware Used in This Lesson

Speaker on the Advance-P4

; @ CroEPane

e ki
e, B

BEEr i i—[2EE

SKU:DHE0L0050
HMI Display 5.0 Ve,

e R
pm

R

Operation Effect Diagram

After running the code, you will be able to hear the WAV audio saved in your SD card
playing through the speaker on the Advance-P4.

3

) m AR REERS
“g,‘.s R

The WAV audio file from your SD card is now playing.

Key Explanations

« The key focus of this lesson is the combined use of the two components: bsp_sd and
bsp_audio.In fact, for the SD card component, we still use the same interfaces as in
the previous component. These interfaces were explained in detail earlier, so they will
not be covered again here.

» However, here we need to use the bsp_stc8hlkxx that was explained in the previous
course. Here, we are opening the audio output pins because the expansion chip
STC8HIKI7 not only controls the screen backlight but also can control the high and low
levels of the audio output pins, that is, whether to turn on the speaker sound.

« Also, since the expansion chip STC8HIK17 is controlled by the 12C of the main control
ESP32-P4, we also need to initialize the 12C so that we can use the expansion chip to
control.

« Next, we will focus on understanding the bsp_audio component.This component was
used in the previous lesson to play the original sound after 5 seconds of recording. We
already gained some knowledge about it back then, but only learned how to turn on
the speaker.In this lesson, we will increase the difficulty slightly and learn how to play
audio in WAV format.

« First, click on the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessoni2-Playing_Loca_Music_from SD_Card

+ Then drag the code for this lesson into VS Code and open the project file.

+ Once opened, you can see the framework of this project.

In the example for this lesson, new folders named bsp_sd
and bsp_audio are created under the peripheral) directory.

> build

Inside the bsp_audio\ folder, a new include folder and a
"CMakelists.txt" file are created. (The same structure applies
to bsp_sd.)

The bsp_audio folder contains the "bsp_audio.c” driver file,
and the include folder contains the "bsp_audio.h" header
file. (The same file structure applies to bsp_sd.)

The "CMakelists.txt" file integrates the drivers into the build
system. This allows the project to utilize the functions
defined in "bsp_audio.c” — including parsing WAV audio and
T playing WAV audio from the SD card — as well as the
nfig.defavits functions in "bsp_sd.c” — such as initializing the SD card and

retrieving SD card information.

+ The role of bsp_stc8hlkxx here is to control the shutdown of the power amplifier pins. It
has been used many times in previous courses as well.

bsp_audio Code

« Let's first look at the audio playback component, which includes two files:
"bsp_audio.c” and "bsp_audio.h".

» Next, we will first analyze the "bsp_audio.h” program.
» "bsp_audio.h" is the header file of the audio playback module, mainly used to:

+ Declare the functions, macros, and variables implemented in "bsp_audio.c” for
external programs, so that other .c files can call this module simply by #include
"bsp_audio.h".

« Inother words, it is an interface layer that announces which functions and constants
are available to the outside while hiding the internal details of the module.

« In this component, all the libraries we need to use are placed in the "bsp_audio.h” file
for unified management.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson12-Playing_Loca_Music_from_SD_Card

« Then, we declare the variables we need to use as well as the functions, whose specific
implementations are in "bsp_audio.c”.

» Putting them uniformly in "bsp_audio.h" is for the convenience of calling and
management. (We will learn about their functions when they are used in
"bsp_audio.c”)

(fut) ESP_LOGI(
(fmt) ESP_LOGD(
(fmt) ESP_LOGE(

)t state);
t get_audio_handle();

rr_t Audio_play_wav_sd(

- Now let's look at the specific function of each function in "bsp_audio.c”.

« bsp_audio.h: A custom audio module header file for this project, which defines
macros, GPIO pins, and function declarations.

.

A global variable tx_chan is defined, with the type i2s_chan_handle_t, i.e, an 12
channel handle.

This handle represents the audio output channel (TX), and all subsequent audio
playback operations will be performed through this channel.

chan_handle t tx_chan;

audio_init()

This function is used to initialize the 12S audio output channel of ESP32, enabling it to play
audio in 16kHz, 16-bit, stereo format. It creates an I2S transmission channel, configures
standard audio parameters (such as sampling rate, bit width, Ieft/right channels, GPIO
pins, etc.), and starts the channel to prepare for audio output.

- esp_err_t err = ESP_OK; —— Initializes the error status variable, defaulting to
successful operation.

« i2s_chan_config_t chan_cfg = {..}; —— Configures I12S transmission channel
parameters:

+ id: Uses I12S controller 1

+ role: Master mode (generates clock signals)

+ dma_desc_num and dma_frame_num: DMA buffer size settings
+ auto_clear: Automatically clears DMA buffer underflow

« intr_priority: Interrupt priority

. i2s_new_chonnel(&chqn_cfg, &tx_chan, NULL); —— Creates a new I2S transmission
channel and saves it to tx_chan.

« i2s_std_config_t std_cfg = {..}; —— Configures standard 12S audio parameters:
« clk_cfg: Clock settings (sampling rate 16kHz, master clock multiplier 256)
+ slot_cfg: Audio data format (16-bit, stereo, left-aligned)

+ gpio_cfg: GPIO pins corresponding to 12S signals (BCLK, LRCLK, SDATA output) and
whether to invert them

- i2s_channel_init_std_mode(tx_chan, &std_cfg); —— Initializes the 12S transmission
channel in standard mode, making the channel comply with the above clock, data
format, and GPIO configurations.

« i2s_channel_enable(tx_chan); —— Enables the 125 channel to start working and
transmit audio data.

« return err; —— Returns the initialization status; if there is an error midway, an error code
will be returned in advance.

The main function of this function is to create and configure an 12S audio transmission
channel, enabling ESP32-P4 to output audio in 16kHz, 16-bit, stereo format through
specified GPIOs.

std_cfg = {

-sample_rate_hz = 16000,
.clk_src = I25_CLK_SRC_DEFAULT,

mclic multiple = 125 WCLK_MULTIPLE 255,

.slot_cfg =
-data_bit_width = I25_DATA_BIT_WIDTH_16BIT,
.slot_bit_width = I25 SLOT BIT WIDTH AUTO,
.slot_mode = I25_SLOT_MODE_STEREO,
-s1ot_mask = I25_STD_SLOT_BOTH,
.us_width = I25_DATA_BIT_WIDTH_16BIT,
-ws_pol
-bit_shift
-1eft_alig
.big_endia
-bit_order_1sb

.gpio_cfg =

err - 325 channel_init std_mode (tx_chan, &std_cfe);

if (err 1= ESP_OK
return err;

Therefore, any audio files you use later must meet this requirement (16kHz sampling rate,
16-bit bit depth, and stereo format, i.e,, dual-channel).

ig t std_cfg = {
_clic_cfg
.sample_rate_hz = 16800,
.clk_src = I25_CLK_SRC_DEFAULT,
-mclk_multiple = 125_MCLK_MULTIPLE 256,

_slot_cfg =
.data_bit_width = I25_DATA_BIT_WIDTH_16BIT,
.slot_bit_width = I25_SLOT_BIT_WIDTH_AUTO,
.slot_mode = I25 SLOT_MODE_STEREO,
.slot_mask = I25_STD_SLOT_BOTH,
-ws_width = I25 DATA_BIT_WIDTH_16BIT,
-ws_pol
-bit_shift
-left_align
.big_endian =
-bit_order_lsb =

set_Audio_ctrl:

Function: Controls the on/off state of the audio module.

Details:

The function receives a bool type parameter named state to specify the target state.

Internally, the pin STC8 _GPIO_OUT_AUDIO_SD is operated by the

stc8_gpio_set_level function:

When state is true, the pin is set to a low level (the level corresponding to !state, which is
false, is usually the low level indicating audio output is enabled).

When state is false, the pin is set to a high level (possibly indicating the audio output is
disabled).

It is speculated that STC8_GPIO_OUT_AUDIO_SD is the "shutdown" control pin of the
audio module, and it controls the enable state of the module through high and low
levels.

esp_err_t set_Audio ctrl(state)

validate_wav_header() :

This function is used to check whether the header of an opened WAV file is valid, confirm
if the file is in standard PCM WAV format, and verify that it supports common sampling
rates, channel counts, and bit depths. After validation, the function restores the file
pointer to its original position without altering the file reading state.

- if (file == NULL) —— Checks if the file pointer is null; returns false if it is.

« long original _position = ftell(file); —— Obtains the current position of the file pointer for
subsequent restoration.

- if (original_position == -1) —— Checks if the file position was obtained successfully.
- fseek(file, 0, SEEK_SET) —— Moves the file pointer to the beginning of the file.

- uint8_t header[44]; size_t bytes_read = fread(header, 1, 44, file); —— Reads the first 44
bytes of the WAV file (the standard WAV file header).

- if (bytes_read != 44) —— Checks if the WAV header was read completely.

« memcmp(header, RIFF", 4) —— Verifies if the file starts with "RIFF" (the RIFF chunk
identifier).

« memcmp(header + 8, "WAVE", 4) —— Checks if the format is "WAVE".
. memcmp(heoder +12,"fmt ", 4) —— Verifies the existence of the fmt subchunk.

- uintl6_t audio_format = *(uint16_t *) (header + 20); —— Retrieves the audio format
field (1indicates PCM).

« uintl6_t num_channels = *(uint16_t *)(header + 22); —— Obtains the number of
channels (supports 1 or 2 channels).

+ uint32_t sample_rate = *(uint32_t *)(header + 24); —— Retrieves the sampling rate
and verifies if it is a commonly used value.

+ uintl6_t bits_per_sample = *(uinti6_t *)(header + 34); —— Obtains the number of bits
per sample (supports 8/16/24/32 bits).

« memcmp(header + 36, "data’, 4) —— Verifies if the data chunk identifier is "data’”.

. uint32_t file_size = *(uint32_t *)(header + 4) + 8; uint32_t data_size = *(uint32_t
*)(header + 40); —— Retrieves the total file size and audio data size for printing
information.

+ AUDIO_INFO(..) —— Outputs WAV file information (number of channels, sampling rate,
bit depth, data size, and file size).

. fseek(file, original_position, SEEK_SET); —— Restores the file pointer to its original
position.
« return true; —— Returns true if validation passes.

The function's role is to check the validity of the WAV file header, ensuring the file is in
standard PCM WAV format, supports common sampling rates, bit depths, and channel
counts, and restores the file pointer position after validation.

+ The first 44 bytes form the standard PCM WAV header, which describes information
such as audio format, number of channels, and sampling rate.

- Before playing or processing a WAV file, it is usually necessary to read and validate
this header to ensure the file format meets expectations.

+ The validate_wav_header() function checks the validity of each field according to this
structure.
Audio_play_wav_sd:

Audio_play_wav_sd() is used to read WAV files from the SD card and play audio
through the 12S output of ESP32. It validates the WAV file header, skips the header, reads
audio data in chunks, processes the volume (amplifies and limits the range), sends the
data to the 12S player until the audio playback is completed, and then releases
resources.

« esp_err_terr = ESP_OK; —— Initializes the error status variable.

- if (flename == NULL) —— Checks if the input filename is null; returns a parameter error
if it is.

+ FILE *fh = fopen(filename, "rb"); —— Opens the WAV file in read-only binary mode.

- if (fh == NULL) —— Returns an error if the file fails to open.

- if (lvalidate_wav_header(fh)) —— Calls the previously written WAV header validation
function to check if the format is correct.

- fseek(fh, 44, SEEK_SET) —— Skips the WAV file header (44 bytes) to prepare for reading
audio data.

- Define buffer sizes
o SAMPLES_PER_BUFFER = 512 —— Number of samples read each time
o INPUT_BUFFER_SIZE, OUTPUT _BUFFER_SIZE —— Byte sizes of input and output buffers

+ heap_caps_malloc(..) —— Allocates input and output buffers in SPI RAM; if allocation
fails, releases the allocated resources and exits.

« Initializes variables for reading and writing: samples_read, bytes_to_write,
bytes_written, total_samples, volume_data.

« set_Audio_ctrl(true); —— Turns on the audio hardware or amplifier.

+ while (1) —— Loops to read audio data and play:

- samples_read = fread(..) —— Reads audio samples from the file into the input buffer
- if (samples_read == 0) break; —— Exits the loop when the file reading is completed

« forloop —— Amplifies mono samples by 10 times, limits them to the int16 range, and
stores them in the output buffer (can be used for the left channel here, or extended to
stereo)

- bytes_to_write = samples_read * sizeof(intl6_t); —— Calculates the number of bytes
to be written to 12S

+ i2s_channel_write(tx_chan, output_buf, ..) —— Writes audio data to the I12S output
channel

- Error checking: Prints an error and exits the loop if writing fails
« Accumulates total_samples to count the total number of played samples
« Cleans up resources after the loop ends:

- set_Audio_ctri(false); —— Turns off the audio hardware

- free(input_buf); free(output_buf); fclose(fh); —— Releases buffers and closes the file

+ AUDIO_INFO(...) —— Prints playback completion information

« return err; —— Returns the playback result status

This function reads WAV files from the SD card, plays audio in chunks after validating the
format, outputs to the audio hardware through 12S, handles volume and buffer
management, and releases all resources after playback.

That's all for the introduction of the bsp_audio component. It's sufficient for you to know
how to call these interfaces.

To call them, we must also configure the "CMakelists.txt” under the bsp_audio folder. This
file, placed in the bsp_audio folder, mainly functions to tell the ESP-IDF build system
(CMake) how to compile and register the bsp_audio component.

EXPLORER main.c .h 3 CMakelists.txt X

LESSON12
e
build

~ main

al

MakeLists.txt

« The reason why "driver” and "bsp _stc8hlkxx" are included here is that we have called
them in "bsp_audio.h” (other libraries are system libraries, so no need to add them).

« It uses interfaces from the SD component for SD card reading operations, among
others.

« As for the bsp_sd component, it was explained in detail in previous lessons, so it will
not be repeated here. We will directly use this component.

Converting MP3 to WAV

As mentioned above, if you want to play audio based on the code of this lesson, the
audio must meet the requirement of being a WAV file with 16kHz sampling rate, 16-bit bit
depth, and stereo format (i.e, dual-channel).

Next, I will show you how to convert an MP3 audio file to a WAV audio file that meets the
specifications of 16kHz, 16-bit, and stereo (dual-channel).

FFmpeg is an open-source toolkit for processing multimedia files such as video and
audio. It supports conversion, cutting, and editing of almost all multimedia formats,
making it an essential tool for developers and multimedia professionals.

Open the following link to download FFmpeg:

https://ffmpeg.org/download.html

Download FFmpeg

& Download Source Code

fimpeg-8.0.tar.xz

& More downloading options If you find FFmpeg useful, you are welcome to contribute by

& Get packages & executable files @ Get the Sources

Hire Developers & Download Snapshot & Download PGP Signing Key

Linux Packages

« Taking Windows as an Example: Select the installation package "Windows builds from
gyan.dev".

& More downloading options If you find FFmpeg useful, you are welcome to contribute by

& Get packages & executable files @ Get the Sources

D

Frmpeg

& Download Snapshot @ Download PGP Signing Key

Windows EXE Files

Hire Developers

« Scroll down to find the "release builds" section, then select
"ffmpeg-7.1.1-essentials _build.zip".

€ G O hitpsswmgyandey/fimpeg/buids/ [CEEDR-N
home s

latestrsse_verson80 20250622

fimpeg-release-essentials.72 UM ver shazss

fimpeg-release-essentialszip 1OME ver sha2ss

Hmpeg release-ful. 72 ver sha2ss

fimpeg-release-full-shared 72 ver sha2ss

miror @gthub

[—— \

sourcecode @ gt

[—— \

previousreesse verson:7.11 (complee rehive @ mirr]

fimpeg 71t essntas putaze 27m8 shazss
[[fmpes 7 -essentals buldzio_| sM8 shazse
Fimpes7.11-full build72 ahs2s6
fimpeg:7:1.1-fullbulld-shared 72 shazse

» Once the download is complete, extract the file to get the "FFmpeg" folder.

D > ThisPC > (1) > ffmpeg >

N sort - = View -
=
Name Date modified Type Size
7 ffmpeg-7.1.1-essentials_build 10/16/2025 3:07 PM File folder
i ffmpeg-7.1.1-essentials_build.zip 10/16/2025 11:07 AM Compressed (zipp.. 90,073 KB

Recommended Saving Path

It is recommended to extract and save the folder to a non-system drive (not the C drive).
This avoids occupying space on the C drive (system drive), ensuring the stability and
performance of the system.

J > ThisPC > () > ffmpeg > ffmpeg-7.1.1-essentials build >

T Sort v = View -
=
Name Date modified Type Size
= bin 10/16/2025 3:07 PM File folder
= dec 3/10/2025 11:09 AM File folder
= presets 3/10/2025 11:09 AM File folder
D LICENSE 10/16/2025 3:07 PM File 35KB
1 README bt 10/16/2025 3:07 PM Text Document 40KB

Directory Structure of the Extracted Folder
The extracted folder should contain the following directories:

» "bin": The folder containing FFmpeg executable files. Al commands to run FFmpeg
must be executed via the files in this directory.

» "doc™: Documentation and reference materials.

» "presets”: Preconfigured formats and encoding schemes.

Navigate to the "bin" directory, and you will see three core executable files of FFmpeg:

"ffmpeg.exe”, "ffplay.exe”, and "ffprobe.exe”.

J > ThisPC > () > ffmpeg > ffmpeg-7.1.1-essentials_build > bin

N Sort + = View -
Name Date modified Type Size
[ffmpeg.exe Application
[ffplay.exe Application
] ffprobe.exe Application

« To conveniently call FFmpeg directly in the command line, you need to add it to the
system’s environment variables.

» Search for "Environment Variables” in the Start Menu at the bottom left of the desktop,
find "Edit the system environment variables”, and click to open it.

& o Apps Documents Web Settings Folders Photos B 1

Best match

- : i
Edlit the system environment

| B variables =

Control pane

Edit the system environment variables
Settings Control panel

i Edit environment variables for
your account 2 open

Search the web

a environment variables - See more
search results

BB | Q Environment variables =D

"
-3

« Click the "Environment Variables” button.

-
System Properties *
Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.
Performance

Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your sign-in

Settings...
Startup and Recovery
System startup, system failure, and debugging information
Settings...
Environment Variables
QK Cancel Apply

« Locate the "Path” entry under "System Variables” and click "Edit".

-

Emvironment Varizbles X
User variables for 14175
Variable Value
OneDrive C:\Users\14175\OneDrive
CneDriveConsumer C\Users\14175\0neDrive
Path C:\Python\Seripts\; C:\Python\:C:\Users\ 14175\ AppData\Local\Micr.
TEMP C\Users\14175\AppData\Local\Temp
™P C:\Users\ 14175\ AppData\Local\Temp
Mew. Edit.. Delete
System variables
Variable Value
ComSpec C\Windows\system32\cmd.exe
DriverData C:\Windows\System32\Drivers\DriverData
NUMBER_OF_PROCESSORS 6
1 0s Windows_NT
PATHEXT .
PROCESSOR ARCHITECTURE _ AMDS64

« In the "Edit environment variable” window, click "New".

Edit environment variable

%SystemRoot%

9%SystemRoot3\System32\Whem
SESYSTEMROCTS:\ System 32 WindowsPowerShellw 1.0y
%SVSTEMROOTI4\System32\OpenSSHY,
C:AMy_APPVSC ode\MinGW-wh4\ucrtfd\bin
C:\Program Files\CMake\bin
JAMy_APP\Cursor\cursor\resources\app\bin

x

Edit
Browse...

Delete

Move Up

Move Down

- Enter the path to the "bin” folder of FFmpeg (use your own FFmpeg path)

D > ThisPC > (1) > fimpeg > fimpeg-7.1.1-essentials_build

Mosert = View - ...
Name . Date modified Type Size
[®] ffmpeg.exe 10/16/2025 3:07 PM Application 85,381 KB
[frplay.exe 10/16/2025 3:07 PM Application 85,198 KB
[fprobe.exe 10/16/2025 3:07 PM Application 85,246 KB
Edit environment variable X
%SystemRoot%\system32 Mew
%eSystemRoot%
2%SystemRoot %) System32\Whem Edit
FSYSTEMROOT\ System32\WindowsPowerShellw 1.0\
26SYSTEMROOT:\Systern3240penSSHY Browse...
CAMy_APPAVSCode\MinGW-whd\ucrtBd\bin
C:\Program Files\CMake\bin Delete
J\My_APP\Cursor\cursoriresources\applbin
JAffmpeg\ffmpeg-7.1.1-essentials_build\bin |
1 Move Up
Move Down
Edit text..,

Cancel

+ Remember to save the settings after entering the path.

Note: Ensure the path is accurate so the system can correctly locate the FFmpeg files.

« Verifying Successful FFmpeg Installation

+ Press the Win + R keys, then type "cmd" to open the command line window.

S Run X

Type the name of a program, folder, document, or Intemet
= resource, and Windows will open it for you.

Open: [cmd .

[k] conce Browse..

+ Type the following command in the command line to check the FFmpeg version:
ffmpeg -version

- If the FFmpeg version number and related information are displayed correctly, it
indicates that the installation is successful (as shown in the figure below).

5] cawindows\system32\cmd.e: X S 2

Microsoft Windows [Version 16.0.22631.6060]
(c) Microsoft Corporation. All rights reserved.

C:\Users\1U175>ffnpeg -version

ffnpeg version 7.1.1-essentials_build-www.gyan.dev Copyright (c) 2000-2025 the FFmpeg developers

built with gee 14.2.0 (Revl, Built by MSYS2 project)

configuration: ——enable-gpl —enable-version3 —enable-static —disable-w32threads —disable-autodetect ——enable—fontcon
fig —enable-iconv —enable-gnutls —enable-libxnl2 —enable-gmp ——enable-bzlib —enable-lzma —enable-zlib —enable-lib
srt --enable-libssh —-enable-libzmq —-enable-avisynth --enable-sd12 --enable-libwebp --enable-Llibx26ti --enable-1ibx265 -
—enable-libxvid —enable-libaom —enable-libopenjpeg ——enable-libvpx ——-enable-mediafoundation ——enable-libass —enable-1
ibfreetype —enable-libfribidi —enable-libharfbuzz —enable-libvidstab —enable-libvmaf ——enable-libzing —enable-anf -
-enable-cuda-1lvn ——enable-cuvid —enable-dxva2 —enable-d3d11lva ——enable-d3d12va —enable—ffnvcodec —enable-Libvpl ——e
nable-nvdec —-enable-nvenc --enable-vaapi --enable-libgme --enable-libopenmpt --enable-Llibopencore-amrub --enable~libmp3
lame ——enable-libtheora ——enable-libvo-amrubenc ——enable-libgsm ——enable-Libopencore-amrnb —-enable-libopus ——enable-lib
speex ——enable-libvorbis —enable-librubberband

libavutil 59. 39.100 RECRT)

Llibavcodec 61. 19.101 . 19.101

libavformat 61. 7.100 . 7.100

libavdevice 61. 3.100 . 3.100

libavfilter ~ 10. 4.100 . u.100

libsuscale 8. 3.100 . 3.100

libswresample 5. 3.100 . 3.100

libpostproc ~ 58. 3.100 . 3.100

C:\Users\14175>

+ Then, still in the command window, install the dependency by running: pip install
pydub

C:\Users\14175>pip install pydub
Collecting pydub
Downloading pydub-8.25.1-py2.py3-none-any.whl.metadata (1.4 kB)
Downloading pydub-8.25.1-py2.py3-none-any.whl (32 kB)
Installing collected packages: pydub
Successfully installed pydub-8.25.1

C:\Users\141755|

+ After installation, open the script code we prepared for converting MP3 to WAV format
(meeting the specifications of 16kHz, 16-bit, and stereo/dual-channel) in the provided
code package.

+ Click the link below to open the script code:

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/convert_wav

« Now | have placed this script on my desktop.

ai_chat

+ In the command window, | navigate to this path.

C:\Users\14175>cd Desktop/

C:\Users\14175\Desktop>cd convert_wav

C:\Users\14175\Desktop\convert_wav>|

» Then put your MP3 files in the "Input” folder.

] > convertwav > Input

T Sort
Name #

[] hushai.mp3

+ Run this script code. (Ensure your Python environment is Python 3.11.2.)

+ Starting from Python 3.13:The official team removed the audioop module (which pydub
depends on).Some third-party libraries (such as pyaudio, pygame, pydub) are not yet
fully compatible.

« For Python 3.11.x:
Stable, mature, and highly compatible;
Includes audioop;

Perfectly compatible with most Al, audio, and data analysis libraries.

+ Run our script:

nversion:

» You will find the generated WAV files in the "Output” folder.

convert_wav » Output

~ .
huahai.wav

« Then move this file to a USB flash drive.

HY »

images huahaiway

+ Finally, remove the SD card and insert it into the Advance-P4 board.

® SKU:DHE@LeeSD
ance HMI Display 5.0 V0.1
s

Main function

« The main folder is the core directory for program execution, containing the main
function executable file main.c.

« Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER main.c e
LESSON12 GRLE main > € main.c > @ app_main(void)
> vscode
> build
v main #include "main.h”
 indude
C mainh
CMakeLists.txt
main.c
 peripheral
~ bsp_audic
~ indlude
C bsp_audioh
bsp_audio.c
CMakelists.txt "%s init [%s]", name, esp_err_to_name(err));
> bsp.izc
 bsp.sd vTaskDelay(1000 / portTICK_PERIOD_MS);
> include
bsp_sd.c

« This is the entry file of the entire application. In ESP-IDF, there is no int main(), and
execution starts from void app_main(void).

- Let’s first explain main.c.

Init:

-+ The Init() function is used to initialize the hardware required for the audio playback
system, including configuring and obtaining LDO3 (2.5V) and LDO4 (3.3V) channels,
initializing the SD card for reading WAV files, initializing the audio controller and turning
off the audio hardware, as well as initializing the 12S audio channel to prepare for WAV
playback. If any step fails, it will call init_fail() to print an error and stop program
execution.

C esp_err_t err = ESP_OK;

err = i2c_init();
if [(err 1= ESP_OK|)

init fail("i2c”, err);
vTaskDelay(26@ / portTICK_PERIOD MS);

err = stcs_i2c_init();

if (err != ESP_OK)
init_fail(
INFO("IC a

err - sd_init();
if (err != ESP_OK)

init fail("sd", err);
vTaskDelay (568 / portTICK_PERIOD MS);

err = audio_ctrl_init();
if (err != ESP_OK)
init fail("audio ctrl”, err);

set_Audio_ctrl(

err = audio_init(

if (err != ESP_OK)
init_fail("audio”, err);

vTaskDelay(58@ / portTICK_PERIOD_MS);

app_tlain(void)

+ After waiting for the SD card and other components to complete initialization, the next
step is to execute Audio_play_wav_sd from the bsp_audio component to play the
converted WAV audio files stored in the SD card.

« Finally, let's look at the "CMakelists.txt" file in the main directory.

« The role of this CMake configuration is as follows:

- Collect all .c source files in the main/directory as the component's source files.

> Register the main component with the ESP-IDF build system and declare its
dependencies on the custom components bsp_audio and bsp_sd.

« This ensures that during the build process, ESP-IDF knows to build these two
components first, followed by the main component.

EXPLOR main.c CMakeLists.ibxt main X
» LESSON12 t
FILE(GLOB_RECURSE main ${CMAKE_SOURCE_DIR}/main/*.c)
» build

~ main

idf component_register(SRCS ${main}
INCLUDE_DT| lude”
REQUIRES bsp_audio bsp_sd)

~
main.h

CMakeLists.txt

Note: In subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessoni2-Playing Loca_Music_from SD_Card

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson12-Playing_Loca_Music_from_SD_Card

Programming Steps

+ Now that the code is ready, the next step is to flash it to the ESP32-P4 so we can
observe the results.

« First, connect the Advance-P4 device to your computer using a USB cable.

« First, double-check two things: whether the converted WAV audio file has been placed
in the SD card, and whether the SD card is inserted into the SD card slot of the
Advance-P4.

o nEnen 6

£5P32

: m e CHHH
Yig E 5]] SRR

- Before starting the preparation for flashing, delete all files generated by compilation to
restore the project to its initial "unbuilt” state. This ensures that subsequent
compilations are not affected by your previous operations.

~ bspsd err = sd_init();

> indude f (err 1= ESP_OK

C bsp.sdc init_fail("sd", err

M CMaketists ot VTaskDelay (500 / portTICK_PERIOD_MS);
> bsp_steahilox

err = audio_ctrl_init();
M CMakelists it

f (err 1= ESP_OK
B parttions.csv init_fail("audio ctrl”, err);
dkconfig
dkconfig.defauits set_Audio_ctrl(
dkconfig.okd err = audio_init();
if (err 1= ESP_OK
init_fail("audio”, err:
VTaskDelay (500 / portTICK_PERIOD_MS);

app_main(

Init();
> outune
> TIMELINE
> PROJECT COMPONENTS

D ESPDFvsA2 T UART O COMI4 Oespitpt @ [B]2 6 O > {ESP-IDF: QEMU] _[ESP-IDF: OpenOCD Server]

Audio_play_wav_sd(

First, follow the steps in the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

Next, we need to configure the SDK

Click the icon in the figure below.

QCOMI4 Cresp3zpa B B 2 § O £ & ®33AD @Build O D

« Wait for a short loading period, then you can proceed with the relevant SDK
configuration

SDK Configuration editor X

Discard

Build type
~ Bootloader config
Bootloader manager

Build type
Application build type &

Default (binary application + 2nd stage bootioader)
Serial Flash Configurations
Security features
Application manager No Binary Blobs ()
Boot ROM Behavior -
Serial flasher config ezt el
Partition Table Bootloader manager
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions Project version ©
Component config
Application Level Tracing 1
~ Bluetooth
Common Options
Console Library
° BrmeEmimES Size (-Os with GCC, -Oz with Clang)

Enable reproducible build (&

Use time/date stamp for bootloader

Bootloader optimization Level ()

TWAI Configuration Log
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration Booicadsgiod el
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations e
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format)
Legacy I2C Driver Configurations Color @
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager

Timestamp &

Miliseconds Since Boot

«+ Next, enter "flash” in the search box. (Make sure your flash configuration matches
mine.)

SDK Configuration editor X

Discard Reset

Bootloader config

Serial Flash Configurations
v app adj y its in SPI Flash for higher freq

Enable the support for flash chips

Security features
Enable f; y

Serial flasher confi

Disab ad s

paths in binaries

« After completing the configuration, remember to save your settings.

+ Next, we will compile and flash the code (detailed in the first lesson).

« Here, we'd like to share a very convenient feature: a single button can execute
compilation, upload, and monitor opening in one go (provided the entire code is
error-free).

A2 frUART & comia O

+ After waiting for a while, the code will finish compiling and uploading, and the monitor
will open automatically.

+ Once the code runs, you will hear the speaker on the Advance-P4 playing the WAV
audio stored in your SD card.

SKU:DHE0L00SD
£sP32 ance HMI Display 5.0 V.1

FHHT

LR

The WAV audio file from your SD card is now playing.

Lesson 13
Camera Real-Time

Introduction

In this lesson, we will start teaching you how to activate the camera, enabling real-time
display of the camera feed on the Advance-P4 screen.

Hardware Used in This Lesson

The camera on the Advance-P4

D el
Q&' erw\lam |

£0L0050
dvance y 5.0 V.1

< e P

LR

|

e
IR/BG
MLCC, driver IC,

‘ Sensor
Connector, resistors, etc.

Bracket SeSsa———u— o
are all SMT-mounted

PCB components.

First, the lens serves as a "collector” of light. Its optical structure can capture light from
external scenes and, through its curvature and other design features, converge this light
to provide a basic optical signal for subsequent imaging.

Next, the Voice Coil Motor (VCM) plays a key role in autofocus. Based on control signals
from the circuit, it uses the principle of electromagnetic induction to drive the lens to
move precisely within a certain range. By changing the distance between the lens and
the image sensor (Sensor), it adjusts the focal point of the light, ensuring that the object
being photographed is clearly imaged on the Sensor. Before the light reaches the Sensor,
the IR cut/blue glass filter (IR/BG) filters the light. The IR cut filter blocks infrared light, as
infrared light can interfere with visible light imaging and cause color distortion. The blue
glass filter not only blocks infrared light but also reduces the entry of stray light, further
improving light purity and making the light received by the subsequent Sensor more
conducive to forming images with accurate colors and clarity.

Then, the image sensor (Sensor), as a core component, is covered with
photosensitive elements such as photodiodes on its surface, which convert the
received optical signals into electrical signals. Light of different intensities causes the
photosensitive elements to generate electrical signals of different magnitudes,
corresponding to information such as brightness and color in the scene.

Finally, components such as Multilayer Ceramic Capacitors (MLCC), driver integrated
circuits (driver ICs), connectors, and resistors mounted on the Printed Circuit Board (PCB)
form a complete signal processing and transmission system through circuit connections.
The driver IC is responsible for preliminary processing of the electrical signals generated
by the Sensor, such as amplification and analog-to-digital conversion, converting
analog electrical signals into digital signals. Capacitors like MLCC and resistors stabilize
voltage, filter noise, and ensure the stable operation of the circuit.

The digital signals processed in this way are then transmitted through connectors to
subsequent devices (such as the main control chips of mobile phones and cameras),
and finally decoded and rendered into the digital images we see.

Operation Effect Diagram

After running the code, you will be able to see the real-time feed from the camera
displayed on the screen of the Advance-P4.

Key Explanations

« Now, the key focus of this lesson is how to use the camera and display the camera
feed on the screen.

» Here, we will prepare another new component for you: "bsp_camera”

« The main functions of this component are as follows:

°

Initialize the camera hardware (including 12C communication, MIPI CSl interface,
and ISP (Image Signal Processing)).

Implement ISP (Image Signal Processing) workflows such as Auto Exposure (AE),
Auto White Balance (AWB), and Color Correction Matrix (CCM).

Acquire real-time image data from the camera and display it on the screen (using
the LVGL graphics library).

Provide functions for refresh control, display control, and buffer control.

« You just need to know when to call the interfaces we have written.

« Next, let's focus on understanding the "bsp_camera’ component.

« First, click the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-£SP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl3-Camera_Real-Time

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson13-Camera_Real-Time

+ Then drag the code for this lesson into VS Code and open the project file.

+ Once opened, you can see the framework of this project.

build

~ main

In the example of this lesson, a new folder named
"bsp_camera’ has been created under "peripheral\”.
Within the "bsp_camera\" folder, a new "include” folder
and a "CMakelists.txt" file have been created.

The "bsp_camera" folder contains the driver file
"bsp_camera.c’, and the "include” folder contains the
header file "bsp_camera.h™

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the camera
initialization and related display functions written in
"bsp_camera.c”.

fig.old

Camera Display Code

» The camera display code consists of two files: "bsp_camera.c” and "bsp_camera.h”.
» Next, we will first analyze the "bsp_camera.h” program.

» "bsp_camera.h” is the header file for camera display, mainly used to:

» Declare the functions, macros, and variables implemented in "bsp_camera.c” for use
by external programs;

« Allow other .c files to call this module simply by adding #include "bsp_camera.h”.

« In other words, it serves as an interface layer that exposes which functions and
constants are available to the outside, while hiding the internal details of the module.

« In this component, all the libraries we need to use are included in the "bsp_camera.h”
file for unified management.

« Such as "esp_sccb_intf.h", "esp_sccb_i2c.h", "esp_cam_sensor.h’,
"esp_cam_sensor_detect.h’, and so on (these are all libraries under the network
component).

» We need to fill in the versions of "esp_cam_sensor", "esp_cam_sensor’, and
"esp_cam_sensor” in the "idf_component.yml" file under the main folder.

« Since these are official libraries, we need to rely on them to implement the camera
functionality on our Advance-P4.

EXPLORER !' idf_componentyml X

- LESSON13 main > ! idf ¢
> wscode
> build
4 components
> espressif_esp lcd_touch gio11
> espressif_esp Ivgl_port
~ main
~ include
C main.h
CMakelists.txt
I' idf_componentym|
main.c
* managed_components
espressif_cmake_utilities
espressif_esp_cam_sensor
espressif_esp h264
espressif_esp_ipa
espressif_esp_led ek79007
espressif_esp_lcd_touch
espressif_esp_sccb_intf
espressif_esp_video
espressif_usb_host uve

Ivgl_vgl

During subsequent compilation, the project will automatically download the
esp_cam_sensor library version 1.2.0, esp_cam_sensor version 0.0.5, and esp_video
version 1.1.0. Once the download is complete, these network components will be stored
in the "managed_components” folder (which is automatically generated after filling in

the version numbers).

Next, we need to declare the variables we will use and the functions whose specific
implementations are in "bsp_camera.c”.

Centralizing these declarations in "bsp_camera.h’ facilitates easier calling and
management. (We will explore their specific roles when they are used in
"bsp_camera.c”.)

#define C
#define C
#define C
#define C

#define S|
#define
#define S

err_t camera_init();
camera_display();
esp_err_t camera_refresh();
camera_display_refresh();

n 1lv_img dsc_t img_camera;
n esp_cam_ctlr_trans_t my_trans;
n esp_cam_ctlr_handle_t cam_handle;

- Let's take a look at the specific functions of each function in "bsp_camera.c’.

» The "bsp_camera” component provides significant support for everyone to use the
camera later. By understanding the role of each function clearly, you can use the
camera conveniently.

« We won't explain the code in detail here; we'll only tell you what each function does
and under what circumstances to call it.

1. example_isp_awb_on_statistics_done_cb()

Function:

« This is a callback function for the Auto White Balance (AWB) module in the ISP (Image
Signal Processor). It is called when the AWB module completes its statistics
calculation.

« Currently, it simply returns true to indicate "default processing after statistics
completion” and has no actual operational logic.

Calling Timing:

+ Automatically invoked by the underlying ISP driver (when the ISP finishes the white
balance statistics for a single frame of image).

2. camera_get_new_vb()
Function:
- Provides a new frame buffer for the Camera Controller.

+ When the camera is ready to capture a new frame of image, the driver will call this
function to obtain the memory address of the buffer.

Calling Timing:

« Automatically invoked by the underlying camera driver, when the controller detects
that it can capture a new frame of image.

3.camera_get_finished_trans()
Function:

+ Used to notify that the transmission of a frame of image has been completed.

+ Currently, the function does nothing internally (it simply returns false), meaning no
special processing is temporarily required for the completed image.

Calling Timing:

+ Automatically invoked by the camera controller, triggered when the transmission of a
frame of data from the camera to memory is completed.

4. camera_sensor_init()

Function:

« Initializes the operating parameters and communication interface of the camera
sensor itself.

« It mainly includes the following steps:
- Initialize SCCB (12C bus) communication;
o Automatically detect the model of the connected camera;
- Set resolution, pixel format (RAWS), and frame rate;
- Set mirroring (horizontal flip), exposure time, and exposure value;
o Enable video data stream output.
Calling Timing:

+ During the overall camera system initialization (called within camera_init()).

5. camera_csi_init()
Function:

- Initializes the camera’s MIPI-CSI interface controller, which is the module responsible
for receiving camera data streams.

« It mainly completes the following tasks:
o Configure CSI controller parameters (resolution, data rate, number of channels, etc.);

- Register data transmission callbacks (camera_get_new_vb,
cqmerd_get_finished_trcns);

> Enable the controller.
Calling Timing:

« Also during the camera initialization phase (called within camera_init()).

6.isp_init()
Function:
- Initializes the ISP (Image Signal Processor) module.

+ The ISP is responsible for processing the raw image data (RAW data) output by the
camera to convert it into RGB images.

« This includes:

> Enabling the main ISP module;
o Setting color adjustment parameters (brightness, contrast, saturation, hue);
- Enabling the Auto White Balance (AWB) controller;
- Enabling the Auto Exposure (AE) controller;
- Enabling the Color Correction Matrix (CCM).
Calling Timing:

+ During the camera initialization phase (called within camera_init()).

7. camera_init()
Function:
- This is the "'main initialization function” for the entire camera subsystem.
- Itis responsible for:
- Allocating image buffers for the camera (located in external PSRAM);
o Calling the three core initialization functions mentioned earlier:
- camerq_sensor_init() — Initializes the camera sensor;
- camero_csi_init() — Initializes the image reception interface;
- isp_init() — Initializes image signal processing;
o Starting the camera data stream acquisition.
Calling Timing:

+ When the system powers on (usually called once in app_main() or during the device
initialization phase).

8. camera_refresh()

Function:

» Manually triggers the camera to capture a frame of image.

« Essentially, it calls esp_ccm_ctlr_receive() to receive a frame of image data.

Calling Timing:

+ Invoked when the application layer needs to refresh the camera image, such as:
> The first capture after program startup;
e Manual refresh by the user;

> Periodic calls in timed tasks.

9. camera_display_refresh()
Function:
« Notifies LVGL to refresh the camera feed display area.

« It calls lv_obj_invalidate(), which prompts LVGL to redraw the camera image in the
next rendering cycle.

Calling Timing:

+ Invoked after the image content is updated (e.g., within the loop of
camera_display_task()).

10. camera_display()
Function:
« Creates an image object in LVGL for displaying the camera feed.
« The specific steps are as follows:
> Create an lv_img object;
o Set center alignment for the object;
- Bind the image buffer (RGB565 data captured by the camera);
o Configure the image source;

> Unlock LVGL to allow rendering.

Calling Timing:

« Called once after the camera is initialized successfully, to create and display the
image control (invoked within Init()).

« This concludes our introduction to the bsp_camera component. For your purposes, it
is sufficient to know how to call these interfaces.

- If you need to call these interfaces, you must also configure the "CMakelists.txt" file
under the bsp_camera folder.This file, located in the bsp_camera folder, primarily
functions to tell the ESP-IDF build system (CMake): how to compile and register the
bsp_camera component.

CMakelists.txt X

» The reason for including "driver’, "esp_cam_sensor", "esp_sccb_intf", "esp _video”, and
"bsp_illuminate” is that we have called these in "bsp_camera.h’ (other libraries that
are system libraries do not need to be added).

» For example, "bsp_illuminate.h” is a component related to screen display that we
explained earlier. Since it was covered in detail before, we won't go into it again here.

«+ ltis used to initialize the screen, turn on the screen backlight, and enable the screen to
display relevant content.

~ main
<string.h>
~ include
€ mainh lude “esp_err.h”
M CMakeLists.txt incll "freertos/FreeRT0S.h"
! idf_componentyml i “freertos/task.h"
“driver/ilc_master.h”
“driver/isp.h"
“esp_etm.h”
“esp_async_memcpy.h"
~ bsp_camera “esp_sccb_intf.h
References de "esp_sccb_i2c.h

C main.c
> managed_components

~ peripheral

C bsp_camerah include "esp_cam_sensor.h"
C bsp_camera.c lude "esp_cam_sensor_detect.h"
M CMakeLists xt “esp_cam_ctlr_csi.h”

~ bsp_illuminate HESD,CM,Etlr‘:.h
esp_cache.h

+ include “hal/cache_11.h"

C bsp.iluminateh “hal/cache_hal.h"

© il #1 “bsp_illuninate.h”

M Cmakelists.txt

clangd

gitignore
M CMakeListstxt

dependenciesdock o ##_VA_ARGS_)
H partitions.csv #define CA] PR A , f ##__VA_ARGS_)

README.md #define CA - , F ## VA ARGS_)

Main function

« The main folder is the core directory for program execution, which contains the main
function executable file main.c.

+ Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER = I idf.componenty € mainc X

 LESSON13 main > C main.c > @ Init(w
> wvscode oid init_fail(*name, esp_err_t err)
> build
 components id Init(
> espressif_esp_lcd_touch gto11
5 espressif_esp_lvgl_port EELERTE G
v main err = i2c_init();
« include % e ,
C mainh init_fail("i2c”, err);
M CMakeLists:txt vTaskDelay (200 / p
! idf_componentyml
C mainc
 managed_companents
espressif_cmake_utilities
espressif_esp_cam_sensor ("I2C and stc8 init success’
espressif_esp_h264
e err = gpio_install isr_service(e);
if (. P_0i
init_fail("gpio i rvice”
espressif_esp_lcd_touch ARSI S SRy G
espressif_esp_sccb_intf display_init();
espressif_esp_video W e |

espressif_usb_host uvc init_fail("display”, err);

>
>
>
>
> espressif_esp_Icd_ek79007
>
>
>
>
>

vgl_lvgl
~ peripheral

 bsp_camera {

CD Backlight”, err);
~ include

C bsp_camerah ("LCD backlight opened (brightness: 160)"
C bsp_camerac
M CMakeLists.txt St(ﬂ_gpin_set_leva]l:ST(S_GPIG_OUT_CSI_RST, 1);
~ bsp_i2e
~ include

< D init_fail("camera”, err);

e
> OUTLINE

> TIMELINE camera_display();

+ This is the entry file of the entire application. There is no int main() in ESP-IDF; instead,
the program starts running from void app_main(void).

- First, let’s explain "main.c”.
+ When the program runs, the general process is as follows:

+ During program execution, the system first calls Init() in app_main() to initialize
hardware and modules: configure the LDO power supply, GPIO interrupts, LCD display
and backlight, and initialize the camera and display buffer.

« Afterinitialization is completed, the program first captures a frame of camera feed,
then creates the camera_display_task task and enters a loop: lock LVGL, refresh the
camera display, unlock LVGL, and delay for approximately 23ms. This loop
continuously updates the frame, enabling real-time camera display.

» Next, let's explain the main code "'main.c”.

- Itincludes the custom main header file ‘main.h”, which typically contains log macros,
peripheral initialization declarations, and header files of other interfaces that need to
be used.

« Below is the content within "'main.h™

main > incluc

o(fmt, ...) ESP_LOGI(
G(fmt) EsP
R(Fmt.) Es

+ Let's continue to look at the content in "main.c”.
+ Ivgl_camera: A handle for the LVGL display task, used to manage the display task.

+ Function declarations:

+ ldo3: The ESP32-P4 has an externally controllable low-dropout voltage regulator (LDO)
power channel. The camera requires a stable voltage, so an LDO must be applied first:
Ido3 -> 2.5V. This is the basic power supply for the camera module to operate
normally. In this code, through our practice, the camera needs the support of the LDO
to display images correctly.

o init_fail: Handles initialization failure.
o Init: Performs system hardware initialization.

o camera_display_task: Implements the camera display refresh task.

dle_t 1lvgl_camera;
dl era_read;

camera_display_task:

» A FreeRTOS task function used to continuously refresh the camera display.

Core Process:
« Infinite loop while(1).
«+ Attempt to acquire the LVGL lock via Ivgl_port_lock(0).

« If the lock is successfully acquired, call camera_display _refresh() to update the
display buffer to the screen.

+ Unlock LVGL with Ivgl_port_unlock().

« Delay for 23ms (vTaskDelay) to control the refresh rate, approximately 43 FPS.

Once the task is created after program startup, it will continuously refresh the camera
display.

1vgl_port_unlock(

vTaskDelay(23 /

_ -
init_fail:
« Initialization failure handling function:
> Uses static bool state to prevent repeated printing.
e Runs in an infinite loop, printing initialization failure messages.
> Delays for 1 second per cycle.

» Function: Once any hardware initialization fails, the program stops further execution
and prints error messages.

init_fail(
e (1
if (Istate

“, name, esp_err_to_name(err));

vTaskDelay(1eee /

init:

+ Hardware initialization function during system startup.

Initialization Steps:

+ Ido3 : The function of this code is very simple. It turns on the LDO3 power channel of
the ESP32-P4 to provide the correct working voltage for the external camera.

« Initialize the 12C and STC8 chips required for the expansion chip, which will facilitate
the subsequent activation of the screen.

« Initialize the LCD display with display_init().

«+ Turn on the LCD backlight using set_lcd _blight(100).
- Initialize the camera module with camera_init().

« Initialize the camera display with camera_display().

Calling Scenario: Invoked once within app_main() when the program starts.

camera_display

app_main:

« The program entry point for ESP32 FreeRTOS.

Process:

« Print the log "Camera task’.
« Call Init() to initialize the system.

+ Call camera_refresh() to retrieve a new frame of image data from the camera
controller into the buffer, providing the latest frame for subsequent display or
processing.

« Create the camera_display_task task, attach the display task to Core 1 with a
relatively high priority.

« Print the log "The screen is displaying” to indicate that the display has started.

oid app_main(

Init();
camera_refresh();

xTaskCreatePinnedToCore (camera_display_task, ra_d ", 4896, NULL, config 1 - 4, &lvgl camera, 1);

Finally, let's take a look at the "CMakelists.txt" file in the main directory.
The role of this CMake configuration is as follows:
+ Collect all .c source files in the main/ directory as the source files of the component.

« Register the main component with the ESP-IDF build system, and declare that it
depends on the custom component "bsp_camera” and the custom component
"bsp_illuminate”.

In this way, during the build process, ESP-IDF will know to build "bsp_camera” and
"bsp_illuminate” first, and then build "'main”.

GELA
main ${CMAKE_SOURCE_DIR}

idf_component_register(${main}

~ peripheral
~ b

Note: In the subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other drivers into the main function

Complete Code

Kindly click the link below to view the full code implementation.

IMI-Al-Display-800x

Real-Time

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson13-Camera_Real-Time

Programming Steps

+ Now that the code is ready, the next step is to flash it to the ESP32-P4 so we can
observe the actual behavior.

« First, connect the Advance-P4 device to your computer via a USB cable.

« Before starting the flashing preparation, delete all compiled files to restore the project
to its initial "unbuilt” state. (This ensures that subsequent compilations are not affected
by your previous build artifacts.)

app_main(

Init

camera_rdfresh();

« First, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip correctly.

« Next, we need to configure the SDK.

« Click the icon shown in the image below.

> OUTLINE
> TIMELINE

> PROJECT COMPONENTS

+ Wait for a short loading period, and then you can proceed with the relevant SDK
configuration

SDK Configuration editor X

Discard

Build type
v Bootloader config
Bootloader manager

Build type

Application build type &

Default (binary application + 2nd stage bootioader)

Serial Flash Configurations
Security features
Application manager No Binary Blobs &
Boot ROM Behavior .
Serial flasher config Bootloader config
Partition Table Bootloader manager
~ Compiler options

Replace ESP-IDF and project paths in binaries

Enable C++ exceptions Eoreces

Component config

Application Level Tracing

~ Blustooth Bootloader optimization Level @

Common Options

Enable reproducible build ()

Usetime/date stamp for bootloader ©

Console Libra
> B cD"'zgmam - Size (-Os with GCC, -Oz with Clang)
TWAI Configuration Log
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration Boicadsgiod ety
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations Info
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format)
Legacy 12 Driver Configurations color ®
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations

Legacy Temperature Sensor Driver Configurations
o & Millseconds Since Boot
eFuse Bit Manager

Timestamp &

« For more related configurations regarding screen lighting, please refer to Lesson 7

« Here you need to configure the camera options to use the camera normally.

+ (Just make the same configuration as shown in the picture.)

SDK Configuration editor X

2==3

Build type Component config
» Bootloader confi Espressif Camera Sensors Configurations
Camera Sensor Configuration
Security features

Select and Set Camera Sensor
Application manager sC2336

Boot ROM Behavior vl sc2336 ©
Serial flasher config Auto detect SC2336
Partition Table Detect for DVP interface sensor @
> Compiler options v/ Detect for MIPI CSl interface sensor (
> Component config Select default output format for MIPI CSl interface ®
RAWE 1024x600 30fps, MIPI 2-lane, 24M input
Select default output format for DVP interface @
RAW10 12801720 30fps, DVP & bits, 24M input
Maximurn absolute gain limit (x1000) (
66016
Gain control pricrity ()
Digital gain priority
1PA Configuration File

Use default configuration

« After that, enter "flash” in the search box to find flash-related settings. (Make sure your
flash configuration matches mine exactly.)

SDK Configuration editor X

Discard Reset

Bootloader config

Serial Flash Configurations
A B G e TS o READ HELP FIRST)

Enable the support for flash chi

Security features
Enable flash encryption on boot (READ DOCS.

Serial flasher config
Disable download stub ®

n Table
npiler options

Flash SPI mode ()
Qo
Flash Sampling Mode ©

STR M

onfigurations
r Configuration

en flashing bootioader (D

ns
rer Configurations.

After flashing ©

flashing

After completing the configuration, remember to save your settings.

Next, we will compile and flash the code (detailed in the first lesson).

Here, we will also introduce a very convenient feature: a single button can execute
compilation, upload, and monitor activation in one go.

» OUTLINE

> TIMELINE

> PROJECT COMPONENTS
&3 ESP-IDF v54 Y UART & comi4 & i p f & Build 1

+ Wait for a moment until the code compilation and upload are completed, and the
monitor will open automatically.

« At this point, please remember to connect your Advance-P4 with an additional Type-C
cable via the USB 2.0 port. This is because the maximum current provided by a
computer’s USB-A port is generally 500mA, and the Advance-P4 requires a sufficient
power supply when using multiple peripherals—especially the screen. (It is
recommended to connect it to a charger.)

SKU:DHE04L0050
vance HMI Display 5.0 V0.1
s -

« After running the code, you will be able to see the real-time feed from the camera on
the Advance-P4 screen.

Lesson 14
SX1262 Wireless Module

Introduction

In this lesson, we will begin exploring the use of wireless modules. Since the SX1262 LoRa
module supports both transmission and reception, two Advance-P4 development
boards and two SX1262 LoRa communication modules are required.

The objective of this lesson is to implement a case study where, when an SX1262 LoRa
module is connected to the wireless module slot of the Advance-P4 board, the
transmitting board displays "TX_Hello World:i" on its screen, while the receiving board
displays "RX_Hello World:i" along with related LoRa signal information.

Hardware Used in This Lesson

SX1262 Wireless Module on the Advance-P4

Operation Effect Diagram

After inserting the $X1262 LoRa modules into both Advance-P4 development boards and
running the respective codes, you will observe the following behavior:

On the transmitting Advance-P4 board, the screen will display the message TX_Hello
World:i, with the value of i increasing by 1 every second.

Similarly, on the receiving Advance-P4 board, the screen will display RX_Hello World:i
whenever a message is received, with i also incrementing by 1 each second. In addition,
the screen will show relevant reception signal information such as RSSI and SNR.

LoRa RX Receiver

RX_Hello World:25

RSSI:-26.0dBm SNR:13.0 dB

TX_Hello World:24
o

Key Explanations

« The main focus of this lesson is to learn how to use the wireless module, including how
to initialize the SX1262 LoRa module and send or receive data.

+ In this section, we will introduce a new component called bsp_wireless.
« The main functions of this component are as follows:

- It encodes and modulates the data (such as strings or sensor information) sent
from the main controller and transmits it wirelessly.

It also receives wireless data packets sent from other devices via LoRa.

e Through a callback mechanism, it passes the received data back to the upper-layer
application.

« In addition to the above functions, this component also integrates the experimental
functionalities for the remaining three wireless modules: nRF2401, ESP32-C6, and
ESP32-H2.

Since the functions of each wireless module in the code are encapsulated within
#ifdef and #endif directives, and in this lesson we are using the SX1262 module, we
only need to enable the SX1262-related configurations.

How to enable it:

« Click SDK Configuration.

oid (*rx_data_callback)(

OUTLINE
> TimMELINE
> PROJECT COMPONENTS

& ESP-IDFv542 Y UART © COM14 (O esp32pd | {3}

SDK Configuration editor X a

wireless Discard

i Component config
~ Bootloader config . X
e Wireless Coexistence
~ log GPIO debugging for coexistence @
Format
SerialFlash Configurations BSP WIRELESS Setup
Security features v
Application manager Enable $X1262 config (
Boot ROM Behavior ~
Serial flasher config
Partition Table
Enable UART TRANSPOND.
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions

Enable wireless mou config ©
Enable NRF2401 config

The CLK pin of the wireless module ©

Component config

[
Application Level Tracing

Since in this case we are using the $X1262, only check the option "Enable $X1262
config” and uncheck all the others.

(Enable the one that corresponds to the wireless module you are using.)

After making the changes, don't forget to click Save to apply and store the modifications.

main_te.c bsp_wireless.cpp X

peripheral > bsp_wireless > G bsp_wireless.cpp > 3 BSP_NRF2401

BSP_SX1262

d Received pack_radio(size t len);

le *bsp_sx_mod;
1262 *bsp_sx_radio;

Y

EspHal lora_hal;
Module *BSP_SX1262::bsp sx mod = null
SX1262 *BSP_SX1262::bsp_sx_radio

ora_transmissionState
lora_transmittedFlag

bool lora_receivedFlag =
size_t lora_received_len =

oid (*rx_data_callback)(co har* gefa, size t len,
#endif

+ As shown in the figure, we have enabled the SX1262-related configuration, so the other
wireless modules are currently disabled and not in use.

« Within the bsp_wireless component, you only need to know when to call the provided
interfaces that we have written.

« Next, let's focus on understanding the bsp_wireless component itself.

« First, click the GitHub link below to download the source code for this lesson.

« Transmitting end code:

+ Then, drag the code for this lesson into VS Code and open the project file.

» Once opened, you will see the project structure.

The following section shows the The following section shows the
transmitter (TX) side of the project: receiver (RX) side of the project:

s LESSON14_TX ~ LESSON14 RX

: _compon
main_bx.c hm
b

ed_components

LTINS > managed_components

~ peripheral
> b

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_TX_SX1262_Wireless_Module
https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_RX_SX1262_Wireless_Module

+ In these two projects, the only difference lies in the main functions: main_tx.c for the
transmitter and main_rx.c for the receiver. All other code files are identical. (For
convenience, we have prepared both main functions for you to use separately.)

« In this lesson's example, a new folder named bsp_wireless has been created under
peripheral\. Inside the bsp_wireless folder, there is a new include folder and a
CMakelists.txt file.

« The bsp_wireless folder contains the driver file bsp_wireless.cpp, while the include
folder contains the header files bsp_wireless.h and EspHal.h.

« The purpose of EspHal.h is to convert C code from ESP-IDF into the Arduino-style C++
code required by the Radiolib component library.

« The CMakelists.txt file integrates the driver into the build system, allowing the project
to use the LoRa module transmission and reception functions implemented in
bsp_wireless.cpp.

« Additionally, there is bsp_illuminate, our familiar component from previous lessons,
which we use to light up the screen and render text using LVGL.

» And the "bsp_stc8hlkxx" component can be used to control the screen backlight.

* SX1262 LoRa Code

« The SX1262 LoRa transmission and reception code consists of two files:
bsp_wireless.cpp and bsp_wireless.h.

+ Next, we will first analyze the SX1262-related code in bsp_wireless.h.

+ bsp_wireless.h is the header file for the SX1262 LoRa wireless module. Its main
purposes are:

» To declare the functions, macros, and variables implemented in bsp_wireless.cpp for
external use.

« To allow other .c files to simply #include "bsp_wireless.h" in order to call this module.

« In other words, it serves as the interface layer, exposing which functions and constants
can be used externally while hiding the internal details of the module.

+ Any libraries required for this component are included in both bsp_wireless.h and
bsp_wireless.cpp.

main_rx.c C main.h bsp_wire PP C bsp_wirelessh X

peripheral > bsp_wireless > include > C bsp_wireless.h > ..
#ifndef 5

main_e.c C mainh bsp_wireless.cpp X | € b
peripheral > bsp_wireless > bsp_wireless.cpp > %8 BSP_SX1262
#include "b
#include
iinclude
#include
#include <s

+ Since the function implementation in bsp_wireless.cpp uses the function
encapsulation from EspHal.h, the reference to the header file needs to be placed in the
cpp file.

Take #include <Radiolib.h> as an example; this is a library under the network
component.

main_rx.c € mainh bsp_wireless.cpp X

peripheral > bsp_wireless > bsp_wireless.cpp > ...

"bsp_wireless.h”
Radiolib.h>

i
#include <

This requires us to specify the version of jgromes/radiolib in the idf_component.yml
file located in the main folder.

Since this is an official library, we need to rely on it to implement the SX1262 LoRa
wireless transmission or reception functionality on our Advance-P4.

EXPLORER main_xc € main ! idf_componentyml X
~ LESSON14_RX OEBEO main > ! idf component.ym!
> vscode
> build
> components
~ main
~ include
C mainh
CMakeliststxt
! idf_componentyml
main .
~ managed_components
> espressif_cmake_utiities
> espressif_esp lcd ek79007
> espressif_esp lcd touch
> jgromes_radiolib
> Ivgl_hgl

+ These three components, which we discussed earlier, are used in the bsp_illuminate
component to light up the screen and render information on the interface using LVGL.

« During the subsequent compilation process, the project will automatically download
the following library versions:

- jgromes/Radiolib version 7.2.1
- espressif/esp_lcd_ek79007 version 1.0.2
> lvgl version 8.3.11

« Once downloaded, these online components will be stored in the
managed _components folder. (This is automatically generated after specifying the
version numbers.)

+ It can be seen that the esp_Ivgl_port has been commented out by me. This is
because in the components, we downloaded this network component and then made
relevant modifications based on it to adapt it to our 5-inch Advance-P4 product.

EXPLORER main_ main.h idf componentyml X

~ LESSON14 RX QELA main >

+ The pin assignments should not be modified, otherwise the wireless module will not
work due to incorrect connections.

« Next, we declare the variables and functions that we will use. The actual
implementation of these functions is in bsp_wireless.cpp.

« By placing them all in bsp_wireless.h, it becomes easier to call and manage them.
(We will explore their specific functionality when we look at bsp_wireless.cpp.)

 t len);
*callback

» Next, let's take a look at bsp_wireless.cpp to understand the specific function of each
function.

« The bsp_wireless component implements LoRa data transmission and reception,
communicates with the main controller via the SPI interface, and handles the sending
and receiving at the wireless data link layer.

» Here, we won't go into the detailed code. Instead, we will explain the purpose of each
function and when to call them.

BSP_SX1262 Class:
This indicates that:
- Itis a C++ wrapper class for operating the SX1262 module.

« It mainly provides functions for initialization, de-initialization, and data
trqnsmission/reception.

« All hardware operations are performed based on the RadioLib library.

« bsp_sx_mod and bsp_sx_radio are object pointers in memory for the SX1262 module
(statically shared).

> 5X1262()

SP_SX1262()

t Sx1262_tx_init();
id Sx1262 tx_deinit();
ool Send_pack_radio();

t Sx1262 rx_init();

oid Sx1262_rx_deinit

Defines the core global variables required by the $X1262 LoRa module driver, used to
manage the module instance, status, and data callbacks:

« lora_hal is the low-level SPI hardware abstraction layer object, responsible for SPI
communication.

+ bsp_sx_mod and bsp_sx_radio point to the generic Radiolib module object and the
SX1262 module object, respectively. They encapsulate the specific hardware pins and
transmission/reception interfaces. These objects are created during module
initialization (e.g., $x1262_tx_init() or Sx1262_rx_init()) and released or set to standby
during de-initialization.

« lora_transmissionState records the status code of the last transmission operation for
debugging and error handling.

«+ lora_transmittedFlag is the transmission completion flag, set by the transmission
interrupt callback set_sx1262_tx_ﬂog(), indicating that the module is ready to send a
new data packet.

+ lora_receivedFlag is the reception completion flag, set by the reception interrupt
callback set_sx1262_rx_ﬂog(), indicating that new data is available to read.

« lora_received_len stores the length of the most recently received data.

« rx_data_callback is a function pointer that allows the upper layer to register a
callback. When the SX1262 receives data, this callback is automatically triggered,
passing the received data, its length, RSSI, and SNR information to the upper-level
processing.

lora_transmissionState =
lora_transmittedFlag =
lora_receivedFla
lora_received_len =

(*rx_data_callback)(

sx1262_tx_init():

The function Sx1262_tx_init() in the BSP_SX1262 class is used to initialize the $X1262
module for data transmission.

« The function first uses lora_hal to configure the SPI pins (RADIO_GPIO_CLK,
RADIO _GPIO_MISO, RADIO_GPIO_MOSI) and the SPI clock frequency (8 MHz), then calls
spiBegin() to start SPl communication, providing the module with a low-level
communication interface.

« Next, it creates a Module object bsp_sx_mod to encapsulate the SX1262 hardware pins
(NSS, IRQ, NRST, BUSY) and uses this module object to create the SX1262 instance
bsp_sx_radio. By calling begin(), it configures the LoRa parameters (915 MHz
frequency, 125 kHz bandwidth, spreading factor 7, coding rate 4/7, sync word, 22 dBm
power, pre-gain 8, LNA 1.6, etc.), completing the module initialization.

« Finally, it calls setPocketSentAction(set_sx]262_tx_f|og) to register the transmission
completion callback, which sets lora_transmittedFlag whenever a data packet is sent,
indicating that the module is ready to send the next packet.

This function is usually called at system startup or before starting LoRa data transmission.
It only needs to be initialized once to ensure the module is in a transmittable state, after
which data packets can be sent periodically using Send_pack_radio().

If two LoRa modules are used for transmission and reception, they must operate on the
same frequency band.

x1262_tx_init()

lora_ha
lora_hal
lora_hal

_hal.spiEnd
rn 5

adio->setPacketSentAction(set_sx1262 tx_flag);

In bsp_sx_radio->begin(), the 915.0 MHz represents the operating center frequency of
the SX1262. This can be changed according to the LoRa frequency regulations of different
regions:

+ China commonly uses 433 MHz or 470-510 MHz
« Europe uses 868 MHz
+ The United States and Australia use 915 MHz

« Japan uses 923 MHz

When changing the frequency, the transmitter and receiver must match, otherwise
communication will fail. Additionally, ensure that the selected frequency falls within the
legally allowed ISM band for that region.

Parameters such as bandwidth and spreading factor can generally remain unchanged,
although some frequency bands may have officially recommmended values.

Send_pack_radio:

The function Send_pack_rodio() in the BSP_SX1262 class is the core function for sending
LoRa data packets.

« It first checks the transmission completion flag lora_transmittedFlag. If it is true, it
indicates that the previous packet has been sent and the module is ready to send new
data.

« If so, the flag is reset to false to prevent duplicate transmissions. The function then
checks lora_transmissionState to determine whether the previous transmission was
successful and prints the corresponding log.

+ Next, it calls bsp_sx_radio->finishTransmit() to complete any remaining operations
from the previous transmission, ensuring the module is ready for use. The transmission
counter sx1262_tx_counter is incremented, and a text message with the counter is
formatted and stored in the static buffer text.

« The function then calculates the message length and calls
bsp_sx_rddio->stcrtTrqnsmit() to initiate the transmission of the new data packet. It
also updates lora_transmissionState to record the status of this transmission. If the
transmission fails to start, an error message is printed.

« Finally, the function returns true if the transmission event has been handled, or false if
the module is not yet ready to send.

This function is usually called periodically in the main loop or task scheduler to poll and
send LoRa data packets, and it must ensure that the previous transmission is complete
before sending a new packet.

sx1262_get_tx_counter()

This is a C-style interface used to obtain the value of the SX1262 module’s transmitted
packet counter sx1262_tx_counter. The function simply returns the global static variable
sx1262_tx_counter and does not modify any state. It is typically used in applications to
query the number of packets sent, for example, for debugging, statistics, or displaying
the transmission count. It can be called at any time and does not depend on the
transmission or reception status.

sx1262_tx_init()

This is a C-style wrapper interface for initializing the SX1262 transmission functionality.
Inside the function, a BSP_SX1262 object is created, and its method sx1262_tx_init() is
called to complete the LoRa module SPI configuration, module object creation,
parameter initialization, and registration of the transmission completion callback. The
function returns ESP_OK if initialization is successful, or ESP_FAIL if it fails. This function is
typically called once at system startup or before starting data transmission to ensure
that the module is in a ready-to-transmit state.

sx1262_tx_deinit()

This is a C-style de-initialization interface for the SX1262 transmission function. Inside the
function, a BSP_SX1262 object is created, and its method sx1262_tx_deinit() is called to
shut down the transmission functionality. During de-initialization, it calls finishTransmit()
to complete any ongoing transmission, clears the transmission callback, switches the
module to standby mode, and closes the SPI interface. This function is generally called
when the system is shutting down, the module no longer needs to send data, or it enters
low-power mode, releasing resources and ensuring the module safely stops.

send_lora_pack_radio()

This is a C-style interface used to trigger the SX1262 to send a data packet. Inside the
function, a BSP_SX1262 object is created, and its method Send_pcck_rodio() is called. It
polls the transmission completion flag lora_transmittedfFlag and, when ready, generates
a data packet and starts transmission. The function returns true if the transmission event
has been handled, or false if the module is not yet ready. It is usually called periodically in
the main loop or task scheduler to achieve continuous or scheduled data transmission.

set_sx1262_rx_flag()

This is a static internal function used as the callback for SX1262 reception completion.
Inside the function, it sets the global reception flag lora_receivedFlag to true, notifying
the system that a new data packet has been received.

It is not called directly. Instead, it is registered by calling
bsp_sx_radio->setPacketReceivedAction(set_sx1262_rx_flag), and the SX1262 hardware
automatically triggers it each time a reception is completed, driving the data reception
processing logic.

sx1262_rx_init()

The function $x1262_rx_init() in the BSP_SX1262 class is used to initialize the SX1262
module for reception.

« The function first uses lora_hal to configure the SPI pins (RADIO_GPIO_CLK,
RADIO _GPIO_MISO, RADIO_GPIO_MOSI) and the SPI clock frequency (8 MHz), then calls
spiBegin() to start SPl communication, providing a low-level interface for the SX1262.

« Next, it creates a Module object bsp_sx_mod and an SX1262 object bsp_sx_radio to
encapsulate the hardware pins and transmission/reception interfaces. It then calls
begin() to configure the LoRa parameters (915 MHz frequency, 125 kHz bandwidth,
spreading factor 7, coding rate 4/7, sync word, 22 dBm power, etc.), completing
module initialization. If initialization fails, an error is printed and the function returns a
failure status.

« It then registers the reception completion callback via
sethcketReceivedAction(set_sx]262_rx_ﬂdg), so that the module automatically sets
lora_receivedFlag whenever a packet is received.

« The function calls setRxBoostedGainMode(true) to enable boosted gain mode for
improved reception sensitivity, then calls startReceive() to start reception mode. If
starting reception fails, it prints an error and returns failure.

This function is usually called once at system startup or before starting LoRa data
reception to ensure the module is in a receivable state, after which received data can be
processed via polling or callback.

bsp_sx_mod =
bsp_: dio

state =

Here, we are initializing the receiver module. Similarly, by keeping the frequency band at
915 MHz, the module can successfully receive the data sent from the transmitter.

Received_pack_radio:

The function Received_pock_rcdio(size_t len) in the BSP_SX1262 class is the core
function for handling received LoRa data packets.

« The function first checks the reception flag lora_receivedFlag. If it is true, it indicates
that a new data packet has arrived. The flag is then reset to false to prevent duplicate
processing.

« It then obtains the actual length of the received data via
bsp_sx_rodio—>getPocketLength(). If a valid length is returned, it is used; otherwise,
the externally provided len serves as a fallback.

+ Next, a buffer data[255] is defined, and bsp_sx_radio->readData() is called to read
the received data into the buffer. If reading succeeds, the function prints the received
data, RSSI (Received Signal Strength), SNR (Signal-to-Noise Ratio), and frequency
offset. If a callback function rx_data_callback has been registered, it passes the data,
length, and signal parameters to the upper-level application for processing.

This function is usually called periodically in the main loop or tasks. It executes after the
SX1262 reception interrupt sets lora_receivedFlag, allowing the upper-level application to
retrieve and process received packets promptly and reliably.

dved_pack_radi
if (lora_receivedFlag
lora_receivedFlag =
actual_len = bsp_sx_radio->getPacketLength();
actual len > @
lora_received len - actual len;

_received len = len;

adio->readData(data, lora_received len);

)i

radio->getRSSI(), bsp_sx_radio->getsNR

, state);

sx1262_rx_init()

This is a C-style interface used to initialize the SX1262 module's reception function. Inside
the function, a BSP_SX1262 object is created, and its member function sx1262_rx_init() is
called to complete SPI configuration, module initialization, parameter setup, registration
of the reception callback, and starting reception mode. The function returns ESP_OK if
initialization succeeds, or ESP_FAIL if it fails. This function is typically called once at
system startup or before starting LoRa data reception to ensure the module is in a
ready-to-receive state.

sx1262_rx_deinit()

This is a C-style de-initialization interface for the $X1262 reception function. Inside the
function, a BSP_SX1262 object is created, and its method Sx1262_rx_deinit() is called to
shut down the reception functionality. The de-initialization process includes clearing the
reception callback, switching the module to standby mode, delaying to ensure safe
shutdown, and closing the SPI interface. This function is generally called when the system
is shutting down, the module no longer needs to receive dataq, or it enters low-power
mode.

received _lora_pack_radio(size_t len)

This is a C-style interface used to handle received LoRa data packets. Inside the function,
a BSP_SX1262 object is created, and its method Received_pack_radio(len) is called. The
function processes the data by checking the reception flag, reading the data, printing
logs, and invoking the upper-layer callback function.

This function is generally called periodically in the main loop or tasks and executes after
lora_receivedFlag is set, ensuring that the upper-level application can timely retrieve
and handle received data packets.

sx1262_set_rx_callback(void (*callback) (const char* data, size_t len, float
rssi, float snr))

This function is used to register the upper-layer callback rx_data_callback. When the
SX1262 module receives a data packet, this callback is automatically triggered, passing
the data, length, RSSI, and SNR information to the upper-layer application. This function is
typically called once after initializing the reception functionality to bind the data
processing logic.

sx1262_get_received_len()

This is a query interface that returns the length of the most recently received data
lora_received_len. Internally, the function simply returns the static variable without
modifying any state. It is usually called when processing received data or performing
debug/statistics, to obtain the actual length of the received packet.

sx1262_is_data_received()

This is a status query interface that returns the reception flag lora_receivedFlag, used to
determine whether a new data packet has arrived. The function simply returns the status
of the global variable without modifying it. It is typically polled in the main loop or tasks to
decide whether to call received_lora_pack_radio() to process new data.

That concludes the introduction to the bsp_wireless component. You only need to know
how to call these interfaces.

When calling these functions, you also need to configure the CMakelists.txt file in the
bsp_wireless folder. This file, located in the bsp_wireless directory, mainly tells the
ESP-IDF build system (CMake) how to compile and register the bsp_wireless component.

EXPLORER main_tx.c p_wirele p CMakeListsixt X

~ LESSON14_TX BDEO peripheral > bsp_wireless > M CMakeLists.txt
> wvscode 1 FILE(GLOB_RECURSE component_sources “*.cpp™)
> build
% GEh idf_component_register(SRCS ${component_sources}
INCLUDE DIRS "include”
driver esp timer radiolib)

~ include
C main.h
CMakeLists.txt
I' idf_componentyml
main_tx.c
> managed_companents
~ peripheral
~ bsp_illuminate
~ include
C bsp_illuminate.h
bsp_illuminate.c
CMakeLists.txt
~ bsp_wireless
~ include
C bsp wireless.h
C EspHalh
bsp_wireless.cpp
CMakeLists:txt
£ Keonfig

The reason driver, esp_timer, and Radiolib are included here is that we call them in
bsp_wireless.h and bsp_wireless.cpp. Other libraries are system libraries and do not
need to be explicitly added.

C bsp_wirelessh X

peripheral > ireless > include >

#ifndef _BSP
#define _|

#include <string.h>
#include <stdint.h>
#include "freertos/FreeRT0S.h"
#include "freertos/task.h"
#include "esp_log.h"
#include “"esp_err.h”

11 #include "driver/uart.h"

main_tx.c bsp wireless.cpp X CM:

peripheral > bsp_wireless > bsp_wireless.cpp > 45 BSP_NRF2401

#include "bsp_wireless.h”
#include <Radiolib.h>
#include "EspHal.h™
#include <stdio.h>
#include <string.h>

As well as the esp_timer used in the EspHal.h file.

EXPLORER c !
[\ LEssonta rx EspHalh >
~ main
M CMakeLists.txt
! idf componentymi
C main_ncc
~ managed_components
> espressif_cmake_utilties
> espressif_esp_lcd_ek79007
> espressif_esp_Ivgl port
> jgromes_radiolib

~ bsp_illuminate
~ indlude

ints_t sck, miso, mosi;
_spiPins 1, -1};

e h _spiHandle;
CMakelists txt bool _spilnitialized ;
_spiFrequency - 8066600;

C bsp.lluminateh
bsp_illuminate.c

C bsp_wirelessh

EspHal() : RadiolibHal
C Esprialh

GPIO_MODE_INPUT,

Main function

The main folder is the core directory for program execution and contains the main
executable file main_tx.c.

Add the main folder to the build system's CMakelists.txt file.

BXPLORER main_bec X

[Lessonta main > C main tec > Linit(void)
> wscode
- #include
> components
~ main
> include
CMakeLists:txt

1v_obj_t *s_hello_label -
idf_componentymi

main_tec s 1vgl_show_counter_label_init(void)
> managed components § X
< perpheral (Lvgl port_lock(e) != true)
LVGL lock fai.
> bsp.izc
> bsp.illuminate
> bsp steshiloo
> bsp_wireless 1v_obj_t *screen = lv_scr_act();
CMakeLists.txt 1v_obj_set_style_bg_color(screen, _WHITE, LV_PART_MAIN);
dependencieslock 1v_obj_set_style bg opa(screen, LV_OPA_COVER, LV_PART_MAIN);
B partitions.csv
README.md
dkconfig

s_hello_label = lv_label create(screen);
(

dkconfig.defaults
dkconfig.old

1v_style_init()
1v_style_set_text_font(&label_style, &lv_font_montserrat_42);
1v_style_set_text_color(&label_style, lv_color_black
1v_style_set_bg_opa(&label_style, LV_OPA_TRANSP);
1v_obj_add_style(s_hello_label, &label style, LV_PART_MAIN);

1v_label_set_text(s_hello_label, "TX_Hello korld:e"
1v_obj_center(s_hello_label);

1vgl_port_unlock(

This is the entry file for the entire application. In ESP-IDF, there is no int main(); execution
starts from void app_main(void).

Let's first go through the transmitter main function file main_tx.c to see how it calls
interfaces to send LoRa messages.

When the program runs, the general flow is as follow

After the system starts, app_main() first calls Hardware_Init() to initialize the hardware,
including 12C,STC8 expansion chip, the LCD display and LVGL library, and the SX1262 LoRa
transmission module, ensuring all hardware resources are ready.

+ Then, lvgl_show_counter_label_init() is called to create an LVGL label for displaying
the transmission count, centered on the screen. After initialization, the system enters
the task scheduling stage.

+ The system creates two FreeRTOS tasks:

e ui_counter_task reads the SX1262 transmission counter every second, updates the
display via LVGL, and prints logs.

- lora_tx_task calls send_lora_pack_radio() every second to send LoRa data packets
and prints error messages if transmission fails.

+ The two tasks use vTaskDelayuntil() to ensure synchronized execution on a fixed
1-second cycle, enabling coordinated screen display and wireless transmission,
achieving the complete process of sending LoRa messages every second and
dynamically showing "TX_Hello World:count” on the screen.

Next, let's go through the main code in main_tx.c.

It includes the custom main header file main.h, which typically contains log macros,
peripheral initialization declarations, and headers for other interfaces that need to be
used.

Below is the content of main.h:

main_tx.c

main

Let's continue looking at the content of main_tx.c.

lvgl_show_counter_label_init:

The function Ivgl_show_counter_label_init() initializes the counter label in the LVGL
display interface, used to show the LoRa transmission count.

+ The function first calls Ivgl_port_lock(0) to acquire the LVGL operation lock, ensuring
safe access to LVGL in a multi-task environment. If locking fails, it prints an error and
returns.

- It then gets the current active screen object via Iv_scr_act() and sets the screen
background to white, fully covering the display.

+ Next, it creates a label object s_hello_label. If creation fails, an error is printed, the lock
is released, and the function returns.

« It then creates and initializes a style label_style for the label, setting the font to
Montserrat size 42, text color to black, and background to transparent, and applies the
style to the label.

+ Using Iv_label_set_text(), the initial text is set to "TX_Hello World:0", and
Iv_obj_center() centers the label on the screen.

« Finally, Ivgl_port_unlock() is called to release the LVGL lock, allowing other tasks to
safely operate on LVGL.

If you want to change the LVGL font size, you need to go into the SDK configuration and
enable the desired font.

Steps:

Click on the SDK Configuration option.

~ bsp_illuminate

serrat_42);

1v_label set tex 110_label,
1v_obj_ce

1ugl port_unlock();

id ui_counter task(void *param)

> OUTLINE [48];
> TIMELINE last_wake_ti
) PROJECT COMPONENTS Frequency

Search for "font” and select the font size you want to use. After making changes,
remember to save.

SDK Configuration editor X € mainh

fon Save Discard Reset

Component config
LVGL configuration
Font usage
Enable buil

paths in binaries

ui_counter_task:

The function ui_counter_task() is a FreeRTOS task that updates the LoRa transmission
count label on the LVGL display every second.

- Inside the function, a character array text[48] is defined to store the formatted display
text. The current system tick count is obtained via xTaskGetTickCount() as the task's
initial wake time last_wake _time, and the task period frequency is set to 1000
milliseconds.

+ The task enters an infinite loop. In each iteration, it calls sx1262_get_tx_counter() to
get the current number of LoRa packets sent, then formats the string as "TX_Hello
World:count” using snprintf.

« It then attempts to acquire the LVGL operation lock. If successful and the label object
s_hello_label is valid, it updates the label text and releases the lock, ensuring safe
LVGL access in a multi-task environment.

« Next, it prints the current transmission information using MAIN _INFO.

+ Finally, vTaskDelayUntil() is called with absolute timing to ensure each loop executes
precisely every one second.

Overall, this task continuously refreshes the display with the LoRa transmission count
while logging, providing real-time visual feedback.

Hardware_Init:

The function Hardware _Init() is used to initialize hardware modules when the program
starts, ensuring that all parts of the system work properly.

« First, initialize the 12C and the STC8HIK17 expansion chip controlled by I12C, so as to
control the subsequent screen backlight and make the screen light up.

+ Next, it calls display _init() to initialize the LCD hardware and the LVGL graphics library,
which must be done before turning on the backlight, otherwise the display may
behave abnormally.

+ Then, it calls set_lcd_blight(100) to turn on the LCD backlight and set the brightness to
maximum 100, using init_or_halt() to check for errors.

« Finally, it calls sxl262_tx_init() to initialize the LoRa transmission module. If initialization
fails, it is also handled via init_or_halt().

Overall, this function provides a reliable hardware environment for screen display,
backlight, and the wireless communication module, ensuring that subsequent program
functionality runs smoothly. It is typically called in app_main() during system startup.

lora_tx_task:

The function "lora_tx_task()" is a FreeRTOS task used to periodically send data packets
through the LoRa module.

+ The function first obtains the current system tick count using "xTaskGetTickCount()" as
the start time of the task, and sets the transmission period to 1000 milliseconds ¢
second).

+ Inan infinite loop, it calls "send _lora_pack_radio()” to attempt sending a LoRa data
packet. It determines whether the transmission is successful through the return value,
and if the transmission fails, it prints an error log using "MAIN_ERROR".

« Finally, it uses "vTaskDelayUntil()" to delay according to absolute time, ensuring that
each loop sends data at an accurate interval of 1 second, thus achieving timed and
stable wireless data transmission.

This task is usually created after the system starts and runs continuously to continuously
broadcast messages to the receiving end.

app_main:

The function "app_main()" is the entry point of the entire program. After the system
starts, it first prints the "LoRa TX" log to indicate entering the main process.

Subsequently, it calls "Hardware_Init()" to complete hardware initialization, including I12C,
STC8 expansion chip, LCD display, and LoRa module.

Then, it invokes "Ivgl_show_counter_Iabel_init()" to create and display a text label for
counting on the LCD.

After that, it uses "xTaskCreatePinnedToCore()" to create two FreeRTOS tasks:
“ui_counter_task” is used to update the LVGL label displaying the transmission count
every second, and "lora_tx_task” is used to send LoRa data packets every second. Both
tasks have the same priority to maintain synchronization.

Finally, it prints a log indicating that the task creation is completed and synchronous
transmission starts.

Finally, let's take a look at the "CMakelists.txt" file in the main directory.
The role of this CMake configuration is as follows:
+ Collect all .c source files in the main/ directory as the source files of the component.

+ Register the main component to the ESP-IDF build system, and declare that it depends
on the custom component bsp_wireless and the custom component bsp_illuminate.

In this way, during the build process, ESP-IDF knows to build bsp_wireless and
bsp_illuminate first, and then build main.

EXPLORER mai CMakelLists.txt main X
LESSON14 TX main >

E main ${CMAKE_SOURCE_DIR}/

ster(SRCS ${main}

CMakelists.txt
idf. 1ty

~ periph

~ bsp_illuminate

The above is the main function code for the transmitter. Next, let's take a look at the main
function code for the receiver.

This section of code defines several static global variables that are crucial in the LoRa
reception program:

« Then, static Iv_obj_t *s_rx_label = NULL; defines a pointer to an LVGL label object,
which is used to display the received LoRa data content on the screen.

« static Iv_obj_t *s_rssi_label = NULL; is an interface label used to display the RSSI
(signal strength) value, allowing users to know the strength of the received signal.

« static Iv_obj_t *s_snr_label = NULL; defines another LVGL label, which is used to
display the SNR (signal-to-noise ratio) value to help determine the quality of the
received signal.

- Finally, static uint32_t rx_packet_count = 0; is a counting variable used to record the
number of received LoRa data packets. It increments by 1 each time data is received,
enabling real-time display of the reception count and system working status on the
interface.

x_label =
rssi_label =

_t *s_snr_labe

rx_data_callback:

The function rx_data_callback() is the core callback function of the entire LoRa
receiving program. It is automatically triggered and executed when the wireless module
successfully receives a frame of LoRa data, and is used to process the reception event
and update the interface display in real time.

« First, the function increments the reception count by rx_packet_count++ to record the
arrival of a new data packet.

+ Then, it calls lvgl_port_lock(0) to acquire a lock, ensuring safe operation of the LVGL
graphical interface in a multi-tasking environment.

« If the lock is successfully acquired, it updates three interface elements in sequence:
first, it checks whether s_rx_label exists; if it does, it uses snprintf() to format the string
"RX_Hello World:<Number>", and updates the reception count displayed on the screen
via Iv_label_set_text().

« Next, it updates the signal strength label s_rssi_label to display the current RSSI value
(Received Signal Strength Indicator, in dBm) on the interface.

+ Then, it updates the signal-to-noise ratio label s_snr_label to display the SNR value
(Signal-to-Noise Ratio, in dB) of the current received signal, reflecting the signal
quality.

+ After the interface update is completed, the function calls Ivgl_port_unlock() to
release the lock.

+ Finally, it prints a log via MAIN_INFO(), outputting the serial number of the data
received this time, the RSSI, and the SNR value to the console, facilitating debugging
and system status monitoring.

Overall, the function'’s role is to synchronously update the screen and logs each time a
LoRa data packet arrives, intuitively reflecting the system's real-time reception status
and signal quality. It is a key link for data visualization and operation monitoring in the
application.

lvgl_show_rx_interface_init:

The function Ivgl_show_rx_interface_init() is the initialization function for the Lora
receiver interface. It is responsible for creating and beautifying the graphical interface
used to display LoRa reception status before system startup or the beginning of the
reception task.

The function first acquires the LVGL graphics lock via Ing_port_Iock(O), ensuring safe
operation of interface objects in a multi-threaded environment.

Then it calls Iv_scr_act() to obtain the currently active screen object and sets the
screen background to white with full opacity, providing a clear display background.

Next, it defines and initializes a general style info_style, uniformly setting the font size,
text color (black), and transparent background, which is shared by the RSSI and SNR
labels.

Subsequently, it creates four main interface elements in sequence:

1. Title label title_label — displays the title "LoRa RX Receiver’, using a large font style and
centered at the top of the screen to identify the interface function.

2. Received content label s_rx_label — shows the currently received LoRa message
content, initially set to "RX_Hello World:0", positioned slightly above the center of the
screen.

3. Signal strength label s_rssi_label — displays the RSSI (Received Signal Strength),
initially "RSSI: -- dBm’, placed at the lower left of the interface.

4. signal-to-noise ratio label s_snr_label — displays the SNR (Signal-to-Noise Ratio),
initially "SNR: -- dB", positioned at the lower right, symmetrical to the RSS! label.

All labels use predefined styles to ensure consistent fonts and colors. After creating the
interface, the function calls Ivgl_port_unlock() to release the lock, allowing other tasks to
access the LVGL system.

Overall, the function initializes the visual interface for the LoRa receiver, providing a clear
Ul layout for real-time display of received data (such as message content, signal
strength, and SNR). It serves as the core initialization function for the graphical display in
the program.

lora_rx_task:

The function lora_rx_task() is the LoRa reception task, responsible for continuously
detecting and processing data packets received from the $X1262 module during system
operation.

« The function runs in a dedicated FreeRTOS task, using an infinite loop to continuously
listen for LoRa signals.

« Inside the loop, it first calls sx1262_is_data_received() to check whether a new data
packet has arrived.

« If areception event is detected, it calls sx]262_get_received_len() to obtain the length
of the received data, then passes this length as a parameter to
received_lora_pack_radio(len), which handles data parsing and display logic (e.g.,
updating the received content, RSSI, and SNR on the interface).

+ If no data is currently received, the program delays 10 ms using vTaskDelay (10 /
portTICK_PERIOD _MS), reducing CPU usage and maintaining balanced task execution.

Overall, this function maintains the real-time listening mechanism for the LoRa receiver,
ensuring that any incoming wireless data is captured and processed promptly. It is the
core background task responsible for data reception and event handling in the LoRa
communication system.

app_main:

The function app_main() serves as the main entry function of the entire LoRa receiver
program, responsible for completing core startup tasks such as system initialization, Ul
interface configuration, and task creation.

+ At the beginning of the function, it outputs a startup log via MAIN_INFO("----------
LoRa RX —====------ ") to indicate that the system has entered LoRa reception mode.

+ It then calls Hardware_Init() to initialize all underlying hardware resources, including
power management, SPl communication interfaces, and LoRa modules, laying the
foundation for subsequent communication.

+ Subsequently, it executes lvgl_show_rx_interface_init() to create and initialize the
LVGL graphical interface, which is used to display real-time information such as
received messages, RSSI, and SNR on the screen.

« Next, it calls sx1262_set_rx_callback(rx_data_callback) to register a data reception
callback function. When the LoRa module receives data, the system will automatically
trigger this callback to process and display the information.

« Finally, it creates an independent task lora_rx_task under FreeRTOS through
xTaskCreatePinnedToCore(), which is pinned to core 1to continuously monitor LoRa
signals, enabling asynchronous data reception and real-time response.

This concludes our explanation of the main function code for both the receiver and
transmitter ends.

Complete Code

Kindly click the link below to view the full code implementation.

« Transmitting end code:

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl4 TX SX1262 Wireless Module

+ Receiving end code:

uch-Screen/tree/master/example/VI1.0/idf-code/Lessonl4 RX_ SXi262_ Wireless_Module

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_TX_SX1262_Wireless_Module
https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_RX_SX1262_Wireless_Module

Programming Steps

« Now that the code is ready, the next step is to flash it onto the ESP32-P4 so we can
observe the actual operation.

« First, connect the Advance-P4 device to your computer using a USB cable.

—

o i,
@ CroEPa}ne

SKU:DHEQLB0SD
ESP3! nce HMI Display 5.0 V.
S

CHHH

ﬂlrl;luj

« Before starting the flashing preparation, delete all files generated during compilation
to restore the project to its initial "unbuilt” state. This ensures that subsequent
compilations are not affected by your previous build results.

app_main(void)

Hardware_Init

> OUTLINE
> TIMELINE
PROJECT COMPONENTS
vz UART

« Next, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip correctly.

« Then, we need to configure the SDK.

« Click on the icon shown in the figure below.

> TIMELINE
» PROJECT COMPONENTS
ESP-IDFv54.2 ©7 UART @ COM14 $F esp

+ Wait for a short loading period, and then you can proceed with the relevant SDK
configuration

€ mainc SDK Configuration editor X

Discard Reset

Build type Build type
~ Bootloader config Appication buid type ©
Bootioader manager
R [R ——
Serial Flash Configurations
Security features ,
e No ginary Blobs ®
Boot ROM Behavior X
Serial flasher config Bootloader config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries)
Enable C:++ exceptions Project version ©
~ Component config
Application Level Tracing 1
~ Bluetooth Bootloader optimization Level (D
Common Options
Console Libra
> Bhs cD"'zgumm e Size (-0s with GCC, -Oz with Clang)
TWA Configuration
v Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration ErTirn e (@)
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations e
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format
Legacy I2C Driver Configurations Color @
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations Milconds Snce Boat
eFuse it Manager

Enable reproducible build @

Bootloader manager

Usetime/date stamp for bootloader ©

Log

Timestamp @

«+ Then, type "flash” into the search box. (Ensure your flash configuration matches mine.)

€ mainc SDK Configuration editor X

Discard

Build type
~ Bootloader config X ¥ 5
e Serial Flash Configurations
“ Log
Format c
e ¢ Enable the support for flash chips of XMC (READ DOCS FIRST)
Security features
AR T Enable flash encryption on boot (READ DOCS FIRST)
Boot ROM Behavior
SFiEErmeny Serial flasher config
Partition Table

Disable download stub ®
~ Compiler options

Bootloader config

Allow app adjust Dummy Cydle bits in SPI Flash for higher frequency (READ HELP FIRST)

Security features

Replace ESP-IDF and project paths in binaries

Enable C+ + exceptions

Component config

Application Level Tracing ~

« Bluetooth Flash Sampling Mode ©
Common Options

Flash SPI mode

Qo

o STR Mode
 Driver Configurations p——’
TWAI Configuration
- Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration)3
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 25 Driver Configurations
Legacy 12C Driver Configurations
Legacy PCNT Diver Configurations @
Legacy SOM Driver Configurations
Legacy Temperature Sensor Driver Configurations
e rR—

Flash size ©

16MB

Detect flash size when flashing bootloader ©

After completing the configuration, remember to save your settings.
Next, we will compile and flash the code (detailed in the first lesson).

Here, we'd like to share a very convenient feature with you: a single button can execute
compilation, uploading, and serial monitor opening in one go.

> TIMELINE

» PROJECT COMPONENTS

BB ESP-IDFv542 T3 UART @ COM14 $Fe

After waiting for a moment, the code will finish compiling and uploading, and the serial
monitor will open automatically.

At this point, remember to connect your Advance-P4 using an additional Type-C
cable via the USB 2.0 interface. This is because the maximum current provided by a
computer's USB-A port is generally 500mA, while the Advance-P4 requires a sufficient
power supply when using multiple peripherals—especially a display. (Using a
dedicated charger is recommended.)

S FIILIITEY

* i

c
=
=

For the 5-inch Advance-P4 product, the jumpers need to be switched on the hardware in
order to use the wireless module. (Switch to the side with the wireless module)

SKU:DHEQ4L00SD
MI Display 5.0 V0.1

+ Insert the LoRa module SX1262 into the two Advance-P4 development boards
respectively.

« After inserting the modules and running the code on each board respectively, you will
be able to see the LoRa module transmitting "TX_Hello World:i" on the screen of the

transmitter-side Advance-P4, with the value of "i" increasing by 1 every second.

+ Similarly, on the screen of the receiver-side Advance-P4, you can see the LoRa module
receiving "RX_Hello World:i". When a message is received, "i" also increases by 1 every
second. At the same time, you can also view the relevant received signal status: RSSI
and SNR.

- RSSI (Received Signal Strength Indicator) indicates the strength of the received
signal, with the unit of dBm (decibel-milliwatts). A larger value (closer to 0) means
a stronger signal; a smaller value (e.g., -120 dBm) means a weaker signal. It can
reflect the distance between the receiver and the transmitter, as well as the stability
of the communication link.

= SNR (Signal-to-Noise Ratio) represents the ratio of the signal to noise, also with the
unit of dB (decibels). A higher SNR indicates better signal quality and lower noise; an
excessively low SNR (even negative values) means the signal is severely interfered
with by noise.

LoRa RX Receiver

RX_Hello World:25

RSSI:-26.0 dBm SNR:13.0 dB

TX_Hello World:24

Lesson 15
NRF2401 Wireless RF Module

Introduction

In this lesson, we will start using another wireless module. Since we will implement the
transmission and reception functions of the nRF2401 module, two Advance-P4
development boards and two nRF2401 wireless RF (Radio Frequency) communication
modules are required.

The project to be completed in this lesson is as follows: When the nRF2401 module is
connected to the wireless module slot of the Advance-P4, the transmitter-side
Advance-P4 screen will display "NRF24 _TX _Hello World:i", and the corresponding
receiver-side Advance-P4 screen will display "NRF24 _RX _Hello World:i". The value of "i"
on the receiver will only increment by 1when it receives the signal from the transmitter.

Hardware Used in This Lesson

nRF2401 Wireless Module on Advance-P4

 Gabe ot S oSl YRR
S cre@nel)

P co HMI Display 7.0 V10

DHEOL107

W

o Y Ry
H e

dbbLER LR

LLLD
il

Operation Effect Diagram

After inserting the nRF2401 wireless RF modules into the two Advance-P4 development
boards and running the code on each respectively, you will be able to see the nRF2401
module transmitting "NRF24 _TX_Hello World:i" on the screen of the transmitter-side
Advance-P4, with the value of "i" increasing by 1 every second.

Similarly, on the screen of the receiver-side Advance-P4, you can see the nRF2401
module receiving "NRF24 _RX_Hello World:i". When a message is received, "i" also
increases by 1 every second.

NRF24L01 RX Receiver

NRF24_RX_Hello World:23

NRF24_TX_Hello World:23

Key Explanations

« The focus of this lesson is on how to use the wireless module, including initializing the
NRF2401 module and sending or receiving information.

« Here, we will still use the bsp_wireless component from the previous lesson.
« The main functions of this component are as follows:

o Itis responsible for encoding and modulating data sent by the main controller
(such as strings, sensor information, etc.) before transmitting it.

It also handles the reception of wireless data packets sent by other devices via the
NRF2401.

o It returns the received data to the upper-layer application through a callback
mechanism.

« In addition to the aforementioned functions, we have also encapsulated the relevant
experimental functions of the remaining three wireless modules - nRF2401, LoRa
module, ESP32-C6, and ESP32-H2 - into this component.

« Since in the code, the function usage of each wireless module is wrapped with ifdef
and endif, and we are using the nRF2401 wireless module in this lesson, we only need to
enable the configurations related to nRF2401.

How to enable it:

« Click on the SDK configuration.
id app_main(

Hardware_Init

xTaskCreatePinnedToCore(ui_counter_task

xTaskCreatePinnedToCore(nrf24_t K,

> OUTLINE
> TIMELINE

Search for "wireless” and open

SDK Configuration editor X

wireless Discard

Build type Component config

~ Bootloader config)
Bootoader manager Wireless Coexistence
 Log GPIO debugging for coexistence @
Format
BSP WIRELESS Setup

Serial Flash Configurations
Security features Enable wireless mou config ®

Cpp T R =s Enable SX1262 confi
Boot ROM Behavior
Serial flasher config
Partition Table
Enable UART TRANSPOND @
~ Compiler options
Replace ESP-IDF and project pahs in binaries “The CLK pin of the wireless module

Enable NRF2401 config

Since | am using NRF2401 here, | only check "Enable NRF2401 config” and uncheck the
others.

(Enable whichever module you are using.)
After making changes, click Save to save the configuration.
main_tx.c bsp_wireless.cpp X

peripheral > bsp_wireless > p_W .) 5x1262_tx_init()
ifdef C

BSP_NRF2401()

~BSP_NRF2481() {};
esp_err_t NRF24_tx_init();
0id NRF24_tx_deinit();
bool Send_pack_radio();
esp_err_t NRF24_rx_init();
oid NRF24_rx_deinit();

oid Received pack radio(size t len);

+ As shown in the figure, we have enabled the nRF2401 configuration, so the other
modules are temporarily disabled and not applicable.

« Inthe bsp_wireless component, you only need to call the prepared interfaces when
needed.

« Next, let's focus on understanding the bsp_wireless component.

« First, click the GitHub link below to download the code for this lesson.

« Transmitting end code:

+ Receiving end code:

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32 IPS-To

P4-HMI-Al-Display-8C

uch-Screen/tree/master/example/V1.0/idf-code/ sonl5 RX_nNRF2401_Wireless RF_Module

« Then, drag the downloaded code into VS Code and open the project files.
» Once opened, you can see the project structure:
« This is the transmitter side: « And this is the receiver side:
~ LESSON15 TX ~ LESSON15_RX GELAH
build > build
» com|
~ main
> include
idf_componentyml idf_compaonent.yml

main_be.c main_.c

> managed_components > omponents

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_TX_nRF2401_Wireless_RF_Module
https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_RX_nRF2401_Wireless_RF_Module

In these two projects, only the implementations in the main functions main_tx.c and
main_rx.c differ; all other code files are identical. (For convenience, we have provided
two separate main functions for use.)

In this lesson’s example, under peripheral\, a new folder named bsp_wireless is
created. Inside the bsp_wireless)\ folder, there is a new include folder and a
CMakelists.txt file.

The bsp_wireless folder contains the driver file bsp_wireless.cpp.
The include folder contains the header files bsp_wireless.h and EspHal.h.

EspHal.h converts ESP-IDF C code into the Arduino-style C++ syntax required by the
Radiolib component library.

The CMakelists.txt file integrates the driver into the build system, allowing the project to
use the nRF2401 module send and receive functions implemented in bsp_wireless.cpp.

Additionally, there is bsp_illuminate, our familiar component used to light up the screen
and draw text via LVGL.

And the "bsp_stc8hlkxx" component can be used to control the screen backlight.

NRF2401 Communication Code

« The code for nRF2401 transmission and reception consists of two files:
"bsp_wireless.cpp” and "bsp_wireless.h".

» Next, we will first analyze the nRF2401-related code in the "bsp_wireless.h” program.

» "bsp_wireless.h" is the header file for the nRF2401 wireless module, primarily used to:

- Declare functions, macros, and variables implemented in "bsp_wireless.cpp” for use
by external programs.

> Allow other .c files to call this module simply by adding #include "bsp_wireless.h".

« Inother words, it acts as an interface layer that exposes which functions and
constants are available to the outside, while hiding the internal details of the module.

+ In this component, the libraries we need to use are placed in the "bsp_wireless.h” and
"bsp_wireless.cpp” files.

main_rx.c C main.h bsp_wire PP C bsp_wirelessh X

peripheral > bsp_wireless > include > C bsp_wireless.h > ..
#ifndef 5

main_e.c C mainh bsp_wireless.cpp X | € b
peripheral > bsp_wireless > bsp_wireless.cpp > %8 BSP_SX1262
#include "b
#include <Rad

iinclude
#include <std

+ Since the function implementations in bsp_wireless.cpp use the function wrappers
provided in EspHal.h, the header file needs to be included in the .cpp file.

« For example, #include <RadioLib.h> (this is a library under the networking
components)

main_ncc C mainh bsp_wireless.cpp X € bsp_wireless ! ponent ym|

peripheral > bsp_wireless > € bsp wireless.cpp > ...

#include “"bsp wireless.h™
Jinclude <RadioLib.h>
#include pHal_h"
#include

#include

« This inclusion requires us to specify the version of jgromes/radiolib in the
idf _component.yml file located in the main folder. Because this is an official library, we
rely on it to implement the wireless transmission or reception functionality of the
NRF2401 on the Advance-P4.

EXPLORER main_rx.c € mainh ! idf_componentyml X

 LESSON14_RX QOEL& main > ! idf componentyml
> wscode
> build
> components
~ main
~ include
C mainh
CMakelists.txt
! idf_componentyml
main_m.c
- managed_components
> espressif_cmake_utilities
> espressif_esp lcd_ek79007
> espressif_esp lcd_touch
> jgromes_radiolib
> lvgl_ivgl

+ These three components, which we discussed previously and used in the
bsp_illuminate component, are employed to illuminate the screen and render
information on the interface using LVGL.

main >

« During the subsequent compilation process, the project will automatically download
the following libraries: jgromes/radiolib version 7.2.1, espressif/esp_Icd_ek79007
version 1.0.2 and Ivgl version 8.3.11.

« Once downloaded, these networking components will be stored in the
managed _components folder. (This is automatically generated after specifying the
version numbers.)

« It can be seen that the esp_Ivgl_port has been commented out by me. This is
because in the components, we downloaded this network component and then made
relevant modifications based on it to adapt it to our 5-inch Advance-P4 product.

EXPLORER ma c nain.h idf_componentyml X

~ LESSON14 RX GERLS main >

> build

module.

« The pin definitions should not be modified; otherwise, the wireless module will not
function correctly due to incorrect wiring.

« Next, we declare the variables we need to use, as well as the functions. The actual
implementations of these functions are in bsp_wireless.cpp. Placing all declarations in
bsp_wireless.h is intended to make them easier to call and manage. (We will examine
their specific functionality when they are used in bsp_wireless.cpp.)

t nrf24_get tx counter();

_t narf24_rx_in

t len);
callback

+ Next, let’s take a look at the specific functionality of each function in bsp_wireless.cpp.

+ Inthe bsp_wireless component, BSP_NRF2401 is a BSP driver wrapper class for the
NRF24L01 wireless transceiver module. It provides initialization, execution,
de-initialization, and callback mechanisms for sending and receiving.

« This allows the application layer to complete wireless communication simply by
calling straightforward C interface functions (such as nrf24_tx_init() or
send_nrf24_pack_radio()), without needing to directly manipulate the underlying SPI
registers or the Radiolib interface.

« Here, we won't go into a detailed code walkthrough; we will only explain the purpose of
each function and the situations in which it should be called.

BSP_NRF2401 Class:
This means:

This code defines a class named BSP_NRF2401 to encapsulate the driver logic for the
NRF2401 wireless transceiver module, implementing initialization, sending, and receiving
functionalities for wireless communication.

« The class declares initialization and de-initialization functions for both the transmitter
and receiver (such as NRF24_tx_init, NRF24_rx_init), as well as data sending and
receiving handling functions (Send_pock_rodio, Received_pctck_rddio).

« Two static pointers, bsp_nrf_mod and bsp_nrf_radio, are defined to point to the
underlying hardware module object and the radio object, respectively, allowing global
sharing.

nrf_hal is the hardware abstraction layer object, used to manage hardware
communication with the chip.

Two volatile variables are defined: radio24 _transmittedFlag indicates whether
transmission is complete, and radio24 _receivedFlag indicates whether reception is
complete.

nrf24 _tx_counter is used to record the number of transmissions.

Finally, a function pointer nrf24 _rx_data_callback is defined to trigger an upper-layer
callback when data is received.

Overall, this code establishes the basic control framework for the nRF2401 module,
providing a unified interface and state management mechanism for subsequent
wireless data transmission and reception.

BSP_NRF2401() {};

~BSP_NRF2481() {1;

esp_err_t NRF24 tx_init();

void NRF24_tx_deinit();

bool Send_pack_radio();

esp_err_t NRF24_rx_init();
d NRF24_rx_deinit();

d Received pack radio(size t len);

Module *bsp_nrf_mod;
nRF24 *bsp_nrf_radio;

i

EspHal nrf_hal;
Module *BSP_NRF2481::bsp_nrf_mod U
nRF24 *BSP_NRF24e1::bsp_nrf_radio = nu

1 radio24_transmittedFlag = true;

radio24_receivedFlag =
't nrf24_tx_counter = 8;

id (*nrf24_rx_data_callback)(const char* size t len) =

NRF24_tx_init:

Initializes the transmitter of the nRF2401 module by configuring the SPI interface, creating
the communication object, setting the wireless parameters, and specifying the
transmission channel, enabling the module to send data.

« At the beginning of the function, nrf_hoI.setSpiPins(RADIO_GPIO_CLK,
RADIO_GPIO_MISO, RADIO _GPIO_MOSI) sets the SPI communication pins between the
NRF2401 and the main controller (Clock, Master In Slave Out, Master Out Slave In).

- setSpiFrequency(8000000) sets the SPI clock frequency to 8 MHz to improve
communication speed.

- spiBegin() formally initializes the SPI bus.

+ A module object bsp_nrf_mod is then created via new Module(...), binding the SPI
interface along with control pins such as Chip Select (CS), Interrupt (IRQ), and Chip
Enable (CE), providing a hardware interface for the nRF24 module.

« Next, bsp_nrf_radio = new nRF24(bsp_nrf_mod) creates the specific nRF24 radio
object and begins the driver logic.

« Calling begin(2400, 250, 0, 5) completes the core initialization of the wireless module.
The parameters represent, in order: operating frequency 2400 MHz (i.e., 2.4 GHz band),
data rate 250 kbps, output power level 0 (typically 0 dBm), and communication
channel number 5. If initialization fails (return value is not RADIOLIB_ERR_NONE), the
error is logged and the function exits.

- Then, a transmit address is defined as uint8_t addr[] = {0x01, 0x02, Ox11, 0x12, OxFF},
which is a 5-byte transmit pipe address (similar to a "device address” or "channel
identifier" in wireless communication), ensuring that the transmitter and receiver
communicate over the same address.

- setTransmitPipe(addr) sets this address as the current transmit pipe, allowing the
module to send data through this channel. If configured successfully, the function
returns ESP_OK, indicating that initialization is complete.

Send_pack_radio:

This function sends a wireless data packet through the nRF2401 module and records and
prints the transmission status.

- Specifically, the function first defines a static character array text[32] to store the
message to be sent. It then uses snprintf to format the message as "NRF24 _TX_Hello
World:<transmit_count>", where <transmit_count> comes from nrf24 _tx_counter and
represents the current number of transmissions.

+ The function calculates the message length using strlen and stores it in tx_len.

+ Next, it calls bsp_nrf_radio->transmit((uint8_t *)text, tx_len, 0) to send the message
through the nRF2401 module. If the return value is RADIOLIB_ERR_NONE, the
transmission is successful, and NRF2401_INFO prints the completion message along
with the content sent. Otherwise, it prints a transmission failure message and the error
code.

« The function finally returns true, indicating that the send operation has been executed.

nrf24_tx_init():

This is a C-language interface function used to initialize the nRF2401 transmitter module.
Inside the function, a BSP_NRF2401 object obj is instantiated, and its member function
NRF24_tx_init() is called to complete SPI configuration, wireless parameter setup, and
transmit pipe address configuration, returning the initialization result.

Purpose: Provides a unified interface for upper-layer or C code to prepare the nRF2401
module for data transmission.

nrf24_tx_deinit():

This is a C-language interface function used to release or shut down the nRF2401
transmitter resources. It creates a BSP_NRF2401 object internally and calls its member
function NRF24_tx_deinit(), putting the wireless module into an idle state and closing the
SPI bus.

Purpose: Called when the transmission task is finished or the module is no longer in use,
safely releasing transmitter resources.

send_nrf24_pack_radio():

This is a C-language interface function used to send a data packet via the nRF2401.
Internally, it creates a BSP_NRF2401 object and calls its member function
Send_pack_radio() to send the formatted message and print the transmission result.

Purpose: Provides a simple interface for the upper layer to send wireless data without
needing to handle the underlying driver details.

nrf24_get_tx_counter():

This is a C-language interface function used to get the current value of the nRF2401
transmit counter nrf24 _tx_counter.

Purpose: Allows upper-layer programs to obtain the number of packets sent, useful for
statistics or debugging.

nrf24_inc_tx_counter():

This is a C-language interface function used to increment the transmit counter
nrf24_tx_counter by 1.

Purpose: Updates the counter after each successful packet transmission, used to record
the number of sends or to mark a sequence number in the message.

set_rx_flag():

This is a static internal function called within the receive interrupt or callback, used to set
radio24_receivedFlag to true, indicating that the nRF2401 module has received new data.

Purpose: Serves as a receive event flag to notify the upper-layer program that new data
is available for processing.

NRF24 _rx_init:

This function, BSP_NRF2401:NRF24 _rx_init(), initializes the receiver side of the nRF2401
module, enabling it to receive wireless data.

« Specifically, the function first sets the SPI communication pins using
nrf_hal.setSpiPins(RADIO _GPIO _CLK, RADIO _GPIO _MISO, RADIO _GPIO_MOSI), sets the
SPI clock frequency to 8 MHz with setSpiFrequency(8000000), and initializes the SPI bus
using spiBegin().

+ A module object bsp_nrf_mod is then created via new Module(...), binding the SPI
interface and control pins. Next, bsp_nrf_radio = new nRF24(bsp_nrf_mod) creates
the nRF24 radio object.

« Calling bsp_nrf_rqdio->begin(2400, 250, 0, 5) initializes the wireless parameters,
where 2400 represents the 2.4 GHz operating frequency, 250 is the data rate in kbps, 0
is the output power level, and 5 is the communication channel. If an error occurs, it
logs the failure and returns.

+ Areceive pipe address is defined as addr[] = {0x01, 0x02, 0x11, 0x12, OxFF}. The function
then calls setReceivePipe(0, addr) to set pipe 0 as the receive address, ensuring the
module only receives data sent to this address.

- setPacketReceivedAction(set_rx_flag) registers a receive callback, setting
radio24_receivedFlag to notify the upper layer. Finally, startReceive() puts the module
into receive mode. If successful, the function returns ESP_OK.

Received_pack_radio:

This function, BSP_NRF2401::Received _pack_radio(size_t len), handles data packets
received by the nRF2401 module.

«+ Specifically, the function first checks the receive flag radio24_receivedFlag. If it is true,
it indicates that new data has arrived. The flag is then reset to false to avoid repeated
processing.

- Abuffer data[len] is defined to store the received data, and
bsp_nrf_radio->readData(data, len) is called to read len bytes from the module.

« If the return value is RADIOLIB_ERR_NONE, the data is successfully read. The function
uses NRF2401_INFO to print a success message along with the received data, and
checks whether the callback function pointer nrf24_rx_data_callback has been
registered. If it is registered, the callback is called to notify the upper-layer application.

+ If reading fails, NRF2401_ERROR prints the error code. Finally,
bsp_nrf_rqdio->stortReceive() is called to re-enter receive mode, waiting for the next
data packet.

nrf24_rx_init()

This is a C-language interface function used to initialize the receiver side of the nRF2401
module. Internally, a BSP_NRF2401 object obj is instantiated, and its member function
NRF24_rx_init() is called to complete SPI configuration, wireless parameter initialization,
receive pipe address setup, and callback registration, returning the initialization result.

Purpose: Provides a unified interface for upper-layer or C-language programs to
prepare the nRF2401 module for data reception.

nrf24 _rx_deinit()

This is a C-language interface function used to release the nRF2401 receiver resources.
Internally, a BSP_NRF2401 object is created, and its member function NRF24_rx_deinit() is
called to put the module into an idle state, clear callbacks, and close the SPI bus.

Purpose: Called when the reception task is finished or the module is no longer in use,
safely releasing receiver resources.

received _nrf24 _pack_radio(size_t len)

This is a C-language interface function used to handle received data packets. Internally,
it creates a BSP_NRF2401 object and calls its member function
Received_pack_radio(len) to read the data, log the results, and notify the upper-layer
application via a callback.

Purpose: Provides an upper-layer interface to trigger the nRF2401 data reception
processing flow.

nrf24_set_rx_callback(void (*callback)(const char* data, size _t len))

This is a C-language interface function used to register a callback for received data,
notifying the upper-layer application when data arrives. Internally, the passed function
pointer is saved to nrf24_rx_data_callback.

Purpose: Allows the upper-layer program to set a custom callback for immediate
processing or response upon receiving nRF2401 data.

We will conclude the introduction of the bsp_wireless component here. It is enough for
everyone to understand how to call these interfaces.

If you want to use it, you also need to configure the CMakelists.txt file under the
bsp_wireless folder. This file, located in the bsp_wireless directory, primarily tells the
ESP-IDF build system (CMake) how to compile and register the bsp _wireless component.

EXPLORER main_tx.c bsp_wireless.cpp CMakelists.tet X bsp_wireless.h
\ LESSON15_TX peripheral > b reless > CMakelists.bet

> wscode FILE RECURSE component_sources "*.cpp")

> build

© TE idf component_register(SRCS ${component_sources}

INCLUDE_DIRS "include™

= el REQUI?E; driver esp_timer radiolib)

main.h
CMakeLists.txt
idf_component.yml
main_tx.c
> managed_components
~ peripheral
~ bsp_illuminate
~ include
bsp_illuminateh
bsp_illuminate.c
CMakelists.bet
~ bsp_wireless
~ include
bsp_wireless.h
EspHalh
bsp_wireless.cpp
CMakeLists.bek

The reason only driver, esp_timer, and radiolib are listed is that we use them in
bsp_wireless.h and bsp_wireless.cpp. (Other libraries are system libraries, so they do not
need to be added.)

main_tx.c el p c 0t bsp_wirelessh X

peripheral > bsp_wireless » include > € bsp_wirelessh >

main_tx.c

peripheral > bsp_wireless >

clude
#include
#include °
#include
include

EXPLORER

o Lessonta rx
v m

ain
MakeLists xt
! idf componentyml
€ main_c
~ managed_components
> espressif_cmake_utilities
> espressif_esp lcd_ek79007
> espressif_esp_vglport
> jgromes_radiolib
Testing 1_vl
~ peripheral
+ bsp_illuminate
v include
C bsp_lluminateh
C bsp_illuminate.c
M CMakelists txt
~ bsp_wireless
~ include
C bsp_wirelessh
C Esprialh

Main function

bsp_wirelesscpp X

bsp_wireless.cpp > %3 BSP_NRF2401

t sck, miso, mosi;
-1);
c _spiHandle;
spiInitialized = s

t _spiFrequency = 8000660;

_spipins = {-1, -1,

EspHal

The main folder is the core directory for program execution and contains the main

executable file main_tx.c.

The main folder should be added to the build system in the CMakelists.txt file.

EXPLORER
- LEssoNts TX main >
> wscode
> build
> components
~ main
~ include
C mainh
CMakeLists.txt
! idf componentyml
main e
> managed_components
~ peripheral
> bsp_ize
> bsp_illuminate
> bsp_steshlloac
~ bsp_wireless
~ include
C bsp wirelessh
C EspHalh
bsp_wireless.cpp
CMakeliststxt
Keonfig
CMakeListstxt
lependencieslock
partitions.csv
README.md

main_txc

main_txc > ©

#include

_obj_t *s_hello_label = NULL;

1vgl_show_counter_label_init(void)

(1vgl_port_lock(e

1vgl_port_unlock:
return;

label_style;

This is the entry file of the entire application. In ESP-IDF, there is no int main(); instead,
execution starts from void app_main(void).

Let’s first explain the transmitter's main function file, main_tx.c, to see how it calls the
interfaces to send information via the nRF2401.

When the program runs, the general workflow is as follows:

« First, Hardware_Init() is called in app_main() to initialize the hardware. This includes
configuring 12C,STC8 expansion chip, initializing the LCD display and turning on the
backlight, and initializing the nRF24L01 wireless module.

+ Next, Ivgl_show_counter_label_init() is called to create and display an LVGL label on
the screen for showing the transmit counter.

« The program then creates two FreeRTOS tasks:

e ui_counter_task reads the nRF24L01 transmit counter every second and updates
the screen label.

o nrf24_tx_task increments the transmit counter every second and calls
send_nrf24_pack_radio() to send a wireless data packet, achieving wireless
transmission.

The entire process uses task scheduling to keep the display and transmission
synchronized, forming a loop system that automatically sends data every second while
showing the real-time count on the LCD.

Next, let’s explain the main code in main_tx.c.

Includes the custom main header file main.h, which typically contains logging macros,
declarations for peripheral initialization, and other interface header files that need to be
used.

Below is the content of main.h:

main.h

Let’s continue to look at the contents of main_tx.c.

lvgl_show_counter_label_init:

The function Ing_show_counter_IobeI_init() initializes the counter label on the LVGL
display, used to show the nRF24L01 transmit count. Its workflow and purpose of each step
can be summarized as follows:

« First, Ivgl_port_lock(o) is called to lock LVGL resources, preventing concurrent access.

- The current active screen is obtained via Iv_scr_act(), and the background is set to
white and fully covering.

« Alabel is created using Iv_label_create(screen) and checked for successful creation;
if creation fails, the lock is released and the function returns.

« The label style is initialized with Iv_style_init, setting the font size, text color to black,
and background to transparent, and the style is applied to the label.

« Iv_label_set_text sets the initial text to "NRF24_TX_Hello World:0", and Iv_obj_center
centers the label on the screen.

« Finally, lvgl_port_unlock() releases the LVGL resource lock.

Overall, this function creates and initializes a styled, dynamically updatable label to
display the transmit count.

styl

1v obj add style(s hello label, &label style, L

1v_label_set_text(s_hello_label,
1v_obj_center(s_hello_label);

1vgl_port_unlock();

If you want to change the LVGL font size, you need to enable the fonts in the SDK
configuration.

Steps: Click on the SDK configuration options

“ bsp_wireless

s_hello_label —

g 1vgl_port_unlock();
bsp_wireless.h il

C EspHalh i

bsp_wireless.cpp tyle_t label_style;

CMakeListsixt lv_style_init(&label style);
1v_style_set_text_font(&label_style, &lv_font_montserrat_42);
1v_style_set_text _color(&label_style, lv_color_black());
1v_style_set_bg opa(&label _style, LV OPA_TRANSE
1v_obj_add_style(s_hello_label, &label_style,

Kconfig
dangd
gitignore
CMakelists.txt
dependencieslock 1v_label set_text(s_hello_label,
partitions.csv 1v_obj_center(s_hello_label

README.md
1vgl_port_unlock

ui_counter_task(*param)

\ text[48];

> TIMELINE \ ype_t last_wake_time - xTaskGetTickCount();

> PROJECT COMPONENTS ckTyp: frequency = 1000
B ESPIDFVSA2 (YUART QCOMI4 Oepiops [@] 8 2 6 O » & B B ®0A0 &huid

Search for font, then select the font size you want to use. After making the changes, be
sure to save them.

main_tx.c SDK Configuration editor X € mainh

fonf Discard

il Component config
~ Bootloader config . .
Bootloader manager LVGL configuration
~ Log Font usage
Format et
Serial Flash Configurations Enable built-in fonts .
Security features Enable Montserrat 8 ©
Application manager
Boot ROM Behavior
Serial flasher config Enable Montserrat 12
Partition Table
~ Compiller options
Replace ESP-IDF and project paths in binaries Enable Montserrat 16 ()
Enable C++ exceptions
Component config
Application Level Tracing Enable Montserrat 20 G
~ Bluetooth
O e Ophat Enable Montserrat 22
BT DEBUG LOG LEVEL
Enable BLE 5.0 features(please disable BLE 4.2 if enable BLE 5.0)
Enable BLE 4.2 features(please disable BLE 5.0 if enable BLE 4.2) Enable Montserrat 26 G
Common Options
ESP BLE Mesh Support
Console Library Enable Montserrat 30
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration Enable Montserrat 34
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations Enable Montserrat 38
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Enable Montserrat 40
Legacy 12C Driver Configurations
Legacy PCNT Driver Configurations.
Legacy SDM Driver Configurations Enable Montserrat 44
1 anans Tamnaratira Sencar Driver Canfimiratinns

Enable Montserrat 10

Enable Montserrat 14 ©

Enable Montserrat 18 &

Enable Montserrat 24

Enable Montserrat 28

Enable Montserrat 32

Enable Montserrat 36 ©

Enable Montserrat 42

ui_counter_task:

The function ui_counter_task() is responsible for refreshing the nRF24L01 transmission
count information displayed on the LCD every second.

Its workflow and the role of each part can be summarized as follows:
- First, define a character array text[48] to store the display text.

+ Record the system tick count last_wake_time when the task starts, and set the loop
interval to 1000ms (1 second).

« Enter an infinite loop. In each loop, first read the current transmission count using
nrf24_get_tx_counter(), and format it into the string "NRF24_TX _Hello World:<count
value>" using snprintf.

+ Attempt to lock the LVGL resource with Ivgl_port_lock(0). If successful and the label
exists, call lv_label _set_text to update the display text and release the lock.

- Finally, use vTaskDelayUntil to delay according to absolute time to ensure an accurate
one-second cycle, realizing the function of updating the display every second.

Overall, its role is to continuously refresh the transmission count on the interface to
achieve real-time display.

Hardware_Init:

The function Hardware_lInit() is used to initialize hardware modules when the program
starts, ensuring all parts of the system can work properly.

« First, initialize the 12C and the STC8HIKI7 expansion chip controlled by I12C, so as to
control the subsequent screen backlight and make the screen light up.

+ Then it calls display_init() to initialize the LCD hardware and LVGL graphics library,
which must be completed before turning on the backlight; otherwise, the display may
work abnormally.

+ Next, it calls set_lcd_blight(100) to turn on the LCD backlight and set the maximum
brightness to 100, with errors also checked via init_or_halt().

« Finally, it calls nrf24 _tx_init() to initialize the NRF2401 wireless transmission module. If
initialization fails, it is also handled through init_or_halt().

Overall, its role is to provide a reliable hardware environment for the screen display,

backlight, and wireless communication module, ensuring the subsequent functions of
the program can run smoothly. It is usually called during system startup in app_main().

nrf24 _tx_task:

The function nrf24_tx_task() is responsible for transmitting nRF24L01 wireless data
packets once per second and maintaining the transmission counter.

Its workflow and the role of each part can be summarized as follows:

« First, it records the system tick count last_wake_time when the task starts and sets the
loop interval to 1000ms (1 second).

- It enters an infinite loop. In each iteration, it first calls nrf24_inc_tx_counter() to
increment the transmission counter.

«+ Then, it calls send _nrf24_pack_radio() to transmit a data packet containing the
current count. It uses nrf24_tx_OK to check if the transmission is successful; if failed, it
prints an error log.

+ Finally, it uses vTaskDelayUntil(&last _wake_time, frequency) to delay by 1second
based on absolute time, ensuring precise transmission intervals.

Overall, its role is to automatically send count data every second, update the counter,
and implement the timed wireless transmission function of the nRF24L01.

app_main:

app_main() is the program entry function, responsible for completing hardware
initialization, interface display setup, and launching wireless transmission and interface
refresh tasks to implement the synchronized transmission and display functions of the
NRF24L01.

The specific workflow is summarized as follows:

- First, it prints the log "---------- NRF24L01 TX —=---=---- " to indicate program startup.

« ltcalls Hordwore_lnit() to initialize hardware, including 12C,STC8 expansion chip, LCD
display, and the nRF24L01 module.

- Itinvokes Ivgl_show_counter_label_init() to create and initialize an LVGL label for
displaying the transmission count, and prints the log "-------- LVGL Show OK

« Then, it uses xTaskCreatePinnedToCore to create two FreeRTOS tasks: ui_counter_task
(for refreshing the transmission count display on the LCD every second) and
nrf24_tx_task (for transmitting wireless data packets once per second). Both tasks use
the same priority to maintain synchronization.

« Finally, it prints the log "Tasks created, starting synchronized transmission..." to indicate
that task creation is complete and the system has started synchronized transmission
and interface display.

oid app_main(

Hardware_Ini

w_counter 1

Finally, let's take a look at the "CMakelists.txt" file in the main directory.
The role of this CMake configuration is as follows:
+ Collect all .c source files in the main/ directory as the source files of the component.

« Register the main component with the ESP-IDF build system, and declare that it
depends on the custom component bsp_wireless and the custom component
bsp_illuminate.

This ensures that during the build process, ESP-IDF knows to build bsp_wireless and
bsp_illuminate first, and then build the main component.

EXPLORER B i CMakelists.txt main X

~ LESSON15_TX GELA

> build

The above is the main function code for the transmitter. Next, let’s take a look at the
main function code for the receiver.

Open your receiver code in the same way as you did for the transmitter.

rx_data_callback:

rx_data_callback() is the callback function triggered when the nRF24L01 receives data.
Its role is to count received data packets, update the interface display, and print logs.

The specific workflow is as follows:

« First, rx_packet_count++ increments the receive counter by 1.

« Then, it attempts to acquire the LVGL lock with Ivgl_port_lock(O) to ensure thread
safety. If successful and s_rx_label has been created, it formats the current receive
count into the string "NRF24_RX_Hello World:i" using snprintf and calls
Iv_label_set_text to update the display label.

- After updating the interface, it releases the lock with lvgl_port_unlock().

« Finally, it formats the receive count using the local buffer rx_display_text and prints a
log via MAIN_INFO, facilitating debugging and monitoring of reception status.

Overall, its role is to promptly update the interface and logs whenever the nRF24L01
receives data, enabling real-time feedback.

Ivgl_show_rx_interface_init:

Ing_show_rx_interfdce_init() is a function used to initialize the LVGL display interface for
the nRF24L01 receiver. Its role is to create and layout interface elements for displaying
received data.

The specific workflow is as follows:

« First, it attempts to acquire the LVGL lock with Ivgl_port_lock(O) to ensure thread
safety. If it fails, it prints an error and returns.

« It retrieves the screen object with Iv_scr_cct() and sets the background color to white
with full opacity.

- It creates a title label title_label and sets its text to "nRF24L01 RX Receiver”. It initializes
the style title_style (large font, black text, transparent background), applies this style,
and positions the title at the top center of the screen.

« Next, it creates a receive information label s_rx_label with initial text "NRF24 _RX _Hello
World:0". It defines the style rx_style (Iarge font, black text, transparent chkground),
applies this style, and positions the label slightly above the center of the screen.

+ Finally, it releases the LVGL lock with Ivgl_port_unlock().

Overall, its role is to provide an LVGL interface for the receiver to display received data in
real time.

Hardware_Init:

This function is identical to the hardware initialization function described earlier. It
initializesl2C,STC8 expansion chip, screen, and nRF2401 module in the same way. The only
difference here is that the nRF2401 module is configured in receiver mode.

nrf24 _rx_task:

nrf24_rx_tosk() is a FreeRTOS task function for the nRF2401 receiver, responsible for
continuously polling and receiving wireless data.

- The function enters an infinite loop while(1) to ensure continuous operation.

- In each loop iteration, it calls received_nrf24_pack_radio(32) to check for and
process received data packets. The parameter 32 represents the maximum packet
length supported by the nRF24L01.

« It then delays for 10 milliseconds using vTaskDelay (10 / portTICK _PERIOD _MS) to
reduce CPU usage.

Overall, its role is to periodically poll the nRF2401 receive buffer and trigger
processing/callbacks when data is available, enabling real-time data reception.

app_main:

« app_main() is the entry function of the NRF24L01 receiver program, used to initialize
hardware, the interface, and reception tasks.

« First, the function prints startup information via MAIN_INFO, then calls Hardware_Init()
to initialize hardware peripherals (such as power management, LCD, and the nRF24L01
module).

« Next, it invokes Ivgl_show_rx_interfoce_init() to initialize the LVGL display interface
and prints a confirmation log.

« Subsequently, it registers the reception callback function using
nrf24_set_rx_callback(rx_data_callback)—this function is used to process data and
update the interface when data is received, and a log is printed for confirmation.

- Finally, it creates the FreeRTOS task nrf24 _rx_task using xToskCreotePinnedToCore(),
which continuously polls for and receives data on the specified core. A log is printed to
indicate that the receiver has started.

+ This concludes our explanation of the main function code for both the receiver and
transmitter of the nRF24L01.

We have now finished explaining the main function code for both the receiver and the
transmitter.

Complete Code

Kindly click the link below to view the full code implementation.
+ Transmitting end code:

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-£SP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessonl5_TX nRF2401_ Wireless RF_Module

+ Receiving end code:

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-£SP32-P4-HMI-Al-Display-800x480-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessonl5_RX_nRF2401_Wireless RF Module

Programming Steps

+ Now that the code is ready, the next step is to flash it onto the ESP32-P4 so we can
observe the actual operation.

« First, connect the Advance-P4 device to your computer using a USB cable.

S

SKU:DHE04L0050

2y 5.0 VO.1

e SRR RN
L B ;

-1 E L

+ Before starting the preparation for flashing, first delete all compiler-generated files to
restore the project to its initial "unbuilt” state. This ensures that subsequent
compilations are not affected by your previous operations.

https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_TX_nRF2401_Wireless_RF_Module
https://github.com/Elecrow-RD/-CrowPanel-Advanced-5inch-ESP32-P4-HMI-AI-Display-800x480-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_RX_nRF2401_Wireless_RF_Module

~ bsp_wireless t failed, code :%d”, state);
v include

C bsp_wireless.h =

T = uint8 t addr[] - {@xe1, exe2, exil, ex12, @xFF};
Skt 3 state = bsp_nrf_ r‘adlo >setRecalveP1pe 0, addr);

G+ bsp_wireless.cpp if (state !=

M CMakelists.txt
= Keonfig 1%d", state);
= clangd

.gitignore 5 < " -
M Cirakel R bsp_nrf_radio->setPacketReceivedAction(set rx flag);
state = bsp_nrf_t r‘adlo >startReceive(

£ dependencies.lock if (state l=

B partitions.csv
D) README.md radio start re led, code :%d", state};
£ sdkeonfig H

= sdkeonfig.old

A BSP_NRF2401::NRF24_rx deinit()
> OUTLINE \
> TIMELINE radio24 receivedFlag =
bsp_nrf_radio- >cleawa:ketRecelvadActmn.)
3 ESP-IDFv54.2 %7 UART _© COMI8 ¥ espaZpd @12 8 O & & 0 @ 0Ao {i}smld & b

> PROJECT COMPONENTS

Here, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

Next, we need to configure the SDK.

Click the icon shown in the figure below.

> OUTLINE
> TIMELINE
> PROJECT COMPONENTS

&9 ESP-IDFv54.2 77 UART © COM14 £ esp B ®oA0 & Build

« After waiting for a short loading period, you can proceed with the relevant SDK
configurations.

SDK Configuration editor X

Discard

Build type Build type
~ Bootloader confi
FEIERE Y Application build type ©
Bootloader manager
v log .
Format Default (binary application + 2nd stage bootloader)
Serial Flash Configurations
Security features
Application manager No Binary Blobs @
Boot ROM Behavior X
Serial flasher config Bootloader config

Partition Table Bootloader manager

v Compiler options Usetime/date stamp for bootloader @
Replace ESP-IDF and project paths in binaries

Enable C++ exceptions Project version ©
~ Component config
Application Level Tracing 1
N E:ﬁ;ﬁ:‘opum Bootloader optimization Level ©
Console Library
o DDEITERTS Size (-Os with GCC, -O with Clang)
TWAI Configuration
~ Legacy ADC Driver Configuration i
Legacy ADC Calibration Configuration it iy ()
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations e
LL:gacy RMT Driver Configurations ER—
gacy 125 Driver Configurations)
Legacy 12G Driver Configurations Color ©

Enable reproducible build @

Log

+ Then, enter "flash” in the search box to search. (Make sure your flash configuration
matches mine.)

SDK Configuration editor X

Discard Reset

Bootloader config

Serial Flash Configurations
A B G e TS o READ HELP FIRST)

Enable the support for flash chi

Security features
Enable flash encryption on boot (READ DOCS.

Serial flasher config
Disable download stub ®

n Table
npiler options

Flash SPI mode ()
Qo
Flash Sampling Mode

STR M

onfigurations
r Configuration

en flashing bootioader (D

ns
rer Configurations.

After flashing ©

flashing

After completing the configuration, remember to save your settings.

Next, we will compile and flash the code (detailed in the first lesson).

.

Here, we also want to share a very convenient feature with you: a single button that
can execute compilation, upload, and open the monitor in one go.

> OUTLINE
> TIMELINE

» PROJECT COMPOMNENTS
ESP-IDF v54.2 T7 UART Q coM14 OF

« After waiting for a moment, the code will finish compiling and uploading, and the
monitor will open automatically.

+ At this point, remember to connect your Advance-P4 using an additional Type-C
cable via the USB 2.0 interface. This is because the maximum current provided by a
computer’s USB-A port is generally 500mA, and the Advance-P4 requires a sufficient
power supply when using multiple peripherals—especially the screen. (It is
recommended to connect it to a charger.)

« For the 5-inch Advance-P4 product, the jumpers need to be switched on the hardware
in order to use the wireless module. (Switch to the side with the wireless module)

@ Cro@n

SKU:DHE0L 0050

« Insert the nRF2401 wireless RF module into each of the two Advance-P4 development
boards.

« After running the code on both boards respectively, you will be able to see on the
transmitter's Advance-P4 screen that the nRF2401 module is sending data labeled

"NRF24 _TX_Hello World:i", where "i" increases by 1 every second.

« Similarly, on the receiver's Advance-P4 screen, you will see that the nRF2401 module is
receiving data labeled "NRF24_RX_Hello World:i"; after receiving the message, "i" will
also increase by 1 every second.

NRF24L01 RX Receiver

NRF24_RX_Hello World:23

NRF24_TX_Hello World:23

SELECROW

MAKE YOUR MAKING EASIER

