0

S ELECROW

Advance HMI P4

10.1"

ESP32-P4 HMI
Al Display

Table of contents

Lesson 1 - Print "Hello World"

Lesson 2 - Turn on the LED

Lesson 3 - UART3-IN interface (external power supply)

Lesson 4 - Serial port usage

Lesson 5 - Touchscreen

Lesson 6 - USB2.0

Lesson 7 - Turn on the screen

Lesson 8 - SD Card File Reading

Lesson 9 - LVGL Lighting Control

Lesson 10 - Temperature and Humidity
Lesson 11 - Playback After Recording

Lesson 12 - Playing Local Music from SD Card
Lesson 13 - Camera Real-Time

Lesson 14 - SX1262 Wireless Module

Lesson 15 - nRF2401 Wireless RF Module
Lesson 16 - Get weather temperature via WiFi

Lesson 17 - WiFi Mode

Lesson 01
Print “Hello World”

Introduction

In this class, we will officially learn to write code in the ESP-IDF environment to drive the
Advance-P4 development board. The subsequent courses will follow a gradient design
from simple to complex, helping you gradually master the ESP-IDF development
framework and the usage logic of the ESP32-P4 chip, and establish a clear technical
understanding. Specifically for this class, there are two core goals: First, to teach you how
to create and burn a basic program in ESP-IDF, achieving the first "communication”
between your computer and the ESP32-P4 chip on the Advance-P4 development board;
second, to enable you to clearly see the "Hello World" information printed in real-time by
the chip in the terminal window of the ESP-IDF tool, completing the crucial step from
“configuring the environment” to "verifying the function”.

Hardware Used in This Lesson

This class does not involve the use of hardware. It is only to teach you how to create a
new project and how to flash code to the ESP32-P4 chip on ESP-IDF.

Operation Effect Diagram

+ When running on the ESP32-P4, the serial terminal will output "Hello world" with an
increasing counter every 1 second.

[ESP-IDF: QEMU] _ESPIDF: O

ey Explanations

- First, let's talk about how to create a new project in the already installed ESP-IDF.

« Click on the ESP-IDF icon, then click "New project”

) Fie Edt Scecion View Go Run Terminal Help «

0 wecom [E——
e
@ B select Current Project workspace f.
€ Seect curent 507 version
G 1 £57-0F:Slct s Method . .
0 e Welcome to Espressif IDF extension
© Select Monitor Port to Use (COM, t. Versicn: 1102
10 Seec rject Configurtion
€3 Set Espressif Device Target (IDF_TA. ¥ show Welcome on extension startup
€ SDK Configuration Editor (menuco.
W Full Clean
2 b projeat
8 Flash Device Quick actions
[Monitor Device
4> Debug .
£ pebug
@ ESP-IDF: Build, Flash and Monitor & Configure extension Tutorials
[Open ESP-IDF Terminal

Execute Custom Task .
o op QEMU Server E3 New project Documentation

& Import project

SRR

Browse

L Show examples.

A Components manager

> DOCUMENTATION SEARCH RESULTS
> DEVICE PARIITION EXPLORER

> APPLICATION TRACER

> APPLICATION TRACER ARCHIVES

> RAINMAKER

Then a version of the ESP-IDF environment that you configured in the previous class
will pop up.

Select the 5.4.2 version that you previously set up.

) Fie Edt Selcion View Go Run Teminal Help

£5P-IDF: ECLORER

pidf ESP-IDF V542

< counanos
ve Current Project workspace f.
curent ESP-DF version
W ¢ ESP-IDF: Select Flash Method . .
6 e Welcome to Espressif IDF extension
Jet onitor Port to Use (COM. L. o102
@ 0 selectPrject Cofiguraton
@ © Set Espressif Device Target (IDF_TA. # show Welcome on extension startup.
@ & sDK Configuration Editor (menuco.
@ @ Full Clean
¥ £ suild Project
@ 8 Fiash Device Quick actions
& 0 Monitor Device
@ &> Debug -
& @ EsP-IDF: Build, Flash and Mor £ Configure extension Tutorials
@ BJ Open ESP-IDF Terminal
@] Execute Custom Task ’
| S FE D E3 New project Documentation
@ & (0penoc
> e
B Import project

& Show examples

A Components manager

Then, enter this configuration interface. Hereg, fill in and set the name, path, target chip,
serial port, and the folder name for the subsequent used component files of your
newly created project.

Finally, select the template.

New Project

peripheral

Choose Template

» Choose ESP-IDF

) File Edit Selection View Go Run Terminal

ESP-ADF: EXPLORER New Project X
 coMmANDS

) B Select Current Project workspace .

IDF version
Method
e (COM, ty, usbse.
© Select Monitor Port to Use (COM, t.
) 10 select Project Configuration
W © set Espressif Device Target (IDF.TA.
W @ sDK Configuration Editor (menuco.
@ @ Full clean

New Project
xtension
Edension
ESP-IDF P
/ espressif.esp-idf-extension-1.10.2

arduino-as-component

fibonacci-app.

@ 42 euiid Project
@ & Flash Device

) 1 Monitor Device

@ & Debug

) & ESP-IDF: Buid, Flash and Moritor

template-app
unity-app.

« After selecting "Hello World", click "Confirm Creation’(you can also take a detailed look
at the official introduction of this interface).

New Project
2 Createproject using template hllo_world

get-started
ik Hello World Example
[t wora]

sanea print vl Were

How to use example

Follow detae nsrctions providd specically o i

nimble &5

Example folder contents

The projecthllo word contsin ons s e i lanusge The s ocatedin flder

+ Thus, we have successfully created the new project.

TMELNE

« Subsequently, we will modify the code based on this project and add the necessary
components we need to use in the subsequent courses.

« Now, we can modify the hello_world _main.c function.

« Since in this class, | want to achieve the loop printing of "hello world:i” and continuously
increment j, | deleted this sample code and replaced it with the code | wrote myself.

o Run Terminal Help

€ hello_world_main.c X

printf
vTaskDelay!

« Next, we will provide a detailed explanation of this code to help everyone have a clear
understanding.

» When this code runs on the ESP32-P4, it outputs "Hello world” with an increasing
counter every 1 second through the serial port. It utilizes the delay mechanism of
FreeRTOS to achieve a non-blocking loop.

+ The program first imports stdio.h to use "printf()" for outputting debugging information.
Then, it includes FreeRTOS.h and task.h, allowing the use of task management and
delay functions provided by FreeRTOS. Based on this, the main function uses "printf()"
to print the content and controls the loop rhythm using "vTaskDelay()" to achieve
outputting information every 1 second without blocking the operation of other system

tasks.

« In ESP-IDF, the entry function of the program is not main(), but app_main().

« This function will be automatically called by the IDF framework.

Note: app_main is actually a FreeRTOS task (the main task), so you can write an
infinite loop in it.

app_main(

« "i"is a counter, with an initial value of 0.
« Itincrements after each loop.

app_main(

1)
printf(“Hell
vTaskDelay(1eee /

« printf("Hello world: %d\n", i++);
« Output "Hello world: i" to the serial port.

« i++: First use the value of i, then increment i by 1.

app_main(

printf(“"Hello
vTaskDelay (18

+ vTaskDelay(1000 / portTICK_PERIOD_MS): This function delays the current task for a
certain period of time.

« Parameter explanation:
+ 1000: The duration of the delay (in milliseconds).

* portTICK_PERIOD _MS: The number of milliseconds corresponding to one tick in the
system.

« For example, if FreeRTOS is configured such that 1tick =1 ms, then 1000 /1=1000 ticks =
1second.

+ Therefore, vTaskDelay (1000 / portTICK _PERIOD _MS); is equivalent to delaying for 1
second.

main >

app_main(

ntf ("

p
wTaskDelay(1i

Complete Code

Kindly click the link below to view the full code.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson0I-Print_Hello_World

Programming Steps

+ Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.
(Connect UARTO)

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson01-Print_Hello_World

s . ©

&
& crfiinel
2 pu-Tiance i sty 10:V20
S oreaisien

NERRssanananan!

IEERRRRRNEEE!

In order of priority, select the ESP-IDF version 5.4.2 that you are currently using.

We are using serial flash programming, so select UART.

Since the serial port number displayed may vary depending on your device, after
clicking 3, select the serial port that belongs to your own device.

Make sure that you are using the esp32-p4 chip.

hello_world_maine X
elo

e
app_main(void)

F("He xd\a", i+4);
VTaskpelay (1060 /

Y ounme

> PROJECT ComPONENTS
Bl © [® cspior 2] [& uarr | [0 cows] [& » 0 » 6 BB O QBid D ESP-DF: QEMU] _[ESP-DF: Ope

« After configuring 1, 2, 3, and 4 as mentioned above, we will proceed to compile the
project to check if there are any issues with the code.

« First, click on 1in the picture below, which represents the function of compiling the
code.

« Wait for a while, after the code is compiled, you will be able to see the following
information in the terminal, indicating that your code has been compiled successfully.

P> oumme otal i ze: 208255 bytes (.bin nay be padded larger)

may be smaller than those in the technical reference manual due to reserved memory and application configuration. The total Flash
D camnot: be relisbly determined due to the presence of other data like the bootloader, partition table, and application partiti
> PROJECT COMPONENTS

Bl & oenrse fum Ocoms Ot © 8 2 (5] 0 > 6 B B ©0A0 O B D {ESP-DFQEMU]_ESP-DF:OpenOCDS

« After waiting for a while, you will be able to see from the displayed information on the
output that the code has been uploaded successfully.

~—Flash_freq Som 612008 bootloader/bx

5707 GO E570r-Opert

+ Of course, you can also see from the upload process displayed on the terminal that
your code has been uploaded successfully.

+ Next, all you need to do is to open the serial port monitor, and then you will be able to
see that "hello world" is being printed.

) Fle Edit Selecton View Go Run Temminal Help

BvioR hello_world_mainc X
© wsssono main >

> devcontainer

> wscode

> build

© main AT
1 CMskelistsxt

hello_world_mainc i-o;
= dangd ihile (1) {

printf("Hello world: %d\n", is+);

M CMakelists et lo
VTaskbelay (1008 /

pytest hello_worldpy

= sdkconfig.i

0 v o AL o
Compressed 22240 bytes to 13651..
Wrote 22248 bytes (13691 compressed) at 0x00082000 in 0.7 seconds (eFfective 249.8 Kbit/s).
Hash of data verified.
Conpressed 208668 bytes to 187236
Wrote 206608 bytes (107236 compressed) at exePe1000 in 3.1 seconds (effective 532.3 Kbit/s)
Hash of data verified
Conpressed 3072 bytes to 163,
Wrote 3072 bytes (163 compressed) at 0x00008000 in 0.1 seconds (eFfective 291.4 Kbit/s)...
Hash of data verified.

ourume

e

PROJECT CoMPONENTS

& ESP-IDFVSA2 Y UART O COMI4 O espizpt © B 5 6 > & £ B ®0A0 Qwid O D [ESP-IDF: QEMU] _ [ESP-IDF: OpenOCD Server] _Ln 13, Col 1

Leaving.
Hard resetting via TS pin... _—

Edt Selection View Go Run Terminal Help

BwwoRER € hello_world_mainc X
- tEssonot
> devcontainer
> wscode
> buid
M CMakelistsixt app_main(
hello_world_mainc
dangd
d: %d\n”,

M CMakelistsixt te110 wor
VTaskbelay (1008 / p:

hello_worldpy

TERMINAL

Hello world:

> ourune
> e bello vorld:
> PRox compoNeNTs
5 & oo £ uasr 14 Ozt @ 8 2 9 O > 6 B B ©0As : [ESP-DFQEMU]_[EP-DF:OpenOCD Sever]_n13,Col 1

So, that's all for this lesson. In the next class, we will gradually increase the difficulty
level. We will teach you how to use components, how components are related to the
main function, and how to have the main function utilize the interfaces within the
components.

Lesson 02
Turn on the LED

Introduction

In this class, we will start to explore the most important component in ESP-IDF.

In this class, we will use the bsp_extra component we have written ourselves to control
the level of the UARTI interface on the Advance-P4, so that the LED connected to the
UART! interface will light up for one second and then go off for one second.

Hardware Used in This Lesson

Introduction to the UARTI1 Interface on Advance-P4

On our Advance-P4 board, the UARTI interface is identified by the name "UART". We
should look for an interface that can be used for serial communication. Moreover, during
the initial design phase, this UARTI interface can also be used as a regular GPIO port. That
is, we can treat the RX and TX pins on this interface as two regular GPIO ports.

Introduction to GPIO

+ The ESP32-P4 chip offers 55 general-purpose input/output (GPIO) functions, providing
flexibility and adaptability for a wide range of applications. The key features of these
GPIOs include:

1. Multi-functionality: Each GPIO pin can not only be used as an input or output, but can
also be configured as various roles through 10 MUX (refer to Chapter 2 for details),
such as PWM, ADC, 12C, SP|, etc. This enables the ESP32-P4 to adapt to various
peripheral connections.

2. High current output: The GPIO pins of ESP32-P4 support up to 40mA of current output,
allowing direct driving of low-power loads such as LEDs. This reduces the complexity of
external driver circuits.

3. Programmability: Through the ESP-IDF (SDK) development framework, users can
flexibly configure the input/output mode, pull-up/pull-down parameters, and other
settings of each GPIO to meet specific application requirements.

4. Interrupt support: GPIO pins support interrupt functionality, which can trigger interrupts
when the signal changes. This is suitable for real-time response applications such as
button detection and sensor triggering.

5. Status indication: GPIO pins can be used as LED indicators, achieving status
visualization through simple high/low level switching. This helps users debug and
monitor system operation.

The GPIO functions of ESP32-P4 provide powerful hardware support for developers. In this
chapter, we will delve into the application and configuration of GPIO through an example
of lighting an LED.

Introduction to LED

« LED is a highly efficient and durable miniature semiconductor device that emits light
when an electric current passes through it. It has the advantages of high energy
conversion efficiency, low heat generation, and environmental friendliness. They are
commonly used in indicator lights, display screens, and lighting equipment. LEDs have
fast response times and a wide range of color options, making them widely used in
electronic products. In the ESP32-P4 lighting demonstration, GPIO control simplifies
and makes it intuitive to switch the LEDs, helping users better understand their
practical applications.

1. The principle of LED light emission

LED devices are light-emitting components based on solid-state semiconductor
technology. When a forward current is applied to a semiconductor material with a PN
junction, the recombination of charge carriers within the semiconductor releases energy
in the form of photons, thereby generating light. Therefore, LEDs are cold light sources,
unlike lighting based on filament, which generates heat and thus avoids problems such
as burning out. The following chart illustrates the operating principle of LED devices.

Transparent epoxy encapsulation
,~ LED chip

Wedge bracket
Cathode rod with launch

bowl
Anode rod

LED structure diagram

In the above chart, the PN junction of the semiconductor exhibits the characteristics of
forward conduction, reverse blocking, and breakdown. When there is no external bias
and the junction is in a thermal equilibrium state, no carrier recombination occurs within
the PN junction, and thus no light emission is produced. However, when a forward bias is
applied, the light emission process of the PN junction can be divided into three stages:

Firstly, carriers are injected under forward bias;
Secondly, electrons and holes recombine within the P region, releasing energy;

Finally, the energy released during the recombination process is radiated outward in the
form of light. In summary, when current passes through the PN junction, electrons are
driven to the P region by the electric field. There, they combine with holes, releasing
excess energy and generating photons, thereby achieving the light-emitting function of
the PN junction.

Note: The color of the light emitted by an LED is determined by the band gap width
of the semiconductor material used. Different materials will produce light of
different wavelengths, thus being able to generate light output of various colors.
This efficient light-emitting mechanism has made light-emitting diodes widely
adopted in lighting and indication applications.

2. Principle of LED Lighting Driver

LED driving refers to providing appropriate current and voltage to LEDs through a stable
power supply to ensure their normal lighting. The main driving methods for LEDs are
constant current driving and constant voltage driving, among which constant current
driving is more favored as it can limit the current. Due to the fact that LED lights are very
sensitive to current fluctuations, exceeding their rated current may cause damage.
Therefore, constant current driving ensures the operation of LEDs by maintaining a stable
current flow. Next, we will study these two LED driving methods.

1. Current injection connection. This refers to the working current of the LED being
provided externally, and the current is injected into our microcontroller.

The risk here is that the fluctuations of the external power supply can easily cause the
microcontroller pins to burn out.

vV R
V3 Bor LED #,

L 1—p—Imcucrio

2. Power current configuration. This refers to the voltage and current provided by the
microcontroller, and the current output will be applied to the LED. If the LED is driven
directly by the GPIO of the microcontroller, its driving capability is relatively weak and
may not be able to provide sufficient current for driving the LED.

R
LED 510R
— [——<CIMCU_GPIO

L

GND

The LED circuit on the ESP32-P4 development board adopts the "current receiving”
configuration. This approach avoids the microcontroller directly powering and
supplying current to the LED, thereby effectively reducing the load on the
microcontroller. This enables the microcontroller to focus more on performing other
core tasks, thereby enhancing the performance and stability of the entire system.

Operation Effect Diagram

« After running the code, you will be able to observe that the LED connected to the UARTI
interface will light up for one second and then go off for one second.

B

S

RYEr)
¥ 2

o
(SER S £5p32 pu-Advance HHT Disploy 0.5 VIS
SKUDHEG43100

Wit e,

£

Key Explanations

Now let's talk about how the overall code framework is structured and connected after
adding the bsp_extra component?

With this question in mind, let's explore it together.

First, click on the Github link below and download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson02-Turn_on_the%20LED

Then, drag the code of this lesson into VS Code and open the project file.

Advance-P4. x4

< T~ G O > ThisPC > FME() > AdvancePd > Search Advance-P4 a

® New ¥ © [@ W N Sot = View D Preview

1 Pictures » Name Type Sze

© Music » 9inch File folder

lesson01 File folder

Code Lesson02 9/19/2025 8:06 PM File folder

udio

£5P32-P4-Advancezip 03 Comp

Arduino1s »

The code in the subsequent courses will also be opened in this way.

From now on, there will be no further explanation on how to open the code.

« After opening it, you can see the framework of this project.

~ LESSONO2

In the example of this class, a new folder named
"bsp_extra” was created under "LESSONO2/peripheral”.
Lok Inside the "bsp_extra” folder, a new "include" folder, a

: "CMakelists.txt" file, and a "Kconfig” file were created.

The "bsp_extra” folder contains the "bsp_extra.c” driver
file, and the "include” folder contains the "bsp_extra.h”
header file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the GPIO
driver functionality.

The "Kconfig” file loads the entire driver and GPIO pin
definitions into the sdkconfig file within the IDF platform
(which can be configured through the graphical
interface).

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson02-Turn_on_the%20LED

Initialization of GPIO code

.

The GPIO source code consists of two files: "bsp_extra.c” and "bsp_extra.h”.

Next, we will first analyze the "bsp_extra.h” program: it contains the relevant definitions
and function declarations for GPIO pins.

In this component, all the libraries we will use are placed in the "bsp_extra.h” file, so
they can be managed uniformly.

Below is the interface definition in the header file, which provides unified macros and
function interfaces for the implementation file (.c).

t gpio_ext
t gpio_

This is the content of "bsp_extra.h” (which is also what needs to be done in every .h
file).

Next, we will analyze the code in the "bsp_extra.c” file: including the initialization
configuration and functional code for the LED pins.

First, include the "bsp_extra.h” that we just explained, so that we can use the macros
and header files declared in "bsp_extra.h".

The gpio_extra_init() function is used to configure GPIO48 of the ESP32-P4 as an
output pin.

 err_t gpio_extra init()

- gpio_config(&gpio_cofig);

eturn

+ Define the return type: esp_err_t, which is the standard error code type of ESP-IDF.

« Variable err: Stores the return value of the function call, initially set to ESP_OK
(success).

« gpio_config_t gpio_config: Prepare a configuration structure, which contains various
settings for the pin.

« .pin_bit_mask = (1ULL << 48) — Select GPIO48.
+ .mode = GPIO_MODE_OUTPUT — Configure as output mode.
- .pull_up_en / .pull_down_en = false — Do not enable the internal pull-up/pull-down resistors.

+ .intr_type = GPIO_INTR_DISABLE — Disable interrupts.

+ Call gpio_config() — Actually apply the configuration to the hardware.

+ The gpio_extra_set_level() function is used to set the level (high or low) of this pin,
thereby controlling external devices such as LEDs.

level)

gpio set level(48, level);

return

+ Function parameter level: Boolean value. True indicates a high level (1), and false
indicates a low level (0).

« Call gpio_set_level(48, level): Set GPIO48 to the corresponding level.

CMkalists.txt file

« The function of this example routine mainly relies on the bsp_extra driver. To
successfully call the contents within the bsp_extra folder in the main function, a
CMakelists.txt file must be created and configured within the bsp_extra folder.

« The configuration details are as follows:

+ In ESP-IDF, each component directory (such as peripheral) must have a CMakelists.txt
file, which mainly performs two tasks:

- Declaration of Source File

main.c CMakeLists.txt X

FILE(

idf_component_register(

SRCS specifies the .c files to be compiled within this component.

INCLUDE _DIRS specifies the paths of header files, allowing other components to
#include.

- Define dependencies

If your peripheral module needs to use the IDF library (such as a driver), write it in the
REQUIRES section, for example:

main.c C _extra.c bsp_extrah X

"peripheral/CMakelists.txt" is what tells ESP-IDF: which source files and header files are
included in the peripheral component, as well as which libraries it depends on.

If this file is missing, the code in the peripheral directory will not be compiled into your
project.

Note: In the subsequent lessons, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make a few modifications to this existing file to
incorporate more drivers into the build system.

main

« The main folder is the core directory for program execution, and it contains the
executable file main.c of the main function. Add the main folder to the CMakelists.txt
file of the build system.

EXPLORER main.c

main >

led blink_task(*puParameters)

gpio_extra_init();

tra set level(1);
kDelay(1008 /

gpio_extra_set_level(@);
vTaskDelay(100@ /

« This is the entry file of the entire application. In ESP-IDF, there is no int main(), but
the program starts running from void app_main(void).

« Let's first explain main.c.

« Introduce the types of FreeRTOS and the task APIs(such as xTaskCreate,
vTaskDelay, etc.).

+ Our peripheral header files (placed in the "peripheral” component).

+ "bsp_extra.h" should declare interfaces such as gpio_extra_init() and
gpio_extra_set_level().

« Initialize GPIO (implemented in our peripheral/bsp_extra)

» When explaining the "bsp_extra.c” file, it was explained that here we can directly call it
for use.

led blink task(*pvParameters)

gpio extra_init();

Then it enters the while loop, causing the LED light to repeatedly t for one second
and off for one second.

Next, it calls the function for turning on or off the LED in the "bsp_extra.c” file.
Just by modifying parameter 1 or 0, it will take effect.

1: High level (on) 0: Low level (off)

led blink_task(*pvParameters)

gpio_extra_init

vhile (1)

gpio_extra set level(1);
vTaskDelay(1eee /

gpio_extra set level(8);
vTaskDelay (1088 /

gpio_extra set level(1);
vTaskDelay(1008 /

gpio_extra_set level(@);
VTaskDe lay (1008 /

app_main is the program entry point of ESP-IDF (called after system startup).

In FreeRTOS, create a task named "led_blink_task”, which will execute the

led_blink_task function with a priority of 5 and using a 2048-byte stack to implement
the LED blinking logic.

led_blink_task(*pvParameters)
while (1

gpio_extra_set_level(1);
vTaskDelay(1000 /

gpio_extra_set level(8);
vTaskDelay (1808 /

app_main(void)

xTaskCreate(led_blink_task, "led_blink_task", 2048,

xTaskCreate(led_blink_task, "led _blink_task”, 2048, NULL, 5, NULL); Parameter
meanings:

led_blink_task: Entry function of the task
"led_blink_task": Task name (string)

2048: Stack size of the task (on ESP-IDF, it is usually measured in bytes, and 2048 is a
common value)

NULL: Parameters passed to the task

5: Task priority (5)

NULL: Pointer to task handle (NULL should be passed if not needed)
Now let's take a look at the CMakelists.txt file in the main directory.
The function of this CMake configuration is as follows:

Collect all the .c source files in the main/ directory as the source files for the
component;

Register the main component with the ESP-IDF build system and declare that it
depends on the driver (an internal driver of ESP-IDF) and the custom component
bsp_extra;

This way, during the build process, ESP-IDF knows to build bsp_extra first, and then
build main.

EXPLORER

 LESSONO2Z

> build
~ main
CMakelists.txt

Note: In the subsequent courses, we will not start from scratch to create a new
CMakelists.txt file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson02-Turn _on_the%20LED

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson02-Turn_on_the%20LED

Programming Steps

+ Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

i [Hru—r HT Y'H—‘

P

« Here, following the steps in the first section, we first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

« Then here we need to configure the SDK.

« Click the icon in the picture below.

app_main(void)

XTaskCreate(led_blink_task,

+ Wait for a moment for the loading process to complete, and then you can proceed

with the relevant SDK configuration

SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
v Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
v Component config
Application Level Tracing
v Bluetooth
Common Options
Console Library
v Driver Configurations
TWAI Configuration
~ Legacy ADG Driver Configuration
Legacy ADC Calibration Gonfiguration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy I25 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESPTLS
ADC and ADC Calibration
Wireless Coexistence

Then, search for "flash” in the search box. (Make sure you
as mine.)

SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
v Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations.
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Common ESp-relatad

Build type
Application build type ©
Defautt binary application + 2nd stage bootioader)
Enable reproducible build ()

No Binary Blobs

Bootloader config

Bootloader manager
 Use time/date stamp for bootloader ®

Project version ()
1

Bootloader optimization Level
Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity ®

Info

Format
Color ®

Timestamp &
Millseconds Since Boot

Serial Flash Configurations

Allow app adjust Dummy Cycle bits in SP1 Flash for higher frequency (READ HELP FIRST) @

Bootloader config
Serial Flash Configurations

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©

 Enable the support for flash chips of XMC (READ DOCS FIRST)

Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub @

Flash SPl mode ©

Qo
Flash Sampling Mode
STR Mode
Flash SPI speed
20MHz

Flash

16MB
Detect flash size when flashing bootloader
Before flashing
Reset to bootioader

After flashing ©

Reset after flashing

Discard

flash settings are the same

Discard

« After the configuration is completed, remember to save your settings.

SDK Configuration editor X

Discard

i e Bootloader config
v Bootloader config X N .
T m— Serial Flash Configurations
- Log Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) &
Format
Serial Flash Configurations

Security features Security features

Application manager Enable flash encryption on boot (READ DOCS FIRST) ®
Boot ROM Behavior

Serial flasher config Serial flasher config

Partition Tabl
artition Table Disable download stub ©
~ Compiler options

Replace ESP-IDF and project paths in binaries

Enable C++ exceptions

Component config

Application Level Tracing

* Bluetooth Flash sampling Mode

 Enable the support for flash chips of XMC (READ DOCS FIRST)

Common Options
Console Library STR Mode
v Driver Configurations

TWAI Configuration

~ Legacy ADC Driver Configuration

Legacy ADC Calibration Configuration

Legacy MCPWM Driver Configurations Flash size ©

Legacy Timer Group Driver Configurations

Legacy RMT Driver Configurations .

Legacy 125 Driver Configurations

Legacy I2C Driver Configurations Detect flash size when flashing bootloader @

Legacy PCNT Driver Configurations

Legacy SDM Driver Configurations

Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager

Flash 5P speed ©

80MHz

Before flashing (®

Reset to bootioader

« After that, we will compile and burn the code (which was explained in detail in the first
class)

EXPLORER
© tEssonoz
> devcontainer

led_blink_task(void *pvParameters)
M CMakeliststxt

~ peripheral gpio_extra_init

e

gpio_extra_set_level(1);
VTaskDelay (1600 /

gpio_extra_set_level(0);
VTaskDelay (1600 /

app_main(void)

xTaskCreate(led_blink task, “le

> ouume
> Tmeune /
> PROJECT CoMPONENTS

IDFvsA2 YYUART §COM4 Oespi2pt @ 8 [Z][B1 O & ¢ B B @0A0 @suid & D QEMU] _[ESP-IDF: OpenOCD Server] _ Ln 26, Col 1

« After waiting for a while, you will be able to see the LED connected to UARTI on your
Advance-P4 turning on and off, remaining off for one second, and repeating this
process over and over again.

Lesson 03
UART3-IN interface (external power supply)

Introduction

In this class, we will introduce the UART3-IN interface. There will be no code in this class.
Based on the code from the previous class (which turned on the LED), we will explain to
you what uses this UART3-IN interface has.

At this moment, everyone can see that the UART3-IN and UARTO interfaces. In the
previous lesson, when we were burning the code, we learned that the UARTO pin is used
for uploading the code. At the same time, you can also see that after connecting the

UARTO interface, the power indicator next to it lights up, indicating that power supply is
still available.

b

P

IEERRLRURRER S|

Then we come back to the UART3-IN interface. This interface is similar in function to the
UARTO interface we just discussed. It can supply power, but it cannot upload code.

The UARTO interface is connected to the serial port burning chip, making code burning
relatively convenient.

However, the UART3-IN interface does not have a serial port burning chip. It can only be
used for power supply and serial port operations.

So, here we will explain how the UART3-IN interface can be used as a power supply
function.

You need to prepare a power supply, along with two Dupont wires. One wire connects the
VCC pin of UART3-IN to the positive terminal of the power supply, and the other wire
connects the GND pin of UART3-IN to the negative terminal of the power supply.

| -

Note: The voltage and current used here are provided by a programmable power
supply. You only need to ensure that the externally supplied voltage is 5V and the
current is 2A, then connect them to the corresponding VCC pin and GND pin on
UART3-IN (connect the positive terminal to VCC and the negative terminal to GND).

Make sure your wires are connected correctly, then turn on the power switch to supply
power.

At this point, you will be able to see the LED light we turned on in the last lesson. It is also
blinking now, indicating that the power supply has been successful.

Of course, in addition to serving as an input power interface, USRT3-IN can also be used
as a normal serial port. However, it should be noted that when connecting UART3-IN,
since UART3-IN cannot provide power externally, the side connected to UART3-IN needs
to be able to supply power itself.

Lesson 04
Serial port usage

Introduction

In this class, we will start teaching you how to use the serial port component. We will
communicate with the Wi-Fi serial module through the UARTI interface on the
Advance-P4.

The Advance-P4 connects to the Wi-Fi module via the serial port. After sending the AT
command to the Wi-Fi module, it enables the Wi-Fi module to connect to the Wi-Fi
network.

Hardware Used in This Lesson

The UARTI interface on the Advance-P4

ESP32 PL—Advance HMT Displ
SKU-DHEGL316D

Operation Effect Diagram

After running the code, you will be able to see the AT commands you sent on the monitor
of ESP-IDF, as well as the responses returned to you by the Wi-Fi module via the serial
port. (Green represents the Advance-P4's sending, and white represents the responses
from the Wi-Fi module)

ExPLORER
 LEssonos

> devcontainer > respo
> wscode
> build
v main VTaskpelay T (2000)) 5

M CMakeLists it

£ (connect_wifi()

~ peripheral\ bsp_uart (tconnected
® ~incude
bsp uarth
i VTaskDelete
C bsp_uartc
M CMakelistsixt
= dangd
CMakelists xt send_at_conmand
D READMEMd
send_at_conmand;
send_at_command;

iile (1

VTaskpelay (1000)) 5

WIFI DISCONNECT
WIFI CONNECTED
WIFI GOT 1P

oK

HCIFSR:APIP, "192.168.4.1"
ACIFSR:APHAC, 3e:71:b:2d: 070"
+CIFSR:STATP, 192.168.50.133"

¥ ounme HCTFSR:STAWAC, "3c:71:bF:2d:0:79"

> TvELINE o

> PROJECT COMPONENTS
Bl & ©EPiDFsA2 UAT O COMIE O esppt @ 2 60 6B ©0A0 Boud & D [ESP-IDF: QEMU] _[ESP-IDF: OpenOCD Server]

Key Explanations

The main focus of this class is on how to use the serial port. Here, we will provide
everyone with a new component called bsp_uart. This component is mainly used for
initializing the serial port, configuring the serial port, and providing related interface
usage. As you know, you can call the interfaces we have written at the appropriate time.

Next, we will focus on understanding the bsp_uart component.

First, click on the Github link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson04-Serial _port_usage

« Then, drag the code of this lesson into VS Code and open the project file.

« After opening it, you can see the framework of this project.

In the example of this class, a new folder named
build

: "bsp_uart” was created under the "peripheral” directory.
v main

Inside the "bsp_uart” folder, a new "include” folder and a
main.c "CMakelists.txt" file were created.

ripheral\ bsp_uart

d The "bsp_uart” folder contains the "bsp _uart.c” driver file,
p_uarth and the "include” folder contains the "bsp_uart.h” header

uart.c .
file.

The "CMakelists.txt" file will integrate the driver into the
build system, enabling the project to utilize the serial
communication functionality written in "bsp_uart.c”.

Serial port communication code

« The driver code for serial port communication consists of two files: "osp_uart.c” and
"bsp_uart.h”.

» Next, we will first analyze the "bsp_uart.h” program.
» "bsp_uarth"is a header file for serial port communication, mainly used to:

- Declare the functions, macros, and variables implemented in "bsp_uart.c” for external
programs to use

- Enable other .c files to call this module simply by including "#include "bsp_uart.h”

« In other words, it is the interface layer, exposing which functions and constants can be
used externally, while hiding the internal details of the module.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson04-Serial_port_usage

« In this component, all the libraries we need to use are placed in the "bsp_uart.h” file for
centralized management.

« Then comes the declaration of the variables we need to use, as well as the declaration
of the functions. The specific implementations of these functions are in "bsp_uart.c”.

« They are all uniformly placed in "bsp_uart.h” for ease of calling and management.
(When they are used in "bsp_uart.c”, we will understand their functions.)

UART SCAN = 1,
UART_DECODE,
UART_ERR,
} uart_state;
SendData(*data);
esp_err_t uart_init();
uart_state get_uart_status():
set_uart_status(uart_state status);

« We can see that there are two sets of serial port pins here. The first set is UART_IN,
which are the TX and RX pins of the UART3-IN interface, as shown in the figure. (This
was not used in this lesson. We provided these pins to facilitate your future use.
However, it should be noted that this interface cannot supply external power.)

« The other group is the UARTI interface used in this class. As we mentioned before, this
interface can not only be used as a regular GPIO port, but also as a serial port. This
class will be using this interface.

- Let's take a look at "bsp_uart.c” again, and see what each function specifically does.

« bsp_uart: The bsp_uart component encapsulates the ESP32 UART hardware and
provides unified interfaces for initialization, data transmission, reception, and status
management, shielding the details of the underlying driver, enabling upper-layer tasks
(such as WiFi AT control tasks) to communicate with external devices through UART
stably and reliably.

Then the following functions are the interfaces we call to implement screen
display.

uart_init():

« This function is responsible for initializing UART2 of ESP32-P4 and configuring its
communication parameters, including baud rate, data bits, stop bits, parity bits, and
flow control mode. It also installs the UART driver and specifies the TX/RX pins.

+ By encapsulating the underlying uart_driver_install(), uart_param_config(), and
uart_set_pin(), it shields the hardware details, allowing the upper-layer tasks to not
need to worry about the cumbersome operations of UART initialization.

« After calling this function, the UART hardware is ready and can perform data
transmission and reception. It is usually called during system startup or before
communication is needed.

« There are a total of 3 serial port interfaces on our Advance-P4, namely UARTO, UART],
and UART3-IN.

« UARTO is our default interface for power supply and uploading code. By default, it is
UART_NUM_O.

« Then there are UART_NUM_1 and UART_NUM_2 left.

« Here, we can choose either of these two ports as we like, because we only use one
serial port interface here. So | choose UART_NUM_2.

« If you also use the UART3-IN interface, make sure that the port number and pin you
bind correspond and do not conflict.

SendData(*data)

strlen(data);
s = uart_write byt

RT_NUM_2, &uart_config);

sendData(const char *data):

+ This function is used to send string data to UART2. It first calculates the length of the
string, and then calls uqrt_write_bytes() to send the data to the UART hardware. The
function returns the actual number of bytes sent, which is convenient for the upper
layer to determine whether the transmission was successful. It encapsulates the
underlying driver interface, allowing upper-level tasks or modules to safely send
commands or data by simply calling SendData(), without having to handle the buffer
and byte length every time.

ISendData(*data)

len = strlen(data);
= uvart_write bytes(UART NUM 2, data, len);
return txBytes;

main.c) LC bsp_uarth x

peripheral > bsp_uarth > ..

UART SCAN = 1,
UART_DECODE,
UART_ERR,

} uart_state;

SendData(*data);
esp_err_t uart_init();

» That's all about the components of bsp_uart. Just make sure you know how to call
these interfaces.

« Then, if we need to make a call, we must also configure the "CMakelists.txt" file located
in the "bsp_uart’ folder.

- This file is placed in the "bsp_uart” folder and its main function is to inform the build
system (CMake) of ESP-IDF: how to compile and register the "bsp _uart’ component.

EXPLORER main.c CMakelists.bet X

 LESSONO4 peripheral > bsp
» .devcontainer 1 FILE(
> .vscode
> build idf_component_register(SRCS ${component_sources}
IN DE_DIRS "include”
- man REQUIRES driver)
CMakelists:txt
main.c
~ peripheral\ bsp_uart
v include
bsp_uarth
bsp_uart.c
CMakelists:txt
£ .dangd
CMakeLists.txt

+ The reason why this is called "driver” is that we have called it in the "bsp_uart.h” file (for

other libraries that are system libraries, there is no need to add anythin

main, bsp_uarth X

peripheral > bsp_uart > indude bsp_uarth >[E) UART_IN_EXTRA_GPIO_RXD
o

Main function

« The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

« Add the main folder to the "CMakelists.txt" file of the build system.

TaG -

CMaketists xt
gd

uart_read_response(char *buffer, size_t len, Tickiype_t timeout)

=B
< sdkconfigold © start - xTasketTickCount();
XTaskGetTickCount() - start) < timeout & total < len - 1

read_bytes = uart_read_bytes(UART MM 2, (uints_t *)(buffer + total), len - total - 1, 20 /
o

£ (read_bytes >

total += read_bytes;

uffer[total] = "\@';
eturn total;

send_at._coamand(*cud, TickType_t timeout)

responsef - (@
Sendpata(cnd);
Sendpata("\r\n");

uart_read_response(response, , timeout);

- This is the entry file for the entire application. In ESP-IDF, there is no int main(), but the
program starts running from void app_main(void).

« In the ESP-IDF framework, app_main() is the main entry point of the entire program,
equivalent to the main() function in standard C.

+ When the ESP32-P4 powers on or restarts, the system will execute app_main() to start
the user tasks and application logic.

« Let's explain main.c

« Function: Calls the interfaces in the bsp_uart component to allow the FreeRTOS
scheduler to run the wifi_task, and send AT commands to control the wifi module to
connect to the wifi.

"bsp_uart.h™

This file imports the custom UART encapsulation component "bsp_uart’, providing
interfaces such as UART initialization, data transmission, data reception, and status
management, enabling upper-layer tasks to conveniently communicate with external
devices via UART.

#include "freertos/FreeRTOS.h":

This file imports the basic header file of the FreeRTOS kernel, providing basic operation
functions and type definitions such as task scheduling, time management, semaphores,
and queues, which are necessary for using FreeRTOS.

#include "freertos/task.h":

This file imports the interfaces related to task management in FreeRTOS, including
functions such as xTaskCreate() for creating tasks, vTaskDelay() for task delay, and
vTaskDelete() for task deletion, used for multi-task scheduling and management.

#include "string.h™

This file imports the string processing functions of the C standard library, such as strlen(),
strstr(), and snprintf(), for string length calculation, substring search, and string
formatting operations.

#include "esp_log.h™

This file imports the logging system interface provided by ESP-IDF, used for printing
debug information, error information, and system status. It provides functions such as
ESP_LOGI(), ESP_LOGE(), and ESP_LOGD().

main >

The name (SSID) of the WiFi was defined, which is used in the program to construct AT
commands to enable the module to connect to the specified WiFi network.

The password (Password) of the WiFi was also defined, which, along with the SSID, is
used in the AT commands to connect to the WiFi network.

Define a constant to represent the maximum length of the buffer for receiving AT
command responses, which is 512 bytes. This ensures that the received data will not
exceed the boundary.

Define a static string as the log tag (Tag), which is used by log functions such as
ESP_LOGI() and ESP_LOGE() to distinguish the outputs of different modules, facilitating
debugging and problem location.

*TAG =

uart_read_response(char *buffer, size_t len, TickType_t timeout):

.

The "uart_read_response()" function is the core function in the bsp_uart component
for receiving data from the UART. It repeatedly calls the ESP32's "uart_read _bytes()"
interface to store the data received by UART2 into the buffer provided by the user. It

also supports timeout control.

The function accumulates the actual received bytes each time it reads and adds \0 at
the end of the buffer to ensure that the returned data is a valid C string. It not only
prevents buffer overflow but also continuously waits for data within the specified time,
making it suitable for reading AT command responses or other data returned by
external devices. This enables upper-level tasks to safely and reliably obtain the
received data without directly operating the underlying UART driver.

| uart_read_response(*buffer, size_t len, TickType_t timeout)

tTickcount();

xTaskGetTickCount() - start) < timeout && total < len - 1

t *)(buffer + total), len - total - 1, 20 /

send_at_command(const char *cmd, TickType_t timeout):

The "send _at_command()" function is a high-level wrapper function in the "bsp _uart”
component, used to send commands to the AT module and wait for a response.

It first sends the AT instruction passed by the user to the UART using the "SendData()"
function, and then sends a carriage return and line feed character as the command
terminator; then it calls "uort_reod_response()" to read the data returned by the
module and save it in the buffer, while also printing the log for debugging purposes.

The function checks if the returned string contains "OK". If it does, it means the
command execution was successful and returns "true”; otherwise, it returns "false”
indicating a command failure.

This function encapsulates the complete process of sending, receiving and result
judgment, enabling the upper-level tasks to safely and simply operate the AT module
through a single interface, without having to deal with the details of the underlying
UART reading and writing as well as response parsing.

send_at_command(*cmc e_t timeout)

, timeout);

response);

connect_wifi():

The "connect_wifi()" function is a high-level encapsulation function used to enable the
ESP32 to connect to a specified WiFi network through the AT module.

First, it builds the AT command for connecting to WiFi, "AT+CWMODE=], 'SSID’,
'PASSWORD", in a 128-byte buffer and prints a log message indicating that the WiFi
name is being attempted to connect.

Then, it calls the "send_at_command()" function to send the command and waits for
the module’s response, setting the timeout to 5 seconds.

The function determines whether the connection was successful based on the
response result: if the response is "OK’, it prints the "WiFi Connected"” log and returns
true; if the connection was not successful, it prints an error log and returns false.

This function encapsulates the complete process from building the AT command,
sending the command to judging the connection result, allowing the upper-level tasks
to directly call it to achieve WiFi connection without handling the underlying UART and
command parsing details.

|cur1nect_wifi()

cmd[128];

snprintf(cmd
(TAG,

(5600)

wifi_task(void *a

- This function calls all the interfaces we discussed earlier.

- The function wifi_task() is a FreeRTOS task that communicates with the AT WiFi module
via UART to achieve WiFi connection and initialization of the TCP server.
« The task first initializes the UART; if it fails, it deletes itself to ensure system stability;

kifiitask(*arg)

if (uart_init =
TAG, "UART init failed");

vTaskDelete:! H

return;

send_at_command("AT+Ck
send_at_command("AT+
vTaskDelay
connected = 3
i=8;i<5; i
if (connect_wifi()

connected =

break;

vTaskDelay (2008));

(!connected)

TAG, "Can
vTaskDelete

send_at_command("AT+CIFSR",

send_at_command("AT+CIPMUX=1

vTaskDelay (1e88));

+ Then set the module to the AP + STA mode and reset it to make the configuration take
effect.

wifi_task(*arg)

if (uart_init 1=

TAG, "UART init failed");
vTaskDelete! H

send_at_command (" AT+CHM

send_at_command("AT+RST"
vTaskDelay

connected = ;
i=0; i< 5; is+)
connect_wifi()

connected =

break;

vTaskDelay (2088));

Then, the process will repeatedly attempt to connect to the specified WiFi, up to 5
times. Each failure will cause a 2-second delay. If the connection is still unsuccessful in

the end, an error message will be printed and the task will be deleted.

wifi_task(*arg)

if (uart_init 1=
TAG, "UART init failed");

vTaskDelete ;
return;

send_at_command ("AT+Ck
send_at_command("AT+RST",
vTaskDelay 3008));
connected = H
i=0;i<5; it
connect_wifi()

connected =

break;

wTaskDelay

!connected

TAG, "Cannot connect to WiFi, stopping task™);

vTaskDelete B

- After the connection is successful, it obtains the module’s IP address, enables the
multi-connection mode, and starts the TCP server to listen on port 80.

send_at_command

send_at_command("AT+RST"
vTaskDelay(

connected = s
i=8;1i<5; i)
connect_wifi()

connected =

break;
vTaskDelay (2688));
{!connected)

TAG, "Cannot connect to WiFi,
vTaskDelete H

send_at_command("AT+CIFSR",

send_at_command ("AT+CIPMUX=1

send_at_command("AT+CIPSERV

vTaskDelay (1888));

+ Finally, it enters an infinite loop, retaining the interface for subsequent processing of
TCP requests, and reducing CPU usage through delay, thereby completing the entire

process of WiFi network management and services.

(!connected

i, stopping tas

TAG, "Cann
vTaskDelete 5

send_at_command ("AT+CIFSR",

send_at_command (“AT+CIPMUX=1",

send_at_command ("AT+CIPSERVER=1,88",

vTaskDelay

+ Then comes the main function app_main.

+ app_main() is the entry function of the ESP-IDF program, similar to the main() function
in a standard C program. In this code, its role is very clear: it calls xTaskCreate() to
create a FreeRTOS task named “wifi_task’, with the task function being wifi_task,
allocating 4096 bytes of stack space, having a priority of 5, not passing any task
parameters, and setting the task handle to NULL (not saving the task handle).

« The core meaning of this line of code is to encapsulate the WiFi initialization and TCP
server logic into an independent task that runs under the management of the
FreeRTOS scheduler. This keeps the main program entry point simple while ensuring
that the WiFi connection task can be executed in parallel without blocking other tasks.

app_main{

xTaskCreate(wifi_task,

» Now let's take a look at the "CMakelists.txt" file in the "main” directory.
+ The function of this CMake configuration is as follows:

- Collect all the .c source files in the "main/" directory as the source files for the
component;

» Register the 'main” component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_uart”.

« This way, during the build process, ESP-IDF knows to build "bsp_uart” first, and then
build "main”.
EXPLORER main.c CMakelists.txt main X
DERLA
n ${CMAKE_SOURCE_DIR}/n

{main}

> build

~_main

CMakelists.txt

main.c

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt” file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
uch-Screen/tree/master/example/V1.0/idf-code/Lesson04-Serial _port usage

Programming Steps

« Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

« Then, connect an ESP8266 wifi module to the UARTI interface.

+ (Connect the VCC of UARTI interface to the VCC pin of the wifi module)

+ (Connect the GND of UARTI interface to the GND pin of the wifi module)

« (Turn the TX of UARTI interface to the RX pin of the wifi module) (Cross connection)

« (Turn the RX of UARTI interface to the TX pin of the wifi module) (Cross connection)

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson04-Serial_port_usage

Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation

will not be affected by your previous actions.)

EXPLORER C mainc

LESSoNo4 mair

*buffer, size_t len,

xTaskGetTicke

1

XTaskGetTickCount() - start) < timeout & total < len -

+ total),

buffer[total] = "\o';
total;

*cnd, TickType t timeout)

Data(cnd);

> OUTUNE ap l
> TIMELINE

[ESP-IDF: QEMU] _[ESP-IDF:

Here, following the steps in the first section, we first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

Then here we need to configure the SDK

Click the icon in the picture below.

ewiomR c M ChateList C bep. C bsp_ua Cuke Do @ i eonseoenerortint (1)

CMakeliststxt

~ periphersl bsp_uart

*buFfer, size t len, TickType t timeout)

M CMakeliststxt
READMEmd

p read_bytes -
TickType t start = xTaskGetTickCount

XTaskGetTickCount() - start) < timeout & total < len - 1

read_bytes - uart_read_bytes(UART_WH 2, (uints_t *)(buffer + total), len - total - 1,
if (read_bytes > 6)

total += read |

buffer[total] - "\e';
turn total;

send_at_comand(; “cnd, TickType_t timeout)

Sendbata(cad);
> ounume Sendbata("\r\n
> mene
> PROJECT coMPONENTS
Bl & @eeorsaz oumr O ooms Ocops (0] 8 £ 4 D p 6 B B ©0A0 Sui B D (ESP-DF GEMUL _ESP-DF OperOCD Serve] 21, Col 6 Spaces: 4

uart_read_response(respanse, , timeout);

« Wait for a moment for the loading process to complete, and then you can proceed
with the relevant SDK configuration.

main.c SDK Configuration editor X

Discard

Bk Build type
v Bootloader config

Application build type ©
Bootloader manager

Default (binary application + 2nd stage bootioader)

Serial Flash Configurations Enable reproducible build @
Security features
Application manager
:ao‘ oM Behavior Bootloader config

erial flasher config
Partition Table Bootloader manager
~ Compiler options Usetime/date stamp for bootloader @

Replace ESP-IDF and project paths in binaries

Enable C++ exceptions
~ Component config

Application Level Tracing 1

© Bluetooth

Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration L
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I12C Driver Configurations color @
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESPILS Serial Flash Configurations

AnC ang 20C catbration Al djust Dy Cydle bits in SP! Flash for higher fr READ HELP FIRST) ©
s G low app adjust Dummy Cydle bits in SPI Flash for higher frequency (i IO

No Binary Blobs @

Project version ©

Bootloader optimization Level ()

Size (-Os with GCC, -O with Clang)

Bootloader log verbosity @

Info

Format

Timestamp &

Milseconds Since Boot

« Then, search for "flash”
as mine.)

SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager
v log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
enable C++ exceptions
[
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations

in the search box. (Make sure your flash settings are the same

Bootloader config

Serial Flash Configurations

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©

¥ Enable the support for flash

Security features

chips of XMC (READ DOCS FIRST) ¢

Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub ®

Flash SPI mode @

ao

Flash sampling Mode ©
STR Mode

Flash sPi speed @

80 MHz

Flash si

16MB

Detect flash size when flashing bootloader

After the configuration is completed, remember to save your settings

After that, we will compile and burn the code (which was explained in detail in the first

class)

Here, we would like to introduce to you another very convenient feature. With just one
button press, you can perform the tasks of compiling, uploading, and opening the
monitor all at once. (The prerequisite is that the entire code is error-free.)

LR
 LEssonos
> devcontainer
> wscode
> build
CMakeListsxt
~ peripheral \ bsp_uart
~ include
C bsp_uarth
C bsp_uartc
CMakeListsxt
= dangd
M CMakeliststit
D READMEMd
sdkconfig
£ sdkconfigold

> ouTune
> TIMELINE
> PROJECT COMPONENTS

© WESPDFSA2 YUART O COM4

O cppt & B

uart_read_response(
total = 0;
read_bytes = 0;
<k start - xTaskGetTickCount
XTaskGetTickCount() - start

read_bytes = uart_read_bytes(UAR
read_bytes > 0

NUM 2,

total += read_bytes;

buffer(total
total;

\o';

send_at_command

response|
SendD3vg(cnd) ;
SendDatalr\n

uart_read_resPanse(response,

£ 6 0 »[6]6 B ®0A0 Brid

*buffer, size_t

< timeout 8& total <

len, TickType t timeout)

len - 1)

(uintg_t *)(buffer + total), len - total - 1, 20 /

.t timeout)

, timeout);

8 D [ESP-IDF: QEMU]

[ESP-IDF: OpenOCD Server]

+ After waiting for a while, the code compilation and upload were completed, and the
monitor also opened.

« After burning the code, you will be able to see the AT commands you sent through the
monitor on ESP-IDF, as well as the responses returned to you by the wifi module via the
serial port. (Green is sent by Advance-P4, and white is the response from the wifi
module)

mainc

vTaskDelay

£ (Iconnected

vTaskDelay

WIFT TED
WIFI GoT 1P

outune
TIMELINE

PROJECT COMPONENTS

)

Lesson 05
Touchscreen

Introduction

In this class, we will gradually start to use multiple components together. We hope this
will help everyone gain a deeper understanding of ESP-IDF and ESP32-P4.

In this class, we will use two components from the Advance-P4 category, namely
bsp_display and bsp_i2c, to enable the screen to be touchable, and you will also be able
to see the coordinates of your touch through the monitor.

Hardware Used in This Lesson

The touchscreen on the Advance-P4

Touchscreen schematic diagram

Touchscreen Electrostatic Software
Sensor Field Controller \

Device
Instructions

Controller
Detects Touch
Y Location

-

First, let's look at the Touchscreen Sensor and Electrostatic Field sections. Inside the
touchscreen sensor, there is a grid-like electrode structure composed of conductive
layers. These electrodes interact with each other, forming a uniform electrostatic field in
the screen area. When a finger touches the screen, since the human body is conductive,
the finger will form a new capacitance with the conductive layer on the screen. The
appearance of this capacitance will interfere with the originally uniform electrostatic
field, causing a significant distortion in the distribution of the electrostatic field in the
area near the touch point, and subsequently resulting in changes in the capacitance
value of the electrodes in that area.

Then, we come to the core function of the Controller. The GT911 takes on this role as the
controller. It continuously scans all the electrodes on the touchscreen and precisely
detects the changes in the capacitance of each electrode. Based on the detected data
of the different capacitances of the electrodes, the GT911 runs a specific algorithm
internally, analyzing these data to calculate the X and Y coordinates of the touch point
on the screen, which is the coordinate detection process illustrated in the diagram as
"Controller Detects Touch Location”.

After that, the GT911 sends the calculated touch point coordinate information to the
connected main processor (such as an ESP32 microcontroller) according to the pre-set
communication protocol (such as 12C, SP, etc.).

Finally, the main processor receives the coordinate data and further processes and
parses these data using software.

At the same time, in combination with the "Device Instructions” (device instruction Iogic),
the software maps and correlates the touch coordinates with specific elements in the
device interface (such as buttons, sliders, etc.). Thus, when the user touches the screen,
the device can accurately identify whether it is clicking a button, sliding the screen, or
other operations, and make corresponding interaction responses, thereby achieving
smooth touch interaction functionality.

Operation Effect Diagram

After running the code, you will be able to see the coordinates returned by the ESP32-P4
to you through the monitor on the ESP-IDF at the moment when you touched the screen.

EXPLORER

~ LEssonos
> .devcontainer
> wscoda
> buid
~ main
CMakelLists.txt
idf componentyml
main.c
> managed_components
 peripheral £ (touch init() I=
© bsp.display T (rouch_ =
~ include e
bsp_display-h
bsp_display.c
CMakeLists.txt
T xTaskCreate(touch_task, "touch task”, 4096, . 5, &touch_task_handle);
v include
bsp.izch e
bsp_izcc
CMakelists.txt

Touch application started successfully”);

£ dangd
CMakelists.txt
lependencies.lock
dkconfig
dkeonfig.old

> ourune
> TIMELINE
> PROJECT COMPONENTS

DESPIDFvSA2 YUART & COMI4 O espizpd

Key Explanations

Now there are two components in this class (bsp_display and bsp_i2c). How should we
handle the overall framework?

It's actually not difficult. Once you understand how one component is used, the two
components are similar. First, click on the Github link below to download the code for this
lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson05-Touchscreen

« Then, drag the code of this lesson into VS Code and open the project file.

Q_ Search the web or type a URL

Advance-P4 x |+
< A C O > ThsPC > FAME() > Advance-Pd > Search A
) @ W N Sort = View

Name Date mi

9inch

lesson01 File

Lesson02 512PM File folder

Lesson04 9/22/20251032AM File folder

In the example of this class, a new folder named
"bsp_display” was created under the "peripheral’
directory. Inside the "bsp_display” folder, a new "include”
folder and a "CMakelists.txt” file were created.

The "bsp_display” folder contains the "bsp_display.c”
driver file, and the "include” folder contains the
"bsp_display.h” header file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the
touchscreen functionality written in "bsp _display.c”.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson05-Touchscreen

Screen touch driver code

.

The screen touch driver consists of two files: "bsp_display.c” and "bsp _display.h™
Next, we will first analyze the "bsp_display.h” program.

"bsp_display.h" is a header file for the display and touch screen driver module, mainly
used for:

Making the functions, macros, and variable declarations implemented in
"bsp_display.c” available for use by external programs

Allowing other .c files to simply include "bsp_display.h” to call this module

In other words, it is the interface layer, exposing which functions and constants can be
used externally, while hiding the internal details of the module.

In this component, all the libraries we need to use are placed in the "bsp_display.h” file
for centralized management.

Such as esp_lcd_touch_gt91l.h

> set_coor Aa ab, ¥

In this case, we need to fill in the version of esp_lcd _touch_gt911 in the
idf _component.yml file located in the main folder. Since this is an official library, we
need to use the official library to achieve the touch function of the GT911 screen on our

Advance-P4.

~ LESSONO4 main > idf_componentyml
> .devcontainer
> .scode
> build
~ main
CMakeLists.txt
idf_componentyml
main.c
~ managed_components
> espressif__esp_led_touch
> espressif_esp_led_touch_gt911
~ peripheral
~ bsp_display
~ include
bsp_display.h
bsp_display.c
CMakelLists.txt

When the project is compiled in the future, it will download the esp_lcd _touch_gt9ll
library version 1.1.3. After the download, these network components will be saved in the
"managed_components” folder. (This is automatically generated after filling in the

version number.)
Then we will return to the "bsp_display.h" file.

» We can see that the "bsp_i2c.h" file is also included in it.

peripheral > display > include > bsp_display.h > ...

eRTOS.h"
sk.h
cd_touch_gto11.h"
bsp_i2c.h"

+ This is another component that we are using in this class.

« Because our GT911 screen touch driver uses 12C for communication control.

« Then, we declare the variables we need to use, as well as the functions. The specific
implementation of these functions is in "bsp_display.c”.

« They are all unified in "bsp_display.h” for ease of calling and management.

_read(

- Let's take a look at "bsp_display.c” again, and see what each function does
specifically.

set_coor:

This is an internal utility function used to update the global variables touch_x, touch_y,
and is_pressed, recording the latest touch point coordinates and press status. It is not
called externally and is only used within this file to store touch data.

get_coor:

This is an external interface function used to return the current touch point coordinates
and press status to the caller. By calling this function, upper-level applications can know
the latest coordinates of the touch screen and whether it is pressed.

touch_init:

If you need to use the screen touch functionality, you must call this function in the main
function.

This is the touch screen initialization function. Its main function is to configure the 12C bus
and the parameters of the GT911 touch chip, and then create the handle of the touch
screen driver. If the main 12C address initialization fails, it will try the backup address to
ensure that the GT911 can be correctly recognized and driven. If successful, it returns
ESP_OK; if failed, it returns the corresponding error code.

touch_read:

This is the touch data reading function. Its main function is to read the raw data of the
current touch point from the GT911, and then extract the touch point coordinates,
intensity, and number of touch points.

If a touch is detected, it updates the global coordinates and prints debugging
information; if no touch is detected, it sets the status to "invalid coordinates (Oxffff, Oxffff)
and not pressed”. Finally, it returns ESP_OK or the error code.

This is the component of the screen touch function. Just know how to call these
interfaces.

Then, if you need to call it, we must configure the "CMakelists.txt" file in the bsp_display
folder.

This file is placed in the bsp_display folder and its main function is to tell the build
system (CMake) of ESP-IDF how to compile and register this component.

(Here, we will explain in detail the construction of this "CMakelists.txt". In the future, we will
only tell you how to add and delete those libraries and components.)

« The following line of code will recursively search all the .c files in the current directory
(and its subdirectories), and then place the results in the variable

component_sources.

« Thisis a macro provided by ESP-IDF, used to register a component.

* SRCS specifies the source files that the component needs to be compiled. Here, it
refers to all the .c files that were just found.

« Specify the search path for header files.

- Itindicates that the header files in the "bsp_display/include” folder (such as
"bsp_display.h”) will be made available for use by other components.

« This way, other components only need to #include "bsp_display.h” to find the header
files.

FILE(

idf_component_register(

« Specify the other components that the bsp_display component depends on.

+ This means: Before compiling bsp_display, esp_lcd_touch_gt91l (the GT911 touch
driver) and bsp_i2c (our own 12C wrapper) must be compiled first.

+ At the same time, the dependencies will be automatically added during linking.

(In the future, when we modify other projects, simply add or remove the relevant
components.)

FILE(

idf component_register(

The reason why esp_lcd _touch_gt91l and bsp_i2c are used here is that we called
them in the "bsp_display.h" file (if the other libraries are system libraries, then there is

no need to add them)

CMakeLists.txt bsp_display.h X

display > include > bsp_display.h > ...

touch_gto1l.h"

qn

12C driver code

» Now that the relevant content of the screen touch driver has been explained, let's take
a look at the content related to the 12C component.

« In"bsp_i2c.h", the same process is followed to declare and define the used libraries,
variables, and functions, making it convenient to call them when using them.

bspizch X

peripheral » include >

« In"bsp_i2c.c’, the library, variables and functions in "bsp_i2c.h" are fully utilized to
implement the related functions.

« For the functions in "bsp_i2c.c”, all you need to know is how to use them.

print_binary:

Converts a 16-bit integer to a binary string (16 bits, with leading 0s padded), mainly used
for printing values in binary form during debugging.

print_byte:

Converts a byte (8 bits) to a string format like 0bXXXX YYYY (high 4 bits + low 4 bits),
facilitating intuitive viewing of the binary content of the byte during debugging.

i2c_init:

Initializes the 12C bus: configures the 12C port, SDA/SCL pins, clock source, filtering
parameters and pull-up resistors, then creates an 12C master bus handle (saved in the
global variable i2c_bus_handle), preparing for subsequent device communication.

i2c_dev_register:

Registers a slave device on the 12C bus (based on the 7-bit device address), and returns
the handle of the device. When reading from or writing to this device in the future, this
handle needs to be passed in.

i2c_read:

Reads a certain number of data from the specified 12C device, and stores the result in the
read_buffer. The underlying call is i2c_master_receive.

i2c_write:

Writes a certain number of data to the specified 12C device, the underlying call is
i2c_master_transmit.

i2c_write_read:

First writes a register address to the 12C device (read_reg), then reads the data from the
corresponding register (read_buffer). This is a common process for reading registers,
used to "select” the register before reading the value.

i2c_read_reg:

Performs the operation of "writing register address + reading data” at once
(implemented by calling i2c_master _transmit_receive), which is more concise than
i2c_write_read.

i2c_write_reg:

Writes a byte data to a certain register of the 12C device (register address + data), often
used for configuring peripheral register.

Let's talk about the role of the "CMakelists.txt” file in the "bsp_i2c” folder.

This "CMakelists.txt" is a build configuration file in the ESP-IDF framework used to
manage the 12C driver components. Its main function is to tell the build system how to
compile and integrate this 12C driver component.

As mentioned earlier, here we only need to modify the components and libraries we
are using at this point.

peripheral > bs, CMakeLists.txt
FILE(SE component_sour:

idf_component_register(SRCS ${component_sources}
IRS "include”

driver esp_timer)

> include > bsp_i2ch > ...

Main function

« The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

« Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER main.c X

v LESSONO4 main >
> .devcontainer
> vscode
> build
~ main
CMakeLists.txt
idf componentyml
mainc
> managed components TaskHandle_t touch_task_handle =
~ peripheral
@ ety touch_task(*param)
~ include mile (1) {
bsp_displayh if (touch_read() ==
bsp_display.c uint16 t x, y;
CMakeLists.txt pressed;
 bsp_izc get_coor(&x, &y, &pressed);
~ include
bsp_izch
bsp.ize.c }
CMakelists.txt
«clangd vTaskDelay (58));

if (pressed) {
. “Touch at x-%d, Y=%d", x, y);

CMakeLists.txt
dependencies.lock

This is the entry file of the entire application. In ESP-IDF, there is no "int main()", but the
program starts running from "void app_main(void)".

Let's first explain main.c.

esp_log.h: Provides the logging printing interface of ESP-IDF (such as ESP_LOGI,
ESP_LOGE, etc.).

freertos/FreeRTOS.h and freertos/task.h: Functions and task management interfaces
related to FreeRTOS.

"bsp_i2¢.h": Custom I12C driver, initializes the 12C bus and reads/writes devices.
"bsp _display.h™ Custom touchscreen driver interface, provides functions such as
touch_init, touch_read, get_coor, etc.

main > C main.c
#include “esy

TaskHandle_t touch_task_handle =

touch_task(*param)

while (1) {
if (touch_read() ==
uint16 t x, y;
pressed;
get_coor(&x, &y, &pressed);

if (pressed) [
, "Touch at X=Xd, Y=%d", x, y);
ki

vTaskDelay (58));

« TAG: Log identifier, used to distinguish the source of the log.

« touch_task_handle: FreeRTOS task handle, used to manage the touch reading task.

main > main.c

Infinite loop, reading touchscreen data every 50ms.

touch_read(): Read GT911 touchscreen data and update internal coordinates.
get_coor(&x, &y, &pressed): Obtain the current touch coordinates and pressing status.
If a touch is detected (pressed = true), print the touch coordinates.

vTaskDelay(pdMS_TO_TICKS(50)): Put the task to sleep for 50ms to avoid frequent
polling occupying CPU.

main > main.c > € touch_task(void %)

#include “esp, -h

TaskHandle t touch task_handle =

touch_task(*param)

thile (1) {
if (touch_read() ==
uintl6_t x, y;
pressed;
get_coor(&x, &y, &pressed);

if (pressed) {f
, "Touch at X=Xd, v=%d", x,
b

vTaskDelay (50)

« Then comes the main function app_main.

« It first prints the information about the program startup.

app_main()

, "Starting touch application”);

f (i2c_init 1=
,» "I2C initialization failed");

return;

f (touch init I=
» "Touch initialization failed™);

return;

« Call the initialization code in "bsp_i2c.c” to initialize the 12C bus, which is used for
communication with the touch screen chip.

app_main(

(i2c_init

return;

(touch_init 1=) {
, "Touch initialization failed™);

return;

xTaskCreate(touch_task, "touch_task", 4896, » 5, &touch_task_handle);

» "Touch application started successful

« Call the initialization screen touch code in "bsp_display.c” to initialize the GT911 touch
screen.

- If it fails, print the error log and return.
main > main.c > § app_main(void)

touch_task(*param)

while (1
if (touch_read() ==

if (pressed) {
(, "Touch at X=%d, Y=Xd", x, y);
}

vTaskDelay (58));

app_main(M
(» "Starting touch application™);
f (i2c_init

return;

f (touch_init

return;

+ The following code is also familiar to you. You have encountered it in previous courses.
The function of this line of code is to create and start a task named "touch_task” in
FreeRTOS, allowing it to periodically read touch screen data in an independent thread.
At the same time, through the "touch_task_handle” handle, this task can be managed
later.

app_main()

F (i2c_init() !-

re

F (touch_init

re

xTaskCreate touch . k™, 4 . 5. &touch_task_handle);

» Now let's take a look at the "CMakelists.txt" file in the "main” directory.
+ The function of this CMake configuration is as follows:

. Collect all the .c source files in the "main/" directory as the source files for the
component;

.

Register the main component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_display” and the custom component
"bsp_i2c’;

« This way, during the build process, ESP-IDF knows to build "bsp_display” and "bsp_i2c”
first, and then build "main”.

EXPLORER main.c CMakelists.txt main X
~ LESSONO4
main ${CMAKE_SOURCE_DIR}/main/*.c)

idf_component_register{(s main

build

~ main

main.c

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
uch-Screen/tree/master/example/V1.0/idf-code/Lesson05-Touchscreen

Programming Steps

+ Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson05-Touchscreen

EXPLORER e @
- LESsoNo4 mzin > € mainc >
> devcontainer app_main(
> wscode (
> build
~ main
CMakeliststxt
idf componentyml

mainc

(i2¢_init

> managed_components
~ peripheral
sy (touch_init {
i ouch initia
~ include
bsp_displayh
bsp_display.c
CMakelists.txt
~ bsp_izc xTaskCreate(touch_task, “"touch_task”, 4696, NULL, 5, &touch_task_handle);

return;

~ include
bsp.izch
bsp_izc.c
CMakeLists bt
< dangd
CMakelists.txt
dependencies.lock

, "Touch application started succ

= sdkconfig
sdkconfig.old

> oUTUNE
> TIMELINE
> PROJECT COMPONENTS
SP-IDFvsA2 (YUART O coM4 Oespps @ [B] £ 8 O & & B ®0A0 @rid B D [ESP-IDF: QEMU]

« Then, following the steps in the first section, select the ESP-IDF version, the code upload

method, the serial port, and the chip to be used.
+ Then here we need to configure the SDK.

+ Click the icon in the picture below.

« ussonaz
> deveontainer
> vicode
> build
ol led_blink task(void *pvParameters)
M CMiakelistsixt
 peripheral\ bsp_extra 8pio_extra_init();
© indlude

C bsp_extrah

gpio_extra_set_level(1);
VTaskDelay(1600 /
M Chskelistsxt
O READMEmd
sdkconfig gpio_extra_set_level(6);

sdkconfig.old VTaskDelay(1600

app_main(void)

XTaskCreate(led_blink task, "led blink task”, 2043,

5 ourume
> Tweune
[p— /

© 5p.0F 5423 UART O COMl4_O ezt [B] 8 0 a b (6P QEUUL_[SP1DF:Open0cD Serve]_1n26,Cl

« Wait for a moment for the loading process to complete, and then you can proceed
with the related SDK configuration.

SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
~ Component config
Application Level Tracing
v Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESPTLS
ADC and ADC Calibration
Wireless Coexistence

Then, search for "flash” in the search box. (Make sure you
as mine.)

SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager
“ log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations.
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Build type
Application build type ©
Defautt (binary application + 2nd stage bootioader)
Enable reproducible build ()
No Binary Blobs ©
Bootloader config

Bootloader manager
 Usetime/date stamp for bootloader

Project version @
1

Bootloader optimization Level ()

Size (-Os with GCC, -O with Clang)

Log
Bootloader log verbosity &

Info

Format
Color @

Timestamp &

Miliseconds Since Boot

Serial Flash Configurations

Discard

Allow app adjust Dummy Cycle bits in SP1 Flash for higher frequency (READ HELP FIRST)

Bootloader config
Serial Flash Configurations

flash settings are th

Discard

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST)

 Enable the support for flash chips of XMC (READ DOCS FIRST)

Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub ®

Flash SPI mode

ao

Flash Sampling Mode
STR Mode
Flash SPl speed ©
20MHz
Flash
16 M8
Detect flash size when flashing bootloader
Before flashing @

Reset to bootloader

After flashing ©

Reset after flashing

e same

« After the configuration is completed, be sure to save your settings.

SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager
v Log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Component config
Application Level Tracing
v Bluetooth
Common Options
Console Library
v Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Common FSp-relatar

Discard

Bootloader config

Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) &

 Enable the support for flash chips of XMC (READ DOCS FIRST)

Security features
Enable flash encryption on boot (READ DOCS FIRST)

Serial flasher config
Disable download stub

Flash Pl mode ©
ao
Flash Sampling Mode (&
STR Mode
Flash 5Pl speed
80 MHz
Flash size ©
16M8
Detect flash size when flashing bootloader (O
Before flashing (®
[E—
After flashing ()

Reset after flashing

+ Then we will compile and burn the code (as detailed in the first class).

« Here, we would like to introduce to you another very convenient feature. With just one
button press, you can perform the compilation, upload, and open the monitor at once.
(This is provided that the entire code is error-free.)

EXPLORER
 LESSONOS

> deveontainer

> wscode

> build

M CMakeliststit

idf_componentym! TOUCH_APP

> managed_components TaskHandle_t touch_task_handle =
~ peripheral
 bsp_display

touch_task(void *param)

+ include

C bsp_displayh le (1
C bsp_display.c if
M CMakeLists et

touch_read()

b essed;
get_coor(8x, 8y, &pressed);
€ bsp.izch
C bsp.izcc
M CMakelists }
dangd
M CMakeliststt
dependencies.lock

£ (pressed) {

VTaskDelay

sdkconfig
sdkconfigold
app_main(

£ (touch_init:

BESP-DFVsA2 (YUART O COMI4 Oepi2pt @ 8 & 6 O & [ESP-IDF: QEMU] _ [ESP-IDF: OpenOCD Server]

« After waiting for a while, the code compilation and upload process was completed,
and the monitor also opened. By touching the Adcance-P4 screen, you will be able to
see the coordinates of the screen you touched displayed.

EXPLORER

~ LESsONo4 main > € mainc >

> .devcontainer SfpESET|

> wscode

> build

oman if (i2c_init
CMakeLists.txt
idf_componentyml return;
main.c

> managed_components

~ peripheral

~ bsp_display if (touch_init

+ include "Touch initialization failed");
return;

bsp displayh

bsp_display.c

CMakelists.xt
~ bsp.izc xTaskCreate(touch_task, "touch_task”, 4896, , 5, &touch_task_handle);
~ include

bsp.izch

bsp_i2ec

CMakelistsixt

(TAG, "Touch application started successfully”);

= dangd
CMakelists.txt
= dependencies lock U £ TERVINAL
= sdkconfig
= sdkconfig.old

> oUTUNE
> TIMELINE
> PROJECT COMPONENTS
B ESPIDFV5A2 TIUART Q COMI4 Qespi2pd & B8 & ¢ O & & B B ®0A0 SBuld & >

Lesson 06
USB2.0

Introduction

In this class, we are expanding on what we learned in the previous class.

Before studying this class, please make sure you understand the implementation of the
touch function in the previous class. This will be of great help to your learning of this
class.

As you know, in the previous class, we already learned the two components, bsp_display
and bsp_i2c. It was because we fully utilized these two components that our Advance-P4
screen could be made touchable.

In this class, we will add a new component, bsp_usb, on top of these two components.
This will enable us to use the USB2.0 interface on our Advance-P4 to act as a mouse.
When you slide on the screen of the Advance-P4, you will be able to see that the mouse
on your computer also moves accordingly

Hardware Used in This Lesson

USB 2.0 on the Advance-P4

UART

USBE

Operation Effect Diagram

After running the code, you will be able to see that when you slide the screen on the
Advance-P4, the mouse on your computer also moves accordingly, and at the same
time, you can see the relevant coordinates printed on the monitor.

dle_t touch_task_handle =

touch_mo

> ouTuNE

> TIMELINE

Key Explanations

« Now, this class is about adding the bsp_usb component based on the project from the
previous class, so that we can slide and touch the Advance-P4 screen and control the
computer mouse.

« The previous touch function has already been realized using the bsp_usb and bsp_i2c
components from the previous class.

« Next, we will focus on understanding the bsp_usb component.
« First, click on the Github link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lesson06-USB2.0

« Then, drag the code of this lesson into VS Code and open the project file.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson06-USB2.0

« After opening it, you can see the framework of this project.

! idf_componen

L In the example of this class, a new folder named

> managed_components

"bsp_usb” was created under the "peripheral” directory.
Inside the "bsp_usb" folder, a new "include” folder and a
"CMakelists.txt" file were created.

The "bsp_usb" folder contains the "bsp_usb.c” driver file,
and the "include” folder contains the "bsp_usb.h" header
file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the USB2.0
transmission functionality written in "bsp_usb.c”.

USB 2.0 driver code

« The USB2.0 driver consists of two files: "bsp_usb.c” and "bsp_usb.h".
« Next, we will first analyze the "bsp_usb.h" program.
« "bsp_usb.h"is the header file of the USB2.0 driver module, mainly used for:

» Making the functions, macros and variable declarations implemented in "bsp_usb.c”
available for external programs to use

«+ Allowing other .c files to simply include "#include "bsp_usb.h" " to call this module

« In other words, it is the interface layer, exposing which functions and constants can be
used externally while hiding the internal details of the module.

+ In this component, all the libraries we need to use are placed in the "bsp_usb.h" file for
unified management.

« Inthis case, we need to fill in the version of esp_tinyusb in the idf _component.yml file
located in the main folder.

+ Since this is an official library, we need to use the official library to achieve the USB 2.0
transmission function on our Advance-P4.

~ LESSONOS ERELS main > ! idf_componentyml
> .devcontainer
> .vscode
> build
~ main
CMakelLists.txt
idf_componentym|
main.c
~ managed_components
> espressif_esp_lcd_touch
> espressif_esp led_touch gt911
> espressif_esp._finyusb
> espressif_tinyusb
~ peripheral
~ bsp_display
~ include
bsp_display.h
bsp._display.c
CMakelLists.txt

« When the project is compiled in the future, it will download the 1.1 version of the
esp_tinyusb library. After the download, these network components will be saved in
the "managed_components” folder. (This is automatically generated after filling in the

version number.)

Then comes the declaration of the variables we need to use, as well as the declaration
of the functions. The specific implementations of these functions are in "bsp_usb.c".

« They are all unified in "bsp_usb.h" for the convenience of calling and management.

send_hid_mouse_delta(intS_t delta x, intS_t delta y);

sb_ready Y

rr_t usb_init(18

- Let's take a closer look at "bsp_usb.c”, examining the specific functions of each one.

+ bsp_usb: This is a simple USB HID (mouse) module based on TinyUSB, including HID
descriptors, TinyUSB callbacks, and external initiolization/sending interfaces.

« Although these three functions have empty implementations, they must exist.

« They are callback interfaces for USB HID devices to communicate with the host —
tud_hid_descriptor_report_cb is used to return the HID report descriptor,
tud_hid_get_report_cb handles the GET_REPORT request from the host,

tud_hid_set_report_cb handles the SET_REPORT request or OUT data from the host.

tud_hid_descriptor_report_cb:

This callback is called by TinyUSB when the host requests the HID report descriptor
through the control transfer. The function should return a pointer to a static or global
descriptor array; in your implementation, it directly returns hid_report_descriptor,
suitable for scenarios with only one HID interface.

tud_hid_get_report_cb:

This is the callback for handling the host's GET_REPORT request: when the host wants to
read the "input/characteristic” report from the device side, TinyUSB will call it. The
function should fill the buffer with the report data and return the actual length; currently,
you return 0 (indicating no provision), and TinyUSB will handle this request as a STALL.

tud_hid_set_report_cb:

This callback is called when the host initiates a SET_REPORT (or sends data through the
OUT endpoint). The application should parse the contents of the buffer based on
report_id / report_type and perform the corresponding actions.

Then the following function is the interface we call to implement the USB 2.0 transfer
function.

usb_init() — Initialize USB HID mouse device
send_hid_mouse_delta() — Send mouse movement data

is_usb_ready() — Determine if USB is available

send_hid_mouse_delta:

This is an external sending interface used to send the mouse movement increment
through HID to the host: The function first checks tud _hid_ready() (whether the device
has been enumerated and the HID is available), and if ready, it calls
tud_hid_mouse_report(..) to send a mouse report containing the X/Y increment.

is_usb_ready:

This is a simple query function that returns the result of tud _hid_ready() to determine if
the TinyUSB HID interface is ready to send reports to the host (that is, whether the device
has successfully enumerated and the HID interface is available).

usb_init:

This function constructs tinyusb _config_t (containing string descriptors, configuration
descriptors, etc.) and calls tinyusb_driver_install(&tusb _cfg) to install the TinyUSB driver;
it is responsible for starting the USB subsystem and exposing the HID device to the
operating system (the host).

The above bsp_usb component has realized the HID mouse function in the USB 2.0
device mode, enabling the ESP32P4 to simulate mouse operations.

That's all about the bsp_usb component. Just know how to call these interfaces and
you're good to go.

Then, if we need to make a call, we must also configure the "CMakelists.txt" file located in
the "bsp_usb” folder.

This file is placed in the "bsp_usb" folder and its main function is to inform the build
system (CMake) of ESP-IDF: how to compile and register the "bsp_usb” component.

EXPLORER main.c s idf_componentym CMakeliststxt X
 LESSONOS peripheral > b CMakeLists.txt
> devcontainer FILE JRSE component_sources "*.c”
> wscode
g idf_component_registeri(SRCS ${component_sources}
¥ main REQUT!
CMakeLists.txt
idf componentyml
main.c
> managed_components
~ peripheral
+ bsp_display
~ include
bsp_displayh
bsp_display.c
CMakeLists.txt
© bsp_izc
~ include
bsp_i2ch
bsp_izc.c
CMakeListstxt
+ bsp_usb
~ include
bsp_usbh
bsp_usb.c
CMakeLBEsBa
= dangd
CMakelists.txt

- The reason why it is called esp_tinyusb here is that we called it in the "bsp_usb.h" file
(for other libraries that are system libraries, there is no need to add anything).

main.c b idf_componentym Make bsp_usb.h X

peripheral > bsp_usb > include > bsp_usb.h > ...

send_hid _mouse delta(intd t delta x, int8 t delta y);

Main function

The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER main.c

main

This is the entry file of the entire application. In ESP-IDF, there is no "int main()", but the
program starts running from "void app_main(void)".

Let's first explain main.c.

esp_log.h: Log printing in ESP-IDF (such as ESP_LOGI/ESP_LOGE, etc.).

freertos/FreeRTOS.h and freertos/tosk,h: Task management in FreeRTOS.

bsp_i2c.h: Initialize 12C for commmunication with the touch screen.

bsp_display.h: Obtain the touch screen coordinates.

"bsp_usb.h" USB HID mouse driver interface

main.c

main >

le_t touch_task_handle —

touch_me sk *param)

+ TAG: log tag.

« touch_task_handle: FreeRTOS task handle, used to manage the touch mouse task.

#define "TOUCH_MOUSE™
TaskHandle_t

The touch_mouse_task function:

This function, named touch_mouse_task, serves to convert the finger movements on the
touch screen into USB HID mouse movements. It continuously reads the touch screen
coordinates and press status within an infinite loop. When the touch screen is pressed
and the USB HID device is ready, it calculates the incremental movement (delta) of the
finger and sends the mouse movement report to the computer via
send_hid_mouse_delta; when the finger is released, it resets the previous coordinates.
The entire process cycles at a 10ms interval, achieving a mouse sampling rate of
approximately 100Hz.

touch_mouse_task(*param)
ESP_LOGI(TAG, "Touch mouse task started");

prev_x = Bxffff;
prev_y = 8xffff;
prev_pressed =]

vhile (1) {
if (touch_read() == ESP_OK
X, ¥i
pressed;
get_coor(&x, &y, &pressed);

if (pressed && is usb_ready()) {
if (prev_pressed && prev_x != exffff && prev_y !'= exffff

delta x x prev_x;
delta y y prev_y;

send_hid_mouse_delta(delta_x, delta y);
ESP_LOGI(TAG, "Mouse move: AX=%d, AY=%d", delta_x, delta_y):

prev_x = X;
prev.y = y;
} else if (lpressed) {

prev_x = Oxffff;
prev_y = Oxffff;
}

prev_pressed = pressed;

The workflow of the touch_mouse_task code:

Call touch_read() to obtain the touch screen status.

Use get_coor() to get the current coordinates (x, y) and the pressed state pressed.
If the screen is pressed and the USB is ready:

Calculate delta_x = x - prev_x, delta_y =y - prev_y.

Call send_hid_mouse_deltq(delto_x, delta_y) to send mouse movement.

Update prev_x/prev_y.

Reset prev_x/prev_y when releasing the touch.

Delay 10ms to achieve a 100Hz sampling rate.

Then comes the main function app_main.

app_main is the main entry function of the program. Its function is to initialize the system
peripherals and start the touch mouse task. It sequentially completes the initialization of
the 12C bus, the initialization of the touch screen, and the initialization of the USB HID
subsystem. If any initialization fails, it records the error and exits.

After successful initialization, it creates a FreeRTOS task named touch_mouse_task to
continuously read the touch screen input and convert it into mouse movement signals,
and finally starts the entire touch mouse application.

app_main(

ESP_LOGL(TAG,

i2c_init() != ESP_O
ESP_LOGE(TAG,
- ne

if (touch_init
ESP_LOGE(TAG,

ret

usb_init 1= ESP_O
ESP_LOGE(TAG,
return;

» 5, &touch task handle);

ESP_LOGE(TAG,
r' o

» Now let's take a look at the "CMakelists.txt” file in the "main” directory.
+ The function of this CMake configuration is as follows:

- Collect all the .c source files in the "main/" directory as the source files for the
component;

« Register the main component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_display”, the custom component "bsp_i2c",
and the custom component "bsp_usb".

+ This way, during the build process, ESP-IDF knows to build "bsp_display”, "bsp_i2c", and
"bsp_usb” first, and then build "main”.

main.c CMakeLists.txt X

main

> build
~ main

CMakelists.txt

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

//

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson06-USB2.0

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson06-USB2.0

Programming Steps

+ Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

THH er—‘

P

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

ESP_OK

. &pressed);

> OUTLINE
TIMELINE
PROJECT COMPONENTS

&2 Build

« Here, following the steps in the first section, first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

« Then here we need to configure the SDK

+ Click the icon in the picture below.

© wssong2
> devcontainer

Led blink task(void *puParameters)

© peripheral bsp_extra gplo_extra_init
~ indude

bsp_oxtrah S @
bsp_extrac :

CMakeListsit gpio_extra_set_level(1);

tangd VTaskDelay(1600 /

M CMakelistsixt
D READMEmd
o gpio_extra_set_level(0);

£ sdkconfigold VTaskDelay(1600 /

app_main(void)

xTaskCreate(led_blink_task, "led_blink ta

> ourume
> e /
> PROJECT COMPONENTS

o Espi0r 542U O cowte O eent [B] 8 ©0s0 Gui ESP-DF: CEMUL_E59-DF.OpenOcD Servel 1 26,Co

« Wait for a moment for the loading process to complete, and then you can proceed
with the related SDK configuration.

main.c SDK Configuration editor X

Build type
v Bootloader config
Bootioader manager

Build type

Application build type ©

Default (binary application + 2nd stage bootioader)
Serial Flash Configurations
Security features
Application manager No Binary Blobs &
:ao‘ FOM Behavior Bootloader config
erial flasher config
Partition Table Bootloader manager
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions Project version ©

Enable reproducible build @

Usetime/date stamp for bootloader ®

Component config
Application Level Tracing 1
© Blutooth Bootloader optimization Level @
Common Options
Console Librat
o Con'zwam - Size (-Os with GC, -Oz with Clang)
TWAI Configuration Log
* Legacy ADC Driver Configuration ;
Legacy ADC Calibration Configuration ErE i ety @)
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations Info
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format
Legacy I12C Driver Configurations color @
Legacy PONT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESPILS Serial Flash Configurations
ADC and ADC Calibration -

e —— Allow app adjust Dummy Cycle bits in SP1 Flash for higher frequency (READ HELP FIRST)

Timestamp &

Milseconds Since Boot

flash settings are the same
as mine.)

SDK Configuration editor X

Discard

Build type

~ Bootloader config . 8 .
Bootloader manager Serial Flash Configurations
~ log
SSNZTZ;:; s ¢ Enable the support for flash chips of XMC (READ DOCS FIRST)

Security features

Bootloader config

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST)

Security features
Application manager

Enable flash encryption on boot (READ DOCS FIRST) @
Boot ROM Behavior
Szl Serial flasher config
Partiton Table Disable download stub @
~ Compiler options
Replace ESP-IDF and project paths in binaries Flash SPI mode O
Enable C+ + exceptions
~ Component config
Application Level Tracing)
< Bluetooth Flash Sampling Mode ©
Common Options
@y STR Mode
~ Driver Configurations prey——
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration 0Lz
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations DG
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
e Reset to bootioader
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence.

ao

Flash size ©
16MB

Detect flash size when flashing bootloader ®

After flashin

Reset after flashing

« Then, search for "hid" in the search box.

SDK Configuration editor X

hid Discard
Build type
~ Bootloader config X R
e e Replace ESP-IDF and project paths in binaries
~ log
Format
Serial Flash Configurations X
Security features Component config
Application manager ESP HID
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options.

Compiler options

V/ Replace ESP-IDF and project paths in binaries

Task stack size for ESP HID BR/EDR @

2048

Replace ESP-IDF and project paths in binaries Task stack size for ESP HID BLE ©

Enable C++ exceptions
~ Component config 0%
Application Level Tracing
~ Bluetooth TinyUSB Stack

G Human Interface Device Class (HID)
Console Library
DTS TinyUSB HID interfaces count @

TWAI Configuration

~ Legacy ADC Driver Configuration

Legacy ADC Calibration Configuration

+ After the configuration is completed, be sure to save your settings.

+ Then we will compile and burn the code (as detailed in the first class).

+ Here, we would like to introduce to you another very convenient feature. With just one

button press, you can perform the compilation, upload, and open the monitor at once.
(This is provided that the entire code is error-free.)

BPLORER
 LESSONO4
> devcontainer
> wscode
> build
CMakeliststt
idf_componentym!
S T skHandle_t touch_task_handle =
~ peripheral
 bspdisplay touch_task(void *param)
+ include
bsp.displayh 51,
bsp_dis £ (touch_read() ==
CMakelists uinti6_t x, y;
T pressed;
- get_coor(8x, 8y, &pressed);

if (pressed) {

CMakelists it }
£ dangd
CMakeListstxt VTaskDelay

app_main(

touch_init() I=

W ESP-IDFvSA2 TYUART ®COMI4 Oespi2pt & 8 £ 8 O 2 [8] Bl ®0A0 @Buld & D [ESP-IDF: QEMU] _[ESP-IDF: OpenOCD Server]

After waiting for a while, the code compilation and upload were completed, and the
monitor also opened.

At this point, please remember to use another Type-C cable to connect your
Advance-P4 through the USB2.0 interface. Only in this way can you use the USB2.0
protocol for communication.

+ When you slide the screen of the Advance-P4, the mouse on your computer also
moves along. At this moment, your Advance-P4 becomes your new mouse.

Meanwhile, you can also see the corresponding coordinates printed on the monitor
when you turn it on.

BRLORER
[\ tessonos
> devcontainer
> wscode
> build
~ main
M CMakelists.txt
idf componentymi
main.c
< f
> managed_components
7 CEEE] TaskHandle_t touch_task_handle
~ bsp.display
> include touch_mouse_task(void *param)
bsp_display.c
CMakelistsixt
> bsp.izc
int16_t prev_x = BxFFFe;
~ bsp_usb .
uint16_t prev_y = exFFFf;
T prev_pressed =

C bspusbh
bsp_usb.c le

1
CMakeListstxt if (touch_read() ==

= dangd
PROBLEMS ~ OUTPUT DEB OE TERMINAL
CMakelists it

= dependencieslock
sdkeonfig
= sdkeonfigold

Lesson 07
Turn on the screen

Introduction

In this class, we will start by teaching you how to turn on the screen. Then, while turning
on the screen backlight, we will display "Hellow Elecrow” on the screen. Of course, you can
replace it with whatever you want.

The main focus of this class is to teach you how to turn on the screen backlight and turn
on the screen, in preparation for the subsequent courses.

Hardware Used in This Lesson

The screen on the Advance-P4

Display Screen CXM090IPS-D27 Schematic Diagram

Upper polarizing filter

£ 4

Color Filter

Liquid crystal layer

TFT substrate

Lower polarizing filter

oW W -

Firstly, the backlight (usually an LED array) emits a white surface light source, providing
the basic light for display.

Then, the lower polarizer polarizes and filters the light from the backlight, allowing only
light of a specific polarization direction (such as horizontal) to pass through, forming
linearly polarized light. Next, the light reaches the TFT substrate, where the thin-film
transistors (TFTs) on the substrate act as switching devices, controlling the electrical
state of the liquid crystal molecules in the corresponding pixel area based on the applied
voltage, thereby changing the alignment direction of the liquid crystal molecules.

Liquid crystal molecules have optical anisotropy and electric field response
characteristics. The change in their alignment direction modulates the polarization state
of the passing polarized light. Subsequently, the light enters the color filter, which is
composed of red, green, and blue primary color filter units.

only light corresponding to the color of the filter units (for example, only red light can
pass through the red filter unit) can pass through, generating primary color light. Finally,
the upper polarizer (whose polarization direction is perpendicular to that of the lower
polarizer, such as horizontal for the lower polarizer and vertical for the upper polarizer)
filters the light that has passed through the color filter again.

Only light with a polarization direction consistent with the allowed direction of the upper
polarizer can pass through.

Through the precise control of the liquid crystal molecules in each pixel by the TFT
substrate, the polarization state of the polarized light is adjusted. Combined with the
color filtering of the color filter and the polarization selection of the upper and lower
polarizers, different pixels present different brightness and colors, ultimately forming a
visible color image.

Operation Effect Diagram

After running the code, you will be able to visually see that "Hello Elecrow” is displayed on
the screen of the Advance-P4.

Hello Elecrow

Key Explanations

+ The main focus of this class is to turn on the screen for display. Here, we will provide
everyone with a new component called bsp_illuminate. This component is mainly
responsible for driving the screen, turning on the backlight, and performing related
displays. As you know, you can call the interface we have written at the appropriate
time.

« Next, we will focus on understanding the bsp_illuminate component.

« First, click on the Github link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
uch-Screen/tree/master/example/V1.0/idf-code/Lesson07-Turn_on_the_screen

« Then, drag the code of this lesson into VS Code and open the project file.

« After opening it, you can see the framework of this project.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson07-Turn_on_the_screen

> build

¥ main In the exampile of this class, a new folder named

: "bsp_illuminate” was created under the "peripheral”
directory. Inside the "bsp_illuminate” folder, a new
"include” folder and a "CMakelists.txt" file were created.

The "bsp_illuminate” folder contains the
"bsp_illuminate.c” driver file, and the "include” folder
contains the "bsp_illuminate.h"” header file.

The "CMakelists.txt" file will integrate the driver into the
build system, enabling the project to utilize the screen
display functionality described in "bsp_illuminate.c”.

Screen display code

» The driver code displayed on the screen consists of two files: "bsp_illuminate.c” and
"bsp_illuminate.h".

« Next, we will first analyze the "bsp_illuminate.h” program.
« "bsp_illuminate.h" is a header file for the screen display module, mainly used for:

« Making the functions, macros, and variable declarations implemented in
"bsp_illuminate.c” available for use by external programs.

+ Allowing other .c files to simply include "bsp_illuminate.h” to call this module.

+ In other words, it is the interface layer, exposing which functions and constants can be
used externally while hiding the internal details of the module.

- In this component, all the libraries we need to use are placed in the "bsp_illuminate.h”
file for unified management.

+ Such as esp_lcd_ek79007.h, esp_Ivgl_porth, and Ivgl.h (these are libraries under the
network component)

« Inthis case, we need to fill in the versions of esp_lcd_ek79007, esp_Ivgl_port and Ivgl
in the idf_component.yml file located in the main folder.

« Since these are official libraries, we need to use the official libraries to achieve the
screen display function on our Advance-P4.

idf_componentyml X
BEOS& man>

TERMINAL

+ When the project is compiled in the future, it will automatically download the
esp_lcd_ek79007 library version 1.0.2, the esp_Ivgl_port version 2.6.0, and the Ivgl
version 8.3.11. After the download is completed, these network components will be
saved in the managed _components folder. (This is automatically generated after
filling in the version numbers.)

« Then comes the declaration of the variables we need to use, as well as the declaration
of the functions. The specific implementations of these functions are in
"bsp_illuminate.c”.

+ They are all uniformly placed in "bsp_illuminate.h” for ease of calling and
management. (When used in "bsp_illuminate.c”, we will understand their functions
later.)

display_init();
set_lecd_blight(uint32

- Let's take a look at "bsp_illuminate.c” again. We'll examine the specific functions of
each one.
bsp_illuminate:

This component provides underlying driver support for the subsequent application layer
(such as in app_main where it displays "Hello Elecrow”). It enables you to draw and
display using the LVGL API without having to worry about the details of the hardware
driver.

Then the following functions are the interfaces we call to implement the screen display.
blight_init / set_lcd_blight — Control the backlight.

display_port_init / display_port_deinit — Manage the display interface resources.
Ivgl_init — Start the LVGL framework.

display_init — Provide the encapsulation of the overall display initialization process.

blight_init:

Initialize the LCD backlight. It will configure the specified backlight GPIO as output mode,
and then configure the PWM signal through the LEDC timer + channel to lay the
foundation for subsequent adjustment of the backlight brightness.

set_lcd_blight(uint32_t brightness) :

Set the LCD backlight brightness. Based on the incoming brightness value (0-100),
calculate the corresponding PWM duty cycle, call the LEDC API to update the duty cycle,
and achieve the brightness adjustment of the backlight; if it is 0, then completely turn off
the backlight.

display_port_init(void) :

Initialize the display interface. It first configures and creates the MIPI DSI bus and DBI 10,
then selects the color format according to the pixel depth, configures the DPI parameters
(resolution, timing, etc.), and finally initializes the EK79007 controller panel through the
vendor driver and completes the reset and startup.

display_port_deinit(void) :

Reinitialize the display interface. It releases the panel, IO, and DSI bus resources, clears
the related handles, and closes the backlight to ensure that the resources will not be
leaked.

Ivgl_init() :

Initialize the LVGL graphics library. It creates the LVGL task, timer, and memory
configuration, then registers the previously created LCD panel in LVGL as a display
device, sets the buffer, resolution, color format, refresh mode, etc., and prepares for the
subsequent drawing of the graphical interface.

display_init() :
The complete display initialization entry function.

It calls the backlight initialization — display interface initialization — LVGL initialization in
sequence. If any step fails, it immediately returns an error. Finally, it defaults to setting the
backlight brightness to 0 (turn off the backlight). This is the overall entry point when
called externally.

That's all about the components of bsp_illuminate. Just remember how to call these
interfaces and you'll be fine.

Then, if we need to make a call, we must also configure the "CMakelists.txt" file located in
the "bsp_illuminate” folder.

This file is placed in the "bsp_illuminate” folder and its main function is to inform the build
system (CMake) of ESP-IDF: how to compile and register the "bsp _illuminate”
component.

EXPLORER main.c bsp_illu ate. bsp_illumin: c CMakeliststxt X
 LESSONO4 B EEO & peripheral > bspilluminate > M CMakeListsxt
> wscode 1 FILE(ECURSE component_sources "*
> build
« main idf_component_register(SRCS ${component_sources}
c IRS "includ
CMakeLists:bxt . 1vgl_port)
idf_ componentyml
mainc
 managed_components
> espressif_cmake_utilities
> espressif_esp_lcd_ek79007
> espressif_esp_Ivgl_port
> Wgl_lvgl
<" peripheral, bsp_illuminate
~ include
bsp.illuminateh
bsp.illuminate.c
CMakeListstxt

The reason why it is driver, esp_lcd _ek79007, Ivgl, and esp_Ivgl_port is that we called
them in "bsp_illuminate.h" (for other libraries that are system libraries, there is no need
to add them)

main.c bsp_illuminateh X

peripheral > bsp_illuminate > include > bsp_illuminateh > = V_

Main function

The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER

CMakelists txt
idf componentyml
mainc
> managed_components
~ peripheral\ bsp.illuminate
~ include
bsp illuminate.h
bsp illuminate.c
CMakelists txt
CMakelists txt
£ dependenciesock
B partitions.csv
= sdkconfig

+ This is the entry file of the entire application. In ESP-IDF, there is no "int main()". Instead,
the program starts running from the "void app_main(void)" function.

- Let's first explain main.c.

« On the ESP32-P4, it completes the acquisition of the power LDO — initialization of the
screen driver — turning on the backlight — displaying the text "Hello Elecrow” in the
center of the screen using LVGL.

+ "bsp_illuminate.h” This is a header file of the board support package (BSP), which
encapsulates the initialization of LCD display screens and backlight control interfaces
related to hardware, allowing the main program to directly call these functions without
needing to concern about the underlying register operations.

«+ "lvglLh™ This is the main header file of the LVGL graphics library, providing functions for
creating and managing GUI objects, setting styles, layouts, and event handling,
enabling you to display text, graphics, and animations on the screen.

. "freertos/FreeRTOS.h": This is the core header file of FreeRTOS, defining the basic types,
macros, and data structures of the operating system, providing underlying support for
task scheduling, time management, and memory management.

. "freertos/task.h”: This is the header file of FreeRTOS task management, providing API for
creating, deleting, suspending, and delaying tasks, enabling the program to achieve
concurrent execution of multiple tasks.

+ "esp_ldo_regulator.h” This is the header file of the LDO (Low Dropout Linear Regulator)
control interface provided by ESP-IDF, allowing the program to apply for, configure,
and control LDO channels, providing stable voltages for peripherals such as LCD.

« "esp_log.h" This is the header file of the log printing interface of ESP-IDF, providing log
output of different levels (INFO, ERROR, etc.), enabling developers to debug and track
the running status of the program.

« The following two lines of code define the control handles for LDO channels 3 and 4,
which are used to bind to the actual LDO power channels during subsequent
initialization, so that the program can control the output of different voltage power
supplies.

Ivgl_show_hello_elecrow():

Function: Create a centered label on the current screen of LVGL and display the text
"Hello Elecrow”. Also, set the font size/color and other styles for the text. (If modifying the
content, replace "Hello Elecrow") Key points:

First, call lvgl_port_lock(0) to attempt to acquire the LVGL mutex lock (0 indicates
non-blocking immediate return), to prevent concurrent modification of LVGL objects. If
the lock acquisition fails, the function simply returns and prints an error - this might not
display the text because other tasks may hold the lock.

Use Iv_scr_act() to obtain the current screen object and set the background to white
(LV_PART_MAIN).

Create a label, set the text, initialize the static Iv_style_t label_style and set the font
(Iv_font_montserrat_42), color to black, background transparent, and then add the style
to the label.

Finally, call lv_obj_center() to center the label, release the LVGL lock Ivgl_port_unlock()
to allow the LVGL rendering task to continue working.

(The font Iv_font_montserrat_42 must be enabled and linked to the project during LVGL
build, otherwise there will be compilation/linking or runtime issues.)

vgl_show_hello_elecrow(
if (lvgl port_lock(e) != {
"LV6L lock failed”

return;

1v_obj_t *screen = lv_scr_act();
1v_obj_set_style_bg color(screen, g
1v_obj_set_style_bg_opa(screen, LV_OPA_COVER, LV_|

1v_obj_t *hello_label = lv_label create(screen);
if (hello label
s LVGL label failed™);
1vgl_port_unlack
return;

1v_label set text(hello label, "Hello Elecron”);

1v_style t label style;
1v_style_init(&label_style);
1v_style_set_text_font(&label style, &lv_font _montserrat_42);
1v_style_set_text_color(&label_style,
1v_style set_bg opa(&label_style, LV_OPA TRANSP);

1v_obj add style(hello label, &label style, LV_PART MAIN);
1v_obj_center(hello_label);

1vgl_port_unlock();

init_fail_handler(const char *module_name, esp_err_t err):

Function: When the initialization of a certain module fails, this function will enter an
infinite loop and print the error message (including the module name and error code
string) once per second.

init_fail handler(*module name, esp err t err) {
shile (1) {
“[%s] init failed: ¥s", module_name, esp_err_ to_name(err));
vTaskDelay (1000)) ;

system_init(void

Function: System-level initialization. First, it acquires two LDO channels (Ido3/Ido4), then
calls display _init() to initialize the display system, and finally turns on the backlight to the
maximum brightness (set_Icd_blight(100)). Key points:

First, construct esp_Ido_channel _config_t (setting chan_id = 3 and 4 with voltage
2500/3300 mV), and use esp_ldo_acquire_channel() to obtain the channel handle. If it
fails, call init_fail_handler() to shut down and print the error message.

- display_init() is implemented elsewhere (our "bsp_illuminate.c”), which is responsible
for the complete initialization of the display link including backlight GPIO, MIPI DSI, LVGL
registration, etc.

« After success, set the backlight brightness to 100 (maximum), and print the success
message.

Note: esp_ldo_acquire_channel() requires LDO driver and hardware support. If the
current board/chip does not have the corresponding LDO, it will return an error. (To
light up the screen, these two channels must be enabled.)

+ Any step in display_init() that fails will be captured by init_fail_handler() and shut
down to print the error message.

)
1do3_cof = {
-chan_id

.voltage mv - 2508,

cof, &ldo3);

.chan_id
.voltage_m

esp_ldo_acquire_channel(&ldo4 cof, &ldo4);
init_fail_handler("

display_init();

init_fail handler(’

« Then comes the main function app_main.

« Function: Program entry point. It prints the start information, calls system_init() to
complete the initialization of hardware and display, then calls
Ivgl_show_hello_elecrow() to draw the text, and finally prints the success message.

Key points: The function system_init() is blocking and critical: if it fails, it will enter an
infinite loop in the init_fail_handler() and the app_main will not proceed.

The function Ivgl_show_hello_elecrow() simply returns after creating the LVGL object;
the actual image is refreshed to the screen by LVGL's own rendering task or tick
(depending on the implementation of lvgl_port).

app_main(

system_init();

1vgl_show_hello_elecrou()

Now let's take a look at the "CMakelists.txt” file in the "main” directory.
The function of this CMake configuration is as follows:

Collect all the .c source files in the "main/" directory as the source files for the
component;

Register the 'main” component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_illuminate”.

This way, during the build process, ESP-IDF knows to build "bsp_illuminate” first, and
then build "main”.

EXPLORER main.c CMakelLists.bd main X

< LESSONO4 main >

[CMAKE_SOURCE_DIR}/ma

> build
main

~ main

Note: In the subsequent courses, we will not start from scratch to create a new
"CMakelists.txt" file. Instead, we will make some minor modifications to this existing
file to integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson07-Turn_on_the_screen

Programming Steps

« Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

S

|
P

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation
will not be affected by your previous actions.)

app_main(void) {

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson07-Turn_on_the_screen

« Here, following the steps in the first section, first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

« Then here we need to configure the SDK.

+ Click the icon in the picture below.

» OUTLINE

> TIMELINE
> PROJECT COMPONENTS
B ESP-IDFv542 X UART @ COM14 D e pd | & e @& B { 5 Build £

« Wait for a moment for the loading process to complete, and then you can proceed
with the related SDK configuration.

nfiguration editor X

Discard Reset
Build type

tage bootloader)

ths in binaries

Oz with Clang)

After the SDK configuration is enabled, search for "CONFIG_IDF _EXPERIMENTAL_FEATURES"
in the search box, check the box, and then save the configuration.

bnfiguration editor X

CONFIG_IDF_EXPERIMENTAL_FEATURES

Make exp

« After setting "CONFIG _IDF _EXPERIMENTAL_ _FEATURES", then search for PSRAM. Set it in
sequence here to enable the 200M PSRAM, so that the screen can display a picture.

« Finally, remember to save the successfully configured configuration.

« Only by enabling the PSRAM option can there be sufficient RAM allocated to the screen.
Enabling the CONFIG _IDF _EXPERIMENTAL_FEATURES option allows you to select 200M
PSRAM and use a higher RAM speed

C mainc SDK Configuration editor X ponen C bsp_illuminatec

Build type Component config
> Bootioader config Hardware Settings
Security features Sleep Config

Pull-up PSRAM CS pin in light sleep @
Application manager
LDO Regulator Configurations
Boot ROM Behavior .
V' Reserve one LDO regulator channel for PSRAM (READ HELP) @

Serial flasher config LDO regulator channel that used to power PSRAM and MPLL (READ HELP) ()

Parttion Table 2
@ PSRAM povier domain voltage
e 1ov
ESP PSRAM
7 supportfor extemal p5AM @ _|
PSRAM config
Line Mode of PSRAM chip in use ()

16-Line-Mode PSRAM

Set PSRAM clock d ©
Enable Executable in place from (XiP) from PSRAM feature (READ HELP) (D
Enable PSRAM ECC (D
v Initialize SPI RAM during startup ®
/ Pre-configure memory protection for PSRAM (D
Ignore PSRAM when not found (
SPI RAM access method (O
Make RAM allocatable using malloc(as well

V. Runmemory test on SPI RAM initalization)

« In order to meet the font size requirements for LVGL as specified in the previous code,
here we need to search for "font’, open the font, so that we can use the font set by
LVGL.

1vgl_port_unlock();

return;

1v_label_set_text(hello_label,

S c 1v_style_t label_style;
1v_style_init(&label_style

1v_style_set_text_font(&label_style, &lVifantimontserrat 42);
1v_style_set_text_color(&label style, LV

1v_style_set_bg_opa(&label_style, LV_OPA_TRANSP)

SDK Configuration editor X idf componentym! bsp_illuminate.c CMakeli illuminate.n
font

Build type Enable Montserrat 30)
Bootloader config Enable Montserrat 32 ©
Security features Enable Montserrat 34 ©
Application manager enable Montserrat 36 @
Boot ROM Behavior Enable Montserrat 38 @
Serial flasher config Enable Montserrat 40 @

Partition Table Enable Montserrat 42 ©

N
Compiler options Enable Montserrat 44 ©

¢ TG Enable Montserrat 46 ©

Enable Montserrat 48 ©

Enable Montserrat 12 sub-pixel ©

Enable Montserrat 28 compressed

Enable Dejavu 16 Persian, Hebrew, Arabic letters (O
Enable Simsun 16 CIK ©

Enable UNSCIl 8 (Perfect monospace font)

as mine.)

SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C+ + exceptions
Component config
Application Level Tracing
v Bluetooth
Common Options
Console Library
v Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations

After the configuration i

« Then we will compile

flash settings are the same

Bootloader config
Serial Flash Configurations

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) (O
« Enable the support for flash chips of XMC (READ DOCS FIRST) ()

Security features
Enable flash encryption on boot (READ DOCS FIRST) ()

Serial flasher config
Disable download stub ®

Flash SPI mode
Qo

Flash Sampling Mode ©

STR Mode

Flash SPI speed ©

80 MHz

Flash size
16MB

Detect flash size when flashing bootloader

s completed, remember to save your settings.

and burn the code (as detailed in the first class).

+ Here, we would like to introduce to you a very convenient feature. With just one button

press, you can perfor
provided that the ent

! i componentymi
¢ mainc
> managed_components
 peripheral\ bsp.illuminate
 include
€ bsp_iluminateh
bsp_iluminate.c
CMakelistsixt
M CMakeListsxt

dkconfig.old

DESPADFVSA2 TYUART § COMIS Oespipt @ @

the compilation, upload, and open the monitor at once. (This is

ire code is error-free.)

system_init(
err = display_init();
£ (err oK) {

init_fail handler("LCD", err);

LOD init success

err - set_lcd_blight(100);
init_fail_handler("LCD Backlight”, err);

nt opened (brightness: 100)

app_nain(

)<
systen_init();

1vgl_show_hello_elecrou();

s 5 0 >l6]lE B ®h0 Gui o > £52-I0F: QEMU] _(ESP-IDF: OpenOCD Server]_Ln 110,Col 1

+ After waiting for a while, the code compilation and upload were completed, and the
monitor also opened.

« At this point, please remember to use another Type-C cable to connect your
Advance-P4 through the USB2.0 interface. This interface provides a maximum current
of about 500mA from the computer's USB-A port. When the Advance-P4 is using more
external devices, especially the screen, it requires a sufficient current source. (It is
recommended to use a charger for connection.)

USB E

« After the burning process is completed. You will be able to see that your Advance-P4
screen lights up, and the message "Hello Elecrow” appears in the center of the screen.

Hello Elecrow

Lesson 08
SD Card File Reading

Introduction

In this lesson, we will start teaching you how to use the SD card on the Advance-P4
development board to perform read and write operations on files stored in the SD card.

Hardware Used in This Lesson

SD card on the Advance-P4

Operation Effect Diagram

After running the code, you will be able to visually see that a file named "hello.txt"
appears in the SD card, with the content "hello world!" already written in it.

_fail (s

pp_main(

(Linit: 10.00 Miz)

ourune
> TMELINE

Key Explanations

« The focus of this lesson is how to use the "SD card’, how to initialize it, and how to read
and write files.

» Here, we will prepare another new component "bsp_sd" for everyone. The main
function of this component is to implement the aforementioned file read and write
operations.

« You only need to know when to call the interfaces we have written in it.
» Next, let's focus on understanding the "bsp_sd" component.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lesson08-SD_Card_File Reading

« Then drag the code of this lesson into VS Code and open the project files.

« After opening, you can see the framework of this project.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson08-SD_Card_File_Reading

In the example of this course, a new folder named
bsp_sd is created under the peripheral directory. Within
the bsp_sd folder, a new include folder and a
"CMakelists.txt" file are created.

L The bsp_sd folder contains the driver file "bsp_sd.c’, and
~ peripheral d

the include folder contains the header file "bsp_sd.h".

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the SD card
read/write functionality implemented in "bsp_sd.c”.

Code for SD Card File Reading and Writing

» The code for SD card file reading and writing consists of two files: "bsp_sd.c” and
"bsp_sd.h".

« Next, we will first analyze the "bsp_sd.h" program.

« "bsp_sd.h"is the header file of the file read-write module, and its main functions are as
follows:

« Declare the functions, macros, and variables implemented in "bsp_sd.c” for use by
external programs.

+ Allow other .c files to call this module simply by adding the directive #include
"bsp_sd.h".

« In other words, it serves as an interface layer that exposes which functions and
constants are available to the outside, while hiding the internal details of the module.

« In this component, all the libraries we need to use are included in the "bsp_sd.h" file,
enabling unified management.

+ Next, we declare the variables and functions we need to use. The specific
implementation of these functions resides in "bsp_sd.c"

Concentrating these declarations in "bsp_sd.h" is for the convenience of calling and
management. (We will learn about their specific roles when they are used in
"bsp_sd.c".)

esp_err t create file(*filename);
esp_err_t write_string file(: *filename, *data);
esp_err_t read_string file(*filename);
esp_err_t urite file(*filename, *data, size t size);
esp_err_t write_file_seek(*filename, *data, size_t size, int32_t seek);
esp_err_t read file(*£ilename, *data, size t size);
esp_err_t read_file_size(*filename);
get_sd_card_info(void);
esp_err_t format_sd_card();
esp_err_t sd_init();

Now let's look at the specific functions of each function in "bsp_sd.c".

The "bsp_sd” component provides significant support for everyone to use file
read-write interfaces in the future. By understanding the functions of these functions
clearly, you can flexibly read from and write to the SD card file system.

It includes the custom header file "bsp_sd.h", which defines function declarations, log
macros, constants, and paths.

"card” stores information such as the status, capacity, and speed of the SD card
device.

"sd_mount_point" is the file system mounting directory of the SD card.
peripheral > bsj

#include "bsp sd.h"

sdmmc_card_t *card;
sd_mount_point[] =

esp_err_t create file(*filename)
{
ting file %s", filename);
- fopen(filename, "wb");

“Failed to create f
return 3

create_file:

Use fopen(filename, "wb") to create a file in binary write mode;Close the file immediately
after successful creation; Return ESP_FAIL if opening fails.

Function: Ensure that an empty file exists on the SD card.

write_string _file:

Open the file in text write mode using fopen(filename, "w");
Write the string using fprintf(file, "%s", data);

Close the file after writing.

Function: Save a section of text (string) into a file on the SD card.
*filename, *data)

filename);

read_string_file:

Open the file for reading;

Use "fgets()" to read a line of text;

Check if there is a newline character "\n", and if so, replace it with a string terminator;
Print the read content.

Function: Read a line of text content from the file and output it to the "log".

esp err_t ar *filename)
FO("Reading file ¥s”, filename);

FILE *file = fopen(filename, "
if (Ifile)

fclose(file);
r *pos = strchr(line, "\n’);

*pos \e';
"Read a line from file: '%s'", line);

O("Read from file: '%s'", line);

Note: The maximum number of characters that can be read here is 64. If you need
to read more characters, you will need to adjust the size.

esp_err_t read string file(ar *filename)
{
0("Reading file %s", filename);
*file = fopen(filename, "r
(1file)

char line[|
fgets(line,
fclose(file);

main.c r bsp_sd.c

h >) SD_MOUNT_POINT

lude <string.h>
ude <sys/unistd.h>
ude <sys/stat.hs
ude

write_file:

Open the file in binary write mode ("wb");

Use "fwrite()" to write the "data” in memory to the file;

If the number of bytes written is not equal to "size", it indicates a write failure;
Finally, close the file.

Function: Suitable for writing binary data or image files.

err_t write_file(*filename,

write_file_seek:

Open the file;

Call "fseek()" to move the file write pointer to the specified offset;
Then execute "fwrite()";

Return an error if the operation fails.

Function: Write data at a specific position in the file, commonly used for log appending or
data block replacement.

80 esp_err_t Writelfile seek(*filename, *data, size t size, int32_t seek)
{
size_t success_size = 0;
*file = fopen(filename, "w
if (Ifile)
“Failed to open file for writing™);
return 3

if (fseek(file, seek, (S

“Failed to seek file™);
return 8

success_size = furite(data, 1, size, file);
if (success_size != size)

fclose(fi

fclose(file
"File written™);

read_file:

Open the file;

Use "fread()" to read a fixed-size data from the file;

If the number of bytes read does not match the expected value, an error is reporte
Otherwise, close the file and return success.

Function: Read binary files or fixed-length data blocks.

118 esp_err_t read file(*filename, *data, size t size)
{
size t success_size = @;
FILE *file = fopen(filename, "rb")
Ifile)
"Failed to open file for reading");
return ;

success_size = fread(data, 1, size, file);
(success_size != size)

fclose(file);
“"Failed to read file");
return ;

file);
"File read success");

read_file_size:

Read all data blocks in the file in a loop;

Accumulate the "size” to get the total number of bytes of the file;
Output the total size of the file.

Function: Calculate the file size and verify the correctness of writing.

read_file size(*read_filename)

fopen(read_filename, "rl

buf [1824]
read_succ fread(buffer, 1, (buffer), read_file)) > ©

size += read suc

fclose(read fil

read_write_file:

Open the source file (for reading) and the target file (for writing);

Read 1024-byte content from the source file in blocks;

Write the content to the target file;

Check whether the number of written bytes is consistent with the number of read bytes;
Finally, close the files and output the message indicating successful copying.

Function: Implement file copying operation.

rr_t read_write file(*read_filename, *write_filename)

fopen(read_filename,
write file = fopen(write_filename,
(!read_file

e = fread(buffer, 1, buffer), read_file)

write(buffer, ze, write file
re C

sd_init:

Create an "esp_vfs_fat_sdmmc_mount_config_t" configuration structure to set:
« "format_if_mount_failed = false” — Do not automatically format;

» "max_files = 5" = Maximum 5 files can be opened simultaneously;

« "allocation_unit_size = 16 * 1024" — Each cluster size is 16KB;

Initialize "sdmmc _host_t" and "sdmmc_slot_config_t"
« Set clock, command, and data line pins;

- Set bus width (1-line mode);

« Reduce the clock frequency to 10MHz to improve stability;

Call "esp_vfs_fat_sdmmec_mount()" to mount the SD card file system to "/sdcard”;
If successful, print card information.

Function: Mount the SD card and establish the "FAT" file system.

196 esp_err_t sd_init()
{
esp_err_t err = 5
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = B
.max_files = 5,
.allocation_unit_size = 16 * 1024,

sdmmc_host_t host =
host.slot =
host.max_freq khz = 10eee;

sdmmc_slot_config t slot_config -
slot_config.cll
slot_config.cmd
slot_config.de = GPTO_NUK
slot_config.width -
slot_config.flags
“Hounting filesystem");
esp_vfs_fat_sdmmc_mount(sd_mount_point, &host, &slot_config, &mount config, &card);

ion.");

return err;
tem mounted”);

sdmmc_card_print_info(, card);
return err;

get_sd_card_info:

Print detailed information such as the type, capacity, and speed of the SD card to the
console.

get_sd_card_info()

sdmmc_card_print_info(» card);

format_sd_card:

Call "esp_vfs_fat_sdcard_format()" to format the "FAT" file system;

Output an error message if formatting fails.

Function: Clear the SD card file system and reformat it.

237 esp_err_t format_sd_card()
{
esp_err_t err = H
err = esp_vfs_fat_sdcard format(sd_mount_point, card);
if (err 1=
"Failed to format FATFS (¥s)”, esp_err_to_name(err));
return err;

return err;

» That concludes our introduction to the "bsp_sd” component. It's sufficient for everyone
to understand how to call these interfaces.

- If you need to call them, you must also configure the "CMakelists.txt" file under the
"bsp_sd" folder.

- This file, placed in the "bsp_sd" folder, mainly functions to tell the build system
(CMake) of "ESP-IDF" how to compile and register the "bsp_sd” component.

~ LESSONO8-5D

build

~ peripheral \ bsp_sd
-

sp_sd.c
CMakeLists.txt

+ The reason why "fatfs" is involved here is that we have called it in "bsp_sd.h" (other
libraries that are system libraries do not need to be added).

Main function

« The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

« Add the main folder to the "CMakelists.txt" file of the build system.

*param)

*name, esp_err_t err)

, name, esp_err_to_name(err));

vTaskpelay

« Thisis the entry file of the entire application. In ESP-IDF, there is no int main(), and the
program starts running from void app_main(void).

. Let's first explain "main.c”.

« When the program runs, the general process is as follows:

Initialization Phase

sd_init() — Detects and mounts the SD card.

File Operation Phase
Users call encapsulated functions such as:
write _string_file() to write data;

read_string_file() for reading and verification;

Debug Log Output

All operations have "SD_INFO()" log output for debugging purposes.

Exception Handling

If file opening, reading, or writing fails, it will immediately return "ESP_FAIL" and print an
error log.

« Next, let's explain the main code file "'main.c”.

« First, it includes the custom main header file "'main.h™. This header file usually contains
log macros, peripheral initialization declarations, SD card-related function
declarations, and more.

« In essence, including this file enables the current 'main.c” to call system initialization
functions and SD card functional functions.

- Below is the content included in "'main.h™

EXPLORER main, mainh X
| tEssonos-sp main > indude mainh >
> wscode
> build
~ main
~ include

mainh

CMakeLists txt

Extensions (Ctrl+Shift+X) - 1 requires update
~ include
bsp_sdh
bsp sd.c
CMakelists txt
= dangd
gitignore
CMakeLists txt
= debuglog
= dependenciesock

+ The following defines a FreeRTOS task handle.

- Itis used to record the created SD card test task "sd_task’, facilitating system
management.

TaskHandle_t sd task_handle;

« The following is a FreeRTOS task function, whose main function is to repeatedly test the
read and write functions of the SD card.

CMakeLists et
mainc *file_hello -
~ peripheral\bsp_sd *data = "hello world!
~ include
1548 kp sdn get_sd_card_info();
bsp sd.c
CMakeListsxt hile (1
£ dangd
e ere = write_string_i1e (FHEHREER, data);
if (err 1=
£ debuglog
£ dependencies ock
B partitions.csv
READMEmd
= sdkeonfig
£ sdkeonfigold VTaskbelay (200 /

err = read_string_ile(filelhells);
if (err 1=

VTaskDelay (1000 /
D card t
vTaskDelete

init_fail(*name, esp_ern_t err)

2 60 » 6B B QAo Boid & b (ESP-IDF: QEMU] _[ESP-IDF: OpenOCD Server]

Among them:

"file_hello" is the file path (usually "/sdcard/hello.txt").

"data” is the string content to be written to the file.

Note: If your file name is too long, the read and write operations will eventually fail.
You can do the following:

Click "SDK Configuration Editor".

sd_task(*param)
esp_err_t err =

*file hello
*data = "hello world!";

get_sd_card_info();

write_string file(file_hello, data);
err !=

{"Write file failed");
continue;

vTaskDelay(20@ /

err = read_string file(file_hello);
if (err !=

{"Read file failed");

vTaskDelay(1660 /
"SD card test completed”);
vTaskDelete

SOK Configuration editor X

Save Discard
8
Build type
~ Bootloader config

FAT Filesystem support
Bootloader manager &
Number of volumes ©

2
Serial Flash Configurations
Security features

Application manager

Partition Table sectorsize ©
Compiler options
Replace ESP-IDF and project paths in binaries 409
Enable C++ exceptions
Component config CRNEEAO
Application Level Tracing
~ Bluetooth SEET
- Bluedroid Options
BT DEBUG LOG LEVEL
3 tures(please disable BLE 4.2 f enable BLE 5.0)
atures(please disable BLE 5.0 f enable BLE 4.2)

Long filename suppor

Max long filename length ©

255

+ This way, you can adapt to longer file names.

» Then, the subsequent operations in the "sd_task” function are as follows: first, obtain
the SD card information, then write the data you want to write into the file with the
specified path and name, and delay for 200ms. This delay is to wait for the write
operation to stabilize and succeed, so that you can smoothly read out the content you
wrote.

init_fail(*name, esp_err_t err)

"%s initialization failed 1", name, esp_err_to_name(err));
vTaskDelay(1eee /

+ When the module initialization fails (such as the SD card not being inserted, wrong
wiring, etc.), it will cyclically print error logs and block the program.

« The function is to prevent the execution of tasks in an error state from continuing.

« The code here calls "sd_init" from the "osp_sd" component to initialize our SD card,
which is a prerequisite for performing operations on the SD card.

« Then there is the main function app_main.

- ESP-IDF projects start executing from app_main():
° Print startup information;
- Call Init() to complete SD card initialization;

- Create a task with: xTaskCreatePinnedToCore(sd_task, "sd_task", 4096, NULL, 5,
&sd_task_handle, 1);

- Name: sd_task

- Stack size: 4096 bytes
- Priority: 5

- Runson CPU corel

«+ Print "SD card test begin” to indicate that the test task has started.

app_main(

xTaskCreatePinnedToCore(sd_task, , 4096 . 5, &sd_task handle, 1);

Finally, let's understand the "CMakelists.txt" file in the "main” directory.

The role of this CMake configuration is:
- Collect all ".c" source files in the 'main/" directory as the component's source files;

> Register the "main” component with the ESP-IDF build system and declare that it
depends on the custom component "bsp_sd".

This way, during the build process, ESP-IDF knows to first build "bsp_sd" and then build
"main”.

- LESSON08-SD DEBELA
URSE main ${CMAKE_SOURCE_DIR}/m:

build

CMakelLists.txt
main.c
ipheral’, bs|

Note: In subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make some minor modifications to this existing file to
integrate other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

-Advanced-10.linch-ES

https: Crow

//github.com/Ele -RD/CrowPane 32-P4-HMI-Al-Display-10Z

500-IPS-To

uch en/tree/master/example/V1.0/idf-code/lesson0

SD_Card_File Reading

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson08-SD_Card_File_Reading

Programming Steps

+ Now the code is ready. Next, we need to flash it to the ESP32-P4 to observe the actual
behavior.

« First, connect the Advance-P4 device to your computer via a USB cable.

(S crowpgnel
s ;

"rurn:nvn -‘

P

w‘llll:IIIIIYI‘

FEEEEEE

« Before starting the flashing process, first delete all files generated during compilation
to restore the project to an "unbuilt” initial state. (This ensures that subsequent
compilations are not affected by your previous build residues.)

mainc X

init_fail(

app_main(

5, &sd_task_handle, 1);

outuNe
TIMELINE

« First, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

« Next, we need to configure the SDK.

« Click the icon shown in the figure.

> OUTLINE

> TIMELINE

> PROJECT COMPONENTS
&3 ESP-IDF v54.2 7 UART & COM O L L2 § : B Ao @ Build £ D

+ Wait for a moment while it loads, and then you can proceed with the relevant SD
configuration

SDK Configuration editor X

Discard

Build type Build type

< Bootoader config

Application build type ©
Bootloader manager

Default (binary application + 2nd stage bootioader)

Serial Flash Configurations Enable reproducible build
Security features h
Application manager No Binary Blobs ©
oot ROM Behavior Bootloader config
Serial flasher config
Partition Table Bootloader manager
~ Compiler options Usetime/date stamp for bootloader
Replace ESP-IDF and project paths in binaries
Enable C-++ exceptions D (@
Component config
Application Level Tracing 1
v Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format
Legacy 12C Driver Configurations Color ®
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Bootloader optimization Level ()
Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity &

Info

Timestamp &
Millseconds Since Boot

Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST)

Subsequently, search for "flash” in the search box(Ensure your flash configuration
matches mine).

SDK Configuration editor X

Discard

Build type Bootloader config
~ Bootloader config . o N
R Serial Flash Configurations

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©

Seral Flach Configurations Enable the support for flash chips of XMC (READ DOCS FIRST)

S E Security features

Application manager

Boot ROM Behavior

Serial flasher config

Partition Table

~ Compiler options
Replace ESP-IDF and project paths in binaries Flash SPI mode @
Enable C+ + exceptions

Enable flash encryption on boot (READ DOCS FIRST) @
Serial flasher config
Disable download stub ®

Component config ao
Application Level Tracing)
* Bluctooth Flash Sampling Mode ©
Common Options
Console Library STR Mode
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations Detact flash size when flashing bootloader &
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager

Flash SPI speed

Before flashing ®

Reset to bootioader

ESP-TLS After flashing ©
ADC and ADC Calibration

Wireless Coexistence. Reset after flsching

After completing the configuration, remember to save your settings.
Then we can compile and flash the code (as detailed in the first lesson).

Here we'd like to introduce a very convenient feature: there's a single button that can
execute compilation, uploading, and opening the monitor all at once. (This works on
the premise that the entire code is error-free.)

» OUTLINE

TIMELINE
» PROJECT COMPONENTS

Q CcoMl4 O p b 0 3 Build
After waiting for a while, the code compilation and upload will be completed, and the
monitor will open automatically.

Once the code runs, you will be able to visually see that a file named "hello.txt" appears
in the SD card, with the content "hello world!" already written inside.

> ouTuNE
> TmMELNE

PROJECT COMPONENTS.

Lesson 09
LVGL Lighting Control

Introduction

In previous courses, we separately lit an LED, implemented touch testing, and lit up the
screen.In this lesson, we will use LVGL to create two buttons to control the LED connected
to the UARTI interface for turning on and off operations.

Pressing the ON button can turn on the LED, and pressing the OFF button can turn off the
LED.

Hardware Used in This Lesson

The UARTI interface on the Advance-P4 is connected to an LED.

(R e
|

Operation Effect Diagram

After running the code, when you press the "LED ON" button on the Advance-P4, you will
be able to turn on the LED; when you press the "LED OFF" button, you will be able to turn off
the LED.

LED Controller

LED Centroller

LED OFF.

Key Explanations

« Now, the focus of this lesson is on how to use LVGL to create button objects and display
the LVGL interface on the screen to achieve interactive effects.

« First, click the GitHub link below to download the code for this lesson.

Ch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

m/Elecrow-RD/CrowPanel-Advance

https://github.c

uch-Screen/tree/master/example/V1.0/idf-code/ Lighting Control

« Then drag the code for this lesson into VS Code and open the project file.

« Once opened, you can see the framework of this project.

build

o main

It can be seen that the components we use in this lesson
are all those explained in previous sessions:

+ bsp_display: Touch-related driver.

« bsp_i2c: Provides 12C driver support required for
touch functionality.

+ bsp_extra: Used to control the LED connected to the
UART! interface.

» bsp_illuminate: Responsible for screen initialization,
screen lighting, and LVGL initialization.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson09-LVGL_Lighting_Control

LVGL Initialization Code

The components used in this lesson have been explained in detail in previous courses.

« Here, we will only describe the LVGL initialization in detail.

Ivgl_init() is the core initialization function of the entire graphic display system.
+ It mainly completes the following tasks:

- Initializes the LVGL operating task environment (task/timer)

- Registers and binds the display driver (Display) with LVGL's rendering layer

- Registers and binds the touch input driver (Touch) to the LVGL input system

« The purpose of doing this is to ensure that LVGL's graphic rendering, screen refreshing,
and touch event handling are correctly linked with the underlying hardware.

- a,

err - lvgl_port_init(RIVgINEFs);

« This part starts the LVGL task and timer through Ivgl_port_init(), completing the
following:

- Allocating stack space for the LVGL main task (LVGL task);
o Setting the task priority;
> Configuring LVGL's periodic refresh timer;

- Defining the maximum sleep time (i.e, the time the LVGL main loop sleeps when idle);

+ The LVGL task continuously calls lv_timer_handler() to refresh the U, process
animations, and respond to events.

penipheral > bsp_illuminate bsp_illuminate.c > hgl_init()
esp_err_t lvgl_init()
_port_display cfg t|disp cfg|= {
-monochrome =
»= 9

-rotation =
-swap_xy =
.mirror x =
.mirror_y =

.flags =
.buff_dma =
.buff_spiram =
-sw_rotate =

»= 9

.full_refresh =

.direct_mode =

lvgl port display dsi cfg t 1vgl dpi cfg = {
-flags =

.avoid_tearing =

;ny_lvgl_disp = lvgl_port_add disp dsi(&isp cfg, |&lvgl dpi_cfg);

This step registers the display screen with LVGL through Ivgl_port_add _disp_dsi(),
serving as a bridge between "LVGL" and the "screen”.

The initialization content includes:

io_handle: The physical communication interface of the screen (such as "MIPI", "SPI",
"RGB", etc.)

panel_handle: Screen panel driver handle
buffer_size: Frame buffer size (used for rendering images)

double_buffer: Whether to use double buffering (prevents tearing and improves
refresh smoothness)

hres/vres: Screen resolution

color_format: Color format (e.g., "RGB565")

- rotation: Screen rotation/mirror configuration
o flags:

- buff_dma, buff_spiram: Whether the buffer is placed in internal memory or external
"PSRAM"

- full_refresh: Whether to enable full-frame refresh mode

- direct_mode: Whether to directly output LVGL rendering results to the screen
(reducing intermediate layers)

« Significance: All LVGL drawing operations will ultimately be updated to your screen
through this display interface.

t lvgl_dpi_cfg -

.avoid_tearing =

|_disp_dsi(&disp_cfg, &lvgl dpi cfg);

err = ESP_FATL;

« Register the touch input device with LVGL so that it can receive finger touch events.

« The initialization content includes:

- disp: The bound display object (the touch area corresponds to the screen)

> handle: Touch driver handle (such as "FT5x06", "GT9Il", "CST816", etc.)

Significance: Only in this way can LVGL's internal event system (such as button clicks,
swipes) obtain touch coordinate data. After this part of the initialization, clicking
buttons on the screen will produce visible effects.

« This concludes our explanation of the components.

Main function

« The main folder is the core directory for program execution, which contains the main
function executable file main.c.

« Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER mainc 2 X bsp_illuminate.c

v LEssonoy GEOS mand> € maincd @ btn off click eventflv_event t)
> wscode
> build #include "main.h"
~ main
~ include
mainh
CMakelistsxt

esp_ldo_channel_hand
esp_ldo_channel_handle_t

idf_ componentyml
main.c btn_on_click_event(lv_event_t *e)
> managed_components .
Je;
gpio_extra_set_level
("LED turned ON");

~ peripheral
~ bsp_display
v include
bsp_displayh

S btn_off_click_event(lv_event_t *e)

~ b 2xctr
sp_extra 8

~ include gpio_extra_set_level

bsp_extrah LED turned OFF");

bsp_extrac

This is the entry file of the entire application. In ESP-IDF, there is no int main(),
execution starts from void app_main(void).

Let's first explain main.c to see how the interfaces in these four components are called

to achieve the LVGL lighting effect. It creates a simple interface on the touch screen,
containing two buttons labeled "LED ON" and "LED OFF" to control the LED on GPIO48.

esp_ldo_channel_handle_t 1do3 =
esp_ldo_channel_handl

system init(
esp_err_t err = ESP_OK;

esp_ldo_channel_config_t §d88 cof = {

.chan_id = 3,

.voltage mv = 2580,
err = esp_ldo_acquire_channel(&ldo3_cof, &lde3);
if (err != ESP_OK) init_fail_handler(“1do3", err);

esp_ldo_channel_config_t ldo4 cof = {
.chan_id = 4,
.voltage mv = 3368,
err = esp_ldo_acquire_channel(&ldo4_cof, &ldo4);
if (err != ESP_OK) init fail handler(
("LDO3 and LDO4 init succ

Function: "LDO" (Low Dropout Regulator) is a low dropout regulator used to supply
power to devices such as screens and touch chips.

Two channels are enabled here:
- "LDO3" outputs 2.5V (to power the screen)

- "LDO4" outputs 3.3V (to power logic circuits or other peripherals)

After successful initialization: Provides stable power for subsequent LCD and touch
modules.

Initialize the "12C" bus for communication with the touch chip.
The touch input part of LVGL usually needs to read coordinates via 12C.

After successful initialization: The system can obtain touch event coordinate data
through 12C.

err = i2c_init

Function: Initialize the touch driver and register touch interrupts or polling read
mechanisms.

Enable LVGL to receive touch events (clicks, swipes, etc.).

After successful initialization: User clicks on the screen can trigger LVGL events.

Function: "display _init()" Initialize the LCD hardware interface and initialize the LVGL
library;

.

"set_lcd_blight(100)": Turn on the screen backlight brightness (100 indicates maximum
brightness).

.

After successful initialization: The LVGL graphics system starts running, and the screen
can display Ul elements.

Function: Configure "GPIO48" as an output pin;

Control the LED switch through “gpio_extrq_set_level(true/folse)".

After successful initialization: The system can turn the LED on or off through button
clicks.

create_led_contry

("UI cr

Function: Create a concise interface using LVGL:
« Background: white;
« Title: "LED Controller”;
« Two buttons:
"LED ON": Triggers btn_on_click_event() to turn on the LED;
- "LED OFF": Triggers btn_off_click_event() to turn off the LED.

Now let's take a look inside this function.

create_led control_ui(

1v_obj_t *scr = 1v_scr_act();
1v_obj_set_style_bg_color(scr, lv_color_hex(®xFFFFFF), LV_PART_MAIN);

1lv_obj t *1abel = lv_label create(scr);
1lv_label set text(label, "LED Controller™);
1lv_obj_align(label, LV_ALIGN_TOP_MID, ©, 58);

1v_obj_set style text font(label, &lv_font_montserrat_24, 8);

lv_obj_t *btn_on = lv_btn_create(scr);

1v_obj_set_size(btn_on, 128, 58);

1v_obj_align(btn on, LV ALIGN CENTER, ©, -48);
1v_obj_add_event_cb(btn_on, btn_on_click event, LV _EVENT CLICKED,

lv_obj_t *label_on = 1lv_label create(btn_on);
1v_label set text(label on, " LH

1v_obj_t *btn_off = 1v_btn_create(scr);

1v_obj_set size(btn_off, 128, 58);

1v_obj_align(btn_off, LV _ALIGN CENTER, @, 4@);
1v_obj_add_event_cb(btn_off, btn_off_click_event, LV_EVENT_CLICKED,

lv_obj_t *label off = 1v_label create(btn off);
1v_label set text(label off, "LED 0O

Iv_scr_act():

Obtains the currently active screen object (LVGL has only one main screen by default).

u can understand it as "l want to place things on the current screen’.

Iv_obj_set_style_bg_color()

Sets the background color of this screen to white (OXFFFFFF).

create_led control_ui(

Iv_obj_t *scr = lv_scr_act();
1v_obj_set_style_bg_color(scr, lv_color_hex(8xFFFFFF), LV_PART_MATN);

1v_obj_t *1abel = lvilabelicr'eatd-.scr H
1v_label_set_text(label, "LED Controller™);
1v_cbj_align(label, LV ALIGN TOP MID, 8, 58);

1v_obj_set_style text font(label, &lv_font_montserrat_24, 8);

.

This section creates and configures a title text:

'Iv_label_create(scr)" Creates a text label object on the main screen.
Iv_label_set_text(): Sets the text content to "LED Controller".

'v_obj_align(): Sets the alignment to top-center, with a downward offset of 50 pixels.

v_obj_set_style_text_font()" Sets the font size to 24pt.

Result: A large-sized title "LED Controller” is displayed centered at the top of the screen.

rrat_24, @);

Iv_btn_create(scr)": Creates a button object and places it on the main screen.
'Iv_obj_set_size()" Sets the button size to 120x50 pixels.
'Iv_obj_align(): Aligns the button to the center, with an upward offset of 40 pixels.

'lv_obj_add_event_cb()" Binds a button event—when the button is "clicked’, it calls
the 'btn_on_click_event()' function.

Within this function, 'gpio_extro_set_level(true);' is executed — turning on the LED.

Result: A button is created slightly above the center of the screen, used for "turning on
the light”.

create_led control ui(

_obj_t *label = 1v_label cr‘eatel
_label_set_text(labe
1v_obj_align(label

style text_font(label, &lv_font_mon

N_CE|
, btn_on_click_e

« This label is a child object of the button (created within the button).
« Its text will be automatically displayed in the center of the button.
+ Result: The text "LED ON" is displayed on the button.

create_led_control_ui(

*scr - 1v_ser_act
yle_bg_color(scr, lv_color_he

t *label - IV label create
label ext (labe
v_obj_align(label,

1v_obj_set_style_text_font(label, &lv_font_mon

*btn
obj_align(btn_on,

v_obj_add_event_cb(btn

label_on = IV 1abel
1v_label set_text(lab

+ The "OFF" button is created using the same logic.

» Now let's look at the events bound to these two buttons after they are clicked.

r_obj_align(btn_on, E
1v_obj_add_event_ch(bt T_CLICKED,

« Here are the event handlers triggered when the buttons are clicked, which turn the LED
on or off with immediate response.

+ Next is the main function app_main:
« Role: Serves as the program entry point, prints startup logs;
+ Calls system_init() to complete all initializations;

+ Enters a loop to keep the program running (LVGL's own tasks execute in the
background).

app_main(

+ Finally, let's understand the "CMakelists.txt" file in the main directory.
+ The role of this CMake configuration is:
- Collects all .c source files in the main/ directory as the component's source files;

+ Registers the "main” component with the ESP-IDF build system and declares that it
depends on "bsp_extra”, "bsp_display”, "bsp_illuminate’, "bsp_i2c", and "esp_timer".

+ This way, during the build process, ESP-IDF knows to build these five components first,
then build the "main” component.).

EXPLORER CMakelists.bd X _illumi
- LESSONO9
) FILE(E main ${CMAKE_SOURCE_DIR}/main/*.c
> build

idf_component_re

main.c ¢ CMa ¢ mainh X

BREOS& mn

build

~ main

Note: In subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
uch-Screen/tree/master/example/V1.0/idf-code/Lesson09-LVGL_Lighting Control

Programming Steps

+ Now the code is ready. Next, we need to flash it to the ESP32-P4 to see the actual effect.

« First, connect the Advance-P4 device to our computer via a USB cable.

FHEHT -‘

P

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson09-LVGL_Lighting_Control

« Also, remember to connect an LED to the UARTI interface.

+ Before starting the flashing preparation, delete all compiled files to restore the project
to its initial "unbuilt” state. (This ensures that subsequent compilations are not affected
by your previous operations.)

1

vTaskDelay(pdMS_TO_TI

« Here, follow the steps from the first lesson to first select the ESP-IDF version, code
upload method, serial port number, and the target chip (ESP32-P4).

+ Next, we need to configure the SDK.

+ Click on the icon shown in the figure below.

BRLORER

 LESSONOS

> wscode

> build
~ main

CMakelists txt

idf_componentym!

C main

c

> managed_components

~ periphy
~ inclu

C bsp_illuminateh

€ bsp.i
cmal
CMak

ESP-IDF: Explorer

eral\ bsp_illuminate

system_init(void) {

e

set_lcd_t

de

illuminate.c
kelists txt
elistsixt
lod

W partitions.csv
dkconfig
= sdkconfigold

- display_init();

init_fail_handler("LCD", err);

nit succe

blight(100);

init_fail_handler:

Lo b

system_init(

1vgl_show_hello_elecrou();

©USRT § CoMI4 O espizps (@] B 2

(=]

» & B B ®oA0 @i f D ESP-IDF: QEMU]_ [ESP-IDF: OpenOCD Serve]

+ Wait for a moment while the configuration loads, and then you can proceed with the

relevant SDK configuration.

Buil

SDK Configuration editor X

d type
Bootioader config
Bootioader manager

Serial Flash Configurations

Security features

Apy

plication manager

Boot ROM Behavior
Serial flasher config
Partition Table

Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ excep
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESP-TLS
ADC and ADC Calibration
Wireless Coexistence

Cammon FSD-ralated

Discard

Build type
Application build type &

Default (binary application + 2nd stage bootioader)
Enable reproducible build ©
No Binary Blobs @

Bootloader config

Bootloader manager
Use time/date stamp for bootloader @

Project version ©
1

Bootloader optimization Level
Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity
Info

Format
Color @
= @)
Milliseconds Since Boot

Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SP1 Flash for higher frequency (READ HELP FIRST) ©

Then, search for "flash” in the search box. (Make sure your flash configuration matches
mine.)
SDK Configuration editor X

Discard Reset

Bootloader config

Serial Flash Configurations
app ad
v Enable

Security features
Enable flash encry

paths in binari

After flashing ©

flashing

After the configuration is completed, remember to save your settings.
Next, we will compile and flash the code (detailed in the first lesson).

Here, we also want to share a very convenient feature: there is a single button that can
execute compilation, uploading, and opening the monitor in one go. (This works on the
premise that the entire code is error-free.)

> OUTLINE
> TIMELINE

> PROJECT COMPONENTS

ART & COM14 {F esp32p4 4 ®@14A0

After waiting for a while, the code compilation and upload will be completed, and the
monitor will open automatically.

At this point, please remember to use an additional Type-C cable to connect your
Advance-P4 via the USB 2.0 interface. This is because the maximum current provided
by a computer's USB-A interface is generally 500mA, and the Advance-P4 requires a
sufficient power supply when using multiple peripherals—especially the screen. (It is
recommended to connect it to a charger.)

« After running the code, when you tap the "LED ON" button on the Advance-P4's
touchscreen, you will be able to turn on the LED; tapping the "LED OFF" button will allow
you to turn off the LED.

LED Controller

Lesson 10
Temperature and Humidity

Introduction

In this lesson, we will teach you how to use the I12C interface on the Advance-P4 board.
We will connect a temperature and humidity sensor to the 12C interface, then display the
values obtained from the sensor on the screen.

The key learning focus of this lesson is the use of the 12C interface. We will reuse the 12C
component and screen display component covered in previous lessons, and additionally
introduce a new temperature and humidity component: bsp _dht20.

Hardware Used in This Lesson

12C Interface on the Advance-P4

Temperature and humidity sensor Schematic Diagram

-
e

Solder Pad

Electrode C>
Moisture
Holding =>

Substrate

Electrode E>

« In the temperature and humidity sensor, humidity detection relies on hygroscopic
materials. These materials absorb or release water in response to changes in
environmental humidity, thereby altering their own electrical properties (such as
resistance, capacitance, etc.). The sensor obtains humidity information by detecting
the changes in the electrical signal between the material and the electrodes.

« Temperature detection typically uses thermal-sensitive elements (such as
thermistors). When the temperature changes, the resistance value of the
thermal-sensitive element changes. The sensor measures this resistance change and
converts it to obtain the temperature value.

« Finally, it combines the data from both to determine the temperature and humidity
conditions.

Operation Effect Diagram

After running the code, you will be able to visually see the real-time temperature and
humidity collected by the temperature and humidity sensor displayed on the screen of
the Advance-P4.

Temperature = 27.8 C Humidity = 47.0 %

Key Explanations

« The focus of this lesson is on using the temperature and humidity sensor connected
via the 12C interface. Here, we will prepare another new component for you:
bsp_dht20. The main function of this component is to communicate with the DHT20
temperature and humidity sensor through the 12C bus, implementing functions such
as sensor initialization, status detection, data reading, and verification to obtain
environmental temperature and humidity data. You just need to know when to call the
interfaces we have written in it.

«+ Next, let's focus on understanding the bsp_dht20 component. (The bsp_i2c
component and bsp_dht20 component were explained in detail in previous courses.)

« First, click on the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessonl0-Temperature_and _Humidit

« Then drag the code for this lesson into VS Code and open the project file.

« Once opened, you can see the framework of this project.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson10-Temperature_and_Humidity

main. In the example for this lesson, a new folder named
> managed_components bsp_dht20 is created under the peripheral) directory.
Within the bsp_dht20\ folder, a new include folder and

a "CMakelists.txt” file are created.

The bsp_dht20 folder contains the "bsp_dht20.c” driver
file, and the include folder contains the "bsp_dht20.h"
header file.

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the
temperature and humidity acquisition functions
predefined in "bsp_dht20.c".

nfig.old

Temperature and Humidity Acquisition Code

« The driver code for the temperature and humidity sensor consists of two files:
"bsp_dht20.c” and "bsp_dht20.h".

« Next, we will first analyze the "bsp_dht20.h" program.

» "bsp_dht20.h" is the header file for the temperature and humidity acquisition module,
and its main purposes are:

> To declare the functions, macros, and variables implemented in "bsp_dht20.c" for
use by external programs. This allows other .c files to call functions from this module
simply by adding #include "bsp_dht20.h".

> In other words, it acts as an interface layer—it exposes which functions and
constants are available for external use while hiding the internal implementation
details of the module.

- In this component, all the libraries we need to use are included in the "bsp_dht20.h
file, enabling unified management.

« Then, we declare the variables we need to use, as well as the functions—whose
specific implementations are in "bsp_dht20.c".

« Centralizing these declarations in "bsp_dht20.h" is for the convenience of calling and
management. (We will understand their roles when they are used in "bsp_dht20.c".)

DHTZ0"

(fmt.) ESP_LOGI(:
(ft:) ESP_LOGDY(]
(fmt:) ESP_LOGE(

temperature;

- Let's now examine the specific functions of each function in "bsp_dht20.c".

+ The bsp_dht20 component is primarily used to communicate with the DHT20
temperature and humidity sensor via the 12C bus. It implements functions such as
sensor initialization, status detection, data reading, and verification to obtain
environmental temperature and humidity data.

Then the following functions are the interfaces we call to initialize the temperature and
humidity sensor and obtain its readings.

- The 'print_binary’ function: Its role is to convert a 16-bit integer 'value' into a
corresponding binary string. It can be used in scenarios where data needs to be
visually displayed in binary form, such as checking register values or the binary
composition of sensor data.

- The 'print_byte’ function: This function splits an 8-bit byte ‘byte’ into high 4 bits and low
4 bits, then converts them into a binary string prefixed with '0b’ to make the data more
readable. It is useful when debugging 12C communication data that requires
formatted printing of single-byte data, such as status bytes or data bytes returned by
the sensor.

- The 'dht20_reset_register function: Its main function is to reset a specified register.
The specific operation is to first read the current value of the register, then rewrite it
according to the requirements of the DHT20 protocol. It can be used when sensor
initialization fails or the status is abnormal, requiring resetting of key registers (such as
calibration or configuration registers like '0x1B’, '0xIC', '0XIE") to restore the sensor to
normal working condition.

- The dht20_status function: Sends the 0x71 commmand via 12C and reads the value of
DHT20's status register to obtain the sensor's current working status, such as whether
calibration is completed or a measurement is in progress. It is used to check if the
sensor status is normal before initialization, confirm if the sensor is ready before
measurement, or troubleshoot to identify the cause of abnormal sensor status.

- The dht20_reset_sensor function: Continuously detects the sensor's status. If the
status does not meet expectations (status value does not match 0x18, where 0x18
typically indicates calibration completion and readiness), it repeatedly resets key
registers until the status is normal or the retry limit of 255 times is reached. It is used
during sensor initialization (e.g., called in dht20_begin) to ensure the sensor enters a
working state, or to attempt recovery after sensor communication anomalies.

- The dht20_begin function: Initializes the DHT20 sensor through a process that registers
the sensor's device address via 12C to obtain a handle, then calls dht20_reset_sensor
to check and reset the sensor. It returns an error code if initialization fails. This function
must be called during system startup or before the first use of the sensor; otherwise,
subsequent data reading may fail.

- The dht20_is_calibrated function: Checks if the sensor has completed calibration by
determining whether a specific bit in the status register is 0xI8—calibration completion
is a prerequisite for the sensor’'s normal operation. It is used to confirm sensor
readiness after initialization, verify normal sensor status before measurement, and
avoid reading invalid data.

- The dht20_crc8 function: Calculates the checksum of data using the CRC8 algorithm
specified in the DHT20 protocol (polynomial 0x31) to verify the integrity of received
data. It is used after reading sensor data (e.g., in dht20_read _data) to compare the
calculated CRC value with the CRC byte returned by the sensor, determining if errors
occurred during data transmission.

The dht20_read_data function: Fully implements the temperature and humidity data
reading process, including sending measurement commands (OxAC, 0x33, 0x00),
waiting for the sensor to complete measurement (with timeout detection), reading 7
bytes of data (including status, humidity, temperature, and CRC), and parsing raw
data into actual temperature and humidity values (humidity in percentage,
temperature in Celsius) after CRC verification. This core function of the component is
called when environmental temperature and humidity need to be obtained, but it
requires the sensor to be initialized and calibrated beforehand (confirmed via
dht20_begin and dht20_is_calibrated).

That concludes our introduction to the bsp_dht20 component—you only need to
understand how to call these interfaces.

If you need to call these interfaces, you must also configure the "CMakelists.txt” file
located in the bsp_dht20 folder.

This file, placed under the bsp_dht20 folder, mainly functions to tell the ESP-IDF build
system (CMake): how to compile and register the bsp_dht20 component.

(

idf_componen

The reason we include bsp_i2c and esp_timer here is that they are explicitly used in
"bsp_dht20.h". (Other system libraries do not need to be added because they are
already integrated into the ESP-IDF framework by default.)

Main function

« The main folder is the core directory for program execution, containing the main
function executable file main.c.

« Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER mainc

main

« This is the entry file of the entire application. In ESP-IDF, there is no int main(); instead,
the program starts running from void app_main(void).

- Let’s first explain main.c:

« First, the Init function is called to initialize the following components in sequence: LDO
power supply (to provide power for peripherals), 12C bus (the foundation for sensor
communication), DHT20 sensor (to complete registration and status calibration), and
display module. If initialization fails, an error is reported in a loop through init_fail.

« After successful initialization, set the screen backlight to 100%, call dht20 _display to
create an LVGL white text label (with a black background, initially displaying default
temperature and humidity), then create the read_dht20 task. This task cyclically
checks the DHT20 calibration status every second (re-initializes if not calibrated),
reads sensor data. If it fails, an error message is displayed on the screen; if successful,
update_dht20_value is used to format and update the LVGL label to display real-time
temperature and humidity.

- First is the reference to main.h, where we store the header files used and macro
definitions.

m X CMal main.h x

main > ind

« Here, it includes libraries for the three components used:
o bsp_i2c: Since the temperature and humidity sensor communicates via I12C.

o bsp_illuminate: Used for displaying temperature and humidity values on the screen.

o bsp_dht20: For initializing the temperature and humidity sensor and obtaining its
readings.

) ESP_LOGI(|

- stdio.h, string.h: Provide basic input/output (e.g., printf) and string processing (e.g.,
memeset, snprintf) functions, supporting operations such as data formatting.

o freertos/FreeRTOS.h: This is the core header file of FreeRTOS, defining the basic
types, macros, and data structures of the operating system, providing underlying
support for task scheduling, time management, and memory management.

- freertos/task.h: This is the header file for FreeRTOS task management, providing APIs
for task operations such as creation, deletion, suspension, and delay, enabling the
program to implement multi-task concurrent execution.

o esp_ldo_regulator.h: This is the header file for the LDO (Low—Dropout Linear
Regulator) control interface provided by ESP-IDF, allowing programs to apply for,
configure, and control LDO channels to provide stable voltage for peripherals such
as LCDs.

o esp_log.h: This is the header file for the log printing interface of ESP-IDF, providing
log output at different levels (INFO, ERROR, etc.), enabling developers to debug and
track program running status.

- esp_private/esp_clk.h: The private interface for ESP32 clock control (such as clock
frequency configuration), ensuring stable system timing;

o TaskHandle_t read_dht20;: Declares a FreeRTOS task handle, which is used to
manage the lifecycle operations (such as creation and suspension) of the DHT20
data reading task.

o static lv_obj_t *dht20_data = NULL;: Declares a LVGL text label pointer (visible only
within the current file), initially set to NULL. It is used to point to and manipulate the
on-screen label that displays temperature and humidity data.

+ The following two lines of code define the control handles for LDO channels 3 and 4.
They are used to bind to actual LDO power channels during subsequent initialization,
enabling the program to control power output at different voltages.

dht20_display():

This function is used to initialize the text label for displaying temperature and humidity
data in the LVGL graphical interface:

First, it acquires the LVGL operation lock via Ivgl_port_lock(0) (to avoid multi-task
conflicts). Then, it creates a text label object dht20_data at the center of the screen,
configures the label style (transparent background, white 30-point font), sets the screen
to a black opaque background, and assigns the initial text "“Temperature = 0.0 C Humidity
= 0.0 %" to the label. Finally, it releases the LVGL lock, establishing a visual carrier for
displaying real-time temperature and humidity data later.

dht2e_display()

if (lvgl_port

void update _dht20_value(float temperature, float humidity):

This function is used to update the display content of temperature and humidity data on
the LVGL interface:

First, it checks whether the temperature and humidity display label dht20_data is valid. If
valid, it uses snprintf to format the incoming temperature (temperature) and humidity
(humidity) values into a string in the format of "Temperature = X.X C Humidity = X.X %".
Then, it calls the LVGL interface Iv_label _set_text to update the formatted string to the
label, realizing real-time refresh of data on the screen.

update_dht2e_value(temperature, humidity)

n
{
if (dht2e_data

buffer[66];
snprintf (buff (buffer) ure - %.1f ¢ id %.1f %", temperature, humidity);
1v_label ct(dht20_data, buff

void dht20_read _task(void *param):

This function is a FreeRTOS task function that executes periodically (every 1second) in an
infinite loop: It first checks if the DHT20 sensor is calibrated, and re-initializes it if not. If
data reading fails, it displays an error message on the screen and prints a log. If reading
succeeds, it updates the temperature and humidity data displayed on the screen and
prints detailed logs, enabling continuous acquisition and visual display of sensor data.

void init_fail(const char *name, esp_err_t err):

Function: When initialization of a module fails, this function is entered to run in an infinite
loop, printing an error message (including the module name and error code string) once
per second.

rr_ta_name(err));

vTaskDelay(16€0 / portTICK PERIOD MS);

void Init(void):

This function is used for system initialization, which configures the LDO3 (2.5V) and LDO4
(3.3V) power channels, initializes the 12C bus (with a 200ms delay for stabilization),
initializes the DHT20 sensor and display module in sequence. If any step of initialization
fails, it calls the ‘init_fail' function to output error messages in a loop, ensuring that
subsequent operations are performed only after all hardware devices are ready.

cof, &ldo3);

_acquire_channel (&ldo4_cof, &ldo4);

K_PERIOD |

« Then there is the main function ‘app_main'.

» 'app_main'is the program entry function. It first prints the demo version information,
then calls 'Init" to complete hardware initialization. Next, it sets the screen backlight to
maximum brightness, initializes the LVGL display interface via 'dht20_display’, and
creates a task named "read _dht20" to periodically read and refresh temperature and
humidity data. Finally, it prints a test start message, initiating the operation of the
entire DHT20 temperature and humidity acquisition and display system.

. configMAX_PRIORITIES - d_dht20);

- Finally, let's take a look at the "CMakelists.txt" file in the main directory.

« The role of this CMake configuration is as follows:

- It collects all the .c source files in the main/ directory as the source files of the
component.

o It registers the main component with the ESP-IDF build system and declares that it
depends on the custom components: bsp_dht20, bsp_illuminate, and bsp_i2c.

+ In this way, during the build process, ESP-IDF knows to build these three components
first, and then build the main component.

EXPLORER m c C t CMakeLists.txt main X

»~ LESSON10

Note: In the subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other driver programs into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
uch-Screen/tree/master/example/V1.0/idf-code/Lessonl0-Temperature and Humidity

Programming Steps

« Now the code is ready. Next, we need to flash it to the ESP32-P4 to see the actual effect.

« First, connect the Advance-P4 device to our computer via a USB cable.

T

[nn)nnur

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson10-Temperature_and_Humidity

« After connecting the Advance-P4 board, connect the temperature and humidity
sensor to the 12C interface.

ESP32 P4-Advance HMI Display 16.1 V1.0
SKU:DHE04318D

Before starting the preparation for flashing, first delete all files generated during
compilation to restore the project to its initial "unbuilt” state. (This ensures that
subsequent compilations are not affected by your previous build artifacts.)

-
> updste dhzovatie Ae ab
annel_config t ldo4_cof = "
voltage_av - 3300,

err = esp_1do_acquire_channel (&1dod_cof, &1dod);

CMakeliststxt
df componentym
maine err = i2¢_init();
R —p— if (err 1= ESP_OK
init_fail("i2
VTaskDelay (208 / portTICK_PERIOD MS);
it err « dht20_begin();
120h if (err 1- ESP_OK
bsp_dh20.c init_fail("dht20",
Chaketistsxt
5 err = display_init();
err 1= ESP_OK:
init_fail

app_maini(ioid]]

Tnit
set_lcd_blight(100);
dht2e_display();
TaskCreate(dht20_read_task,

bsp iluminatec
CMaketistsxt

, 896, NULL, configMAX_PRIORTTIES - 5, read_dht2e);

CMakeLists it

> TmeLNe
E5P-IDF: QEMU] _[ESP-IDF: OpenOCD

First, follow the steps in the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

Next, we need to configure the SDK.
Click the icon shown in the figure below.

PcoMis Cesplzps |8 @ £ ¢ O £ & B ®333A0 ®Buld £ D

« Wait for a short loading period, and then you can proceed with the relevant SDK
configuration.

SDK Configuration editor X

Discard

Build type
~ Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C:++ exceptions
~ Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
+_Driver Configurations

Build type
Application build type ©
Default (binary application + 2nd stage bootioader)
Enable reproducible build @
No Binary Blobs ©
Bootloader config
Bootloader manager

Usetime/date stamp for bootloader ©

Project version (©

1

Bootloader optimization Level (D

Size (-Os with GCC, -Oz with Clang)

- Then, search for flash in the search box. (Make sure your flash config

consistent with mine.)

SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
~ Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
* Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Leaacy 125 Driver Configurations

Discard

Bootloader config
Serial Flash Configurations
Allow app adjust Dummy Cydle bits in SPI Flash for higher frequency (READ HELP FIRST)
+/ Enable the support for flash chips of XMC (READ DOCS FIRST) (

Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub

Flash SPI mode ©

ao

Flash Sampling Mode

STR Mode

Flash SPI speed (O

80 MHz

Flash si

16MB

« After the configuration is completed, remember to save your settings

+ Next, we will compile and flash the code (detailed in the first lesson).

+ Here, we also want to share a very convenient feature: there is a single button that can
execute compilation, uploading, and opening the monitor in one go. (This works on the
premise that the entire code is error-free.)

+ Wait for a moment until the code compilation and upload are completed, and the
monitor will open automatically.

« After successful flashing, you will see that the screen of your Advance-P4 lights up,
and the data collected by the temperature and humidity sensor is displayed on the
screen in real time.

Temperature =27.8 C Humidity = 47.0 %

Lesson 11
Playback After Recording

Introduction

In this lesson, we will teach you how to use the microphone and speaker on the
Advance-P4 board. We will complete a project: record audio for 5 seconds, then
automatically play back the 5-second audio clip.

Hardware Used in This Lesson

Microphone and Speaker on the Advance-P4

Microphone and Speaker Schematic Diagrams

diaphragm permanent magnet

o

\ J "~
E |
sound waves

/

electric signal

O

coil
When an audio signal enters in the form of sound waves, it causes the diaphragm to
vibrate. The diaphragm is connected to a coil, which is sleeved around a magnetic core
(located in a magnetic field). The vibration makes the coil move in the magnetic field,
cutting through the magnetic field lines. According to the law of electromagnetic
induction, an electrical signal corresponding to the variation pattern of the audio signal
is generated in the coil, thereby realizing the conversion of sound signails to electrical
signals.(For a speaker, this is the reverse process of converting electrical signals to sound
signals: an energized coil is forced to vibrate in a magnetic field, which drives the
diaphragm to vibrate and produce sound.)

Operation Effect Diagram

After running the code, you will be able to speak near the Advance-P4. The Advance-P4
will use its microphone to record the current sound within 5 seconds, then play it back
automatically.

The 5-second recorded audio is now playing.

Key Explanations

« The key focus of this lesson is the use of two components: bsp_mic and bsp_audio.
Next, we will explain the functions of the definitions and functions in these components
respectively. What you need to know is when to call the pre-written interfaces in them.

« Subsequently, we will focus on understanding these two components: bsp_mic and
bsp_audio.

« First, click the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x60C

uch-Screen/tree/master/example/V1.0/idf-code/Lessonll-Playback After Recording

« Then drag the code for this lesson into VS Code and open the project file.

« Once opened, you can see the framework of this project.

build
”,. In the example of this lesson, new folders named
~ include "bsp_mic" and "bsp_audio” are created under

main.h "peripheral\".

CMake!

In the "bsp_audio\" folder, a new "include” folder and a
"CMakelists.txt" file are created. (The same applies to
"bsp_mic".)

The "bsp_audio” folder contains the "bsp_audio.c” driver
file, and the "include” folder contains the "bsp _audio.h”
header file. (The same applies to "bsp_mic".)

The "CMakelists.txt” file integrates the drivers into the
build system, enabling the project to utilize the audio
playback functions written in "bsp_audio.c” and the
audio recording functions written in "osp_mic.c”.

Code for "bsp_audio”

Let's first look at the audio playback component, which includes two files: "bsp_audio.c”
and "bsp_audio.h”.

Next, we will first analyze the "bsp_audio.h” program.

"bsp_audio.h” is the header file for the audio playback module, mainly used to:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson11-Playback_After_Recording

Declare the functions, macros, and variables implemented in "bsp_audio.c” for use by
external programs, allowing other .c files to call this module simply by adding #include
"osp_audio.h".

In other words, it acts as an interface layer that exposes which functions and constants
are available to the outside, while hiding the internal details of the module.

In this component, all the libraries we need to use are included in the "bsp_audio.h” file
for unified management.

« Then, we declare the variables we need to use, as well as the functions—whose
specific implementations are in "bsp_audio.c”.

» Having these declarations unified in "bsp_audio.h" is for the convenience of calling
and management. (We will learn about their roles when they are used in
"bsp_audio.c”)

ESP_LOGI(
ESP_LOGD(
ESP_LOGE(

WNN N
"R B

&

t audio init();

t audio_ctrl_init();
rl{ state);
audio_handle();

- Let's take a look at the specific function of each function in "bsp_audio.c”.

« "bsp_audio.h" This project's custom audio module header file defines macros, GPIO
pins, and function declarations.

« It defines a global variable tx_chan with the type i2s_chan_handle_t, which is an 12S
channel handle.

This handle represents the audio output channel (TX), and all subsequent audio
playback operations will be performed through this channel.

i2s_chan_handle_t tx_chan;

audio_init: This function is used to initialize and enable the 12S audio output channel. It
configures parameters such as sample rate, bit width, clock, and pin settings, enabling
the device to normally play audio data through the 12S interface.

11 esp err_t audie init()

{

esp_err_t err = ESP_OK;

i2s chan_config t chan cfg = {
.id — I25 NUM 1,
.role = 125 ROLE_MASTER,
.dma_desc_num = 6,
.dma_frame_num = 256,
.auto_clear = -
.intr priority = e,
EH
err = i2s_new_channel(&chan_cfg, &tx chan,
if (err != ESP_OK)
return err;
i2s_std_config t std_cfg = {
.clk cfg =
.sample_rate hz = 16008,
.clk_src - 125 CLK_SRC_DEFAULT,
.mclk_multiple = I25_MCLK_MULTIPLE_256,

.slot_cfg =
.data_bit_width = T2S_DATA_BIT_WIDTH_16BTT,
.slot_bit _width - T25_SLOT_BIT WIDTH_AUTO,
.slot mode — I25 SLOT MODE STEREO,
.slot_mask = I25_STD_SLOT_BOTH,
.ws_width = I2S _DATA BIT_WIDTH_16BIT,
.ws_pol = =
.bit_shift =
.left_align =
.big endian =
.bit_order_lsb =
.gpio_cfg
.mclk 125_GPIO_UNUSED,
.bclk .
W5 = ,
.dout = .
.din = I2S_GPIO UNUSED,

+ audio_ctrl_init: This function is used to initialize the audio power amplifier control pin,
configuring it as an output mode to facilitate subsequent control of the power
amplifier's on/off state.

rr_t audio ctrl_init()

.pull_up_en =
.pull_down_en = =
.intr_type = GPIO_INTR_DISABLE,

+ set_Audio_ctrl: This function is used to control the on/off state of the audio power
amplifier. It enables or disables the power amplifier by setting the level of the power
amplifier control pin (active low).

rr_t set_Audio_ctrl(state)
t err = ESP_OK;

tate;
et_level(, status);

« get_audio_handle: This function is used to obtain and return the handle of the current
12S audio output channel, allowing other modules to use this handle for audio data
transmission or playback operations.

e t get_audio_handld()

return tx_chan;

» That concludes our introduction to the "bsp_audio” component. What's important is
that you know how to call these interfaces.

- If you need to use this component, you must also configure the "CMakelists.txt" file
under the "bsp_audio” folder.

« This file, located in the "bsp_audio” folder, mainly functions to tell the ESP-IDF build
system (CMake): how to compile and register the "bsp_audio” component.

~ LESSON11

RO

> .vscode

peripheral > bsp_audio >
FTLE(GLOB |

CMakelLists.txt
URSE component sources

ne_cny

> build

i S ${component_sources}
~ main

DE_DIRS "include”

idf component_register(s!

~ include
main.h
CMakeLists.txt
main.c
~ peripheral
~ bsp_audio
~ include
bsp_audio.h
bsp_audio.c
CMakeLists.txt
~ bsp_mic

~ include

bsp_mic.c
CMakeLists.txt

» The reason why "driver” is included here is that we have called it in "bsp_audio.h”
(other libraries are system libraries and do not need to be added).

EXPLORER bsp_audioh bsp_audio.c

LESSON11 peripheral > by sp_audioh > .

> wscode > MIC_SAMPLE_RATE
> build
~ main
~ include
mainh
CMakelListstxt

CMakeLists.txt

~ bsp.

ESP_LOGI(
ESP_LOGD(
CMakeLists.txt ESP_LOGE(
CMakeLists txt
= dependencies.lock
B partitions.csv
kconfig
kconfig.old
esp_err_t audio_init();
esp_err_t audio_ctrl_init();
esp_err_t set_Audio_ctrl(state);
125_chan_handle t get_audio_handle();

Code for "bsp_mic"

Let's now look at how audio recording is implemented. Here, we'll directly examine the
composition of functions in "bsp_mic.c".

First, let's look at "bsp_mic.h"

bsp_audio.c bsp_mic.c CMaketLists.tit fakeLists.txt bsp_mich 9+ X

p_mich > = MIC_ERROR(fmt, _ VA ARGS_)

.h

_pdm.h”

—
(Fmt) ESP_LOGI(
(fmt) ESP_LOGD(
(Fmt) ESP_LOGE(]

(24)
(26)

16600
((16000 * (16 / 8)) * 1)

esp_err_t mic_init();
esp_err_t mic_read_to_audio(rec_seconds);

+ GPIO pins: MIC _GPIO_CLK (clock) and MIC _GPIO_SDIN2 (data input) specify the
physical pins through which the microphone connects to the MCU. Audio sampling
parameters: MIC _SAMPLE _RATE defines the sampling rate as 16 kHz, and BYTE_RATE
calculates the amount of audio data generated per second (32,000 bytes), which is
used for subsequent audio processing and storage management.

—
(fmt) ESP_LOGI(
(fmt) ESP_LOGD(
(fmt) ESP_LOGE(

(24)
(26)

16000
#define (16000 * (16 / 8)) * 1)

esp_err_t mic_init();
esp err_t mic_read_to_audio(rec_seconds);

- Welll stop here with the macro definitions in "bsp_mic.h" for now. During usage, there's
no need to modify these - keep the pins unchanged and maintain the microphone's
sampling rate. Next, let's look at "bsp_mic.c”.

« Two functions are implemented here to enable microphone recording and playback
through audio output, using 12S PDM mode.

+ It mainly includes two functions: microphone initialization (mic_init) and recording to
audio playback (mic_read_to_audio).

» "bsp_mic.h" The header file for the microphone module, which defines macros, pins,
and function declarations.

« rx_chan: A global variable representing the 12S receive channel handle, which will be
used for all subsequent operations involving reading audio data from the microphone.

peripheral > bsp_mic bsp_mic.c > & mic_init()

#include "bsp mic.h”

i2s_chan_handle_t rx_chan;

« mic_init: This function is used to initialize the 125 receive channel (in PDM mode) for the
microphone. It configures parameters such as the sampling rate, DMA buffer, GPIO
pins, high-pass filter, and mono audio data format, and enables the channel. This
allows the system to collect audio signals from the digital microphone.

peripheral > bsp_mic bsp_mic.c > & mic_in

12 esp_err_t mic_init()

{

esp_err_t err = ESP_0K;

i2s_chan_config t rx_chan_cfg = {
.id = 125 _NUM_8,
.role = I25_ROLE_MASTER,
_dma_desc_num = 6,
.dma_frame_num = 256,
.auto_clear_after_cb =
.auto_clear_before cb =
.allow pd = o
_intr_priority - 8,

= i2s_new_channel(&rx_chan_cfg, , &rx_chan);
if (err != ESP_OK
return err;
i2s_pdm_rx_config_t pdm_rx_cfg = {
_clk_cfg =
.sample_rate_hz = o
.clk_src = I25_CLK_SRC_DEFAULT,
.mclk_multiple = 125 MCLK_MULTIPLE_256,
.dn_sample_mode = I2S_PDM_DSR_8S,
_bclk_div = 8,

_slot_cfg =
.data_bit width = 125_DATA BIT WIDTH_16BIT,
.slot_bit_width = I25_SLOT_BIT_WIDTH_AUTO,
.slot_mode = I25_SLOT_MODE_MONO,

.slot mask = I2S PDM SLOT LEFT,
_hp_en = b
.hp_cut_off_freq_hz = 35.5,
.amplify_num = 1,

.gpio_cfg -

.clk =

-din =
.invert_flags =
.clk inv =

mic_read_to_audio:

This function is used to record audio data from the microphone for a specified number of
seconds and play it back in real time. Here's its detailed workflow:

First, it checks if the recording duration exceeds 60 seconds and calculates the required
buffer size. Then, it dynamically allocates read _buf in SPI RAM to store the original mono
audio data received from the 12S interface, and write_buf to store the processed stereo
data for playback.

The function uses i2s_channel_read to block and read microphone data. For each audio
sample, it performs volume amplification (multiplied by 10) and clipping processing to
prevent overflow. It then copies the mono data to both left and right channels to form
stereo data.

Subsequently, it turns on the power amplifier (set_Audio_ctri(true)) and plays the
processed audio through the audio output 12S channel. After playback is complete, it
turns off the power amplifier and releases the buffer memory, ensuring the entire
recording and playback process is safe and reliable.

(Please refer to the provided code for detailed implementation.)

econds)

onds H
andle - get_audio_handle();
p_caps_malloc(r

memset (read_buf, H
*write_bu 2, MALLOC P_SPIRAM);

| buf, rec_size, ad, portMAX_DELAY);

* Here, the set_Audio_ctrl function from "bsp_audio.c” is called to turn on the power

amplifier pin, enabling sound playback.

bsp_audio.c

peripheral > bsp_mic » include > C bsp_mich > .

bsp_audio.c

peripheral > bsp_audio bsp_audio.c > © set_ Audio_
esp_err_t audio_ctrl_init()
gpio_config t audio_gpio_cofig = {
-pin_bit_mask = 10LL <<
-mode = GPTO_MODE_OUTPUT,
-pull_up_en = ,
-pull_doun_en = 5
.intr_type - GPIO_INTR DISABLE,

gpio_config(8audio_gpio_cofig!
rr 1= ESP_OK
return err;
return err;

sp_err_t [set_Audio_ctrl(state)

esp_err_t err = ESP_OK;
status - Istate;
err - gpio_set_level » status);

eturn ery

Main function

« The main folder is the core directory for program execution, which contains the main

function executable file "main.c”.

« Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER

CMakelists txt
idf componentyml
mainc
> managed_components
~ peripheral\ bsp.illuminate
~ include
bsp illuminate.h
bsp illuminate.c (it
CMakelists txt (fnt.
CMakelists txt
£ dependenciesock
e esp_1do_channel_handl
esp_1do_channel_handl

1vel show hello elecrow(void) {

+ This is the entry file of the entire application. In ESP-IDF, there is no int main(), and the
program starts running from void app_main(void).

- Let's first explain "main.c™.

« The app_main function is the main entry point of the entire application, responsible for
coordinating the initialization of the audio system and microphone, as well as
handling recording and playback.

« First, there is the reference to "main.h". We store the header files used and macro
definitions in "'main.h".

° Include C standard libraries and string manipulation libraries to provide basic
functions.

° Include FreeRTOS task and scheduling interfaces for task creation and delay
functions.

o Include ESP-IDF logging and error handling interfaces (esp_log.h, esp_err.h).

> Include header files of the microphone and audio modules to access interfaces
such as mic_init(), mic_read_to_audio(), and audio_init().

EXPLORER

» The function "init_or_halt" is designed to uniformly check the return status of each
module’s initialization. It ensures the system does not continue running when the
initialization of critical hardware or peripherals fails, thereby preventing undefined
behavior or hardware damage.

- Specifically, it accepts two parameters: the module name "name” and the initialization
result "err”. If "err” is not equal to "ESP_OK", it indicates a failed initialization. In this case,
the function will print a detailed error log (including the module name and error
information) via "MAIN_ERROR’, then enter an infinite loop with a 1-second delay in
each loop iteration to prevent the program from proceeding further.

init_or_halt(*name,

%s , name, err_to_name(err));

e (1) { vTaskDelay(pdMs_TO_TICKS(1€

« Next is the main function "app_main®™.

« The "app_main” function serves as the primary entry point of the entire application,
responsible for coordinating the initialization of the audio system and microphone, as
well as audio recording and playback.

- It first initializes the audio power amplifier and the 12S playback channel, and uses
"init_or_halt" to check if the initialization is successful. If the initialization fails, the
program will get stuck in an infinite loop. Subsequently, it initializes the microphone
input channel and also verifies the success of this initialization. After that, the program
will record audio for 5 seconds and play it back via 12S. During this process, it prints log
information to indicate the recording and playback status, and records error
messages when errors occur.

« Finally, the function enters an infinite loop to keep the task alive, ensuring that the
main program does not exit and thus maintaining the operating environment of the
audio system. On the whole, this function implements a complete sample workflow for
audio recording and playback.

ini

app_main(

: or_halt("mic"

, esp_err_to_name(err

vTaskDelay (pdMS_TO_TICKS(160@));

- Finally, let's take a look at the "CMakelists.txt" file in the main directory.

+ The role of this CMake configuration is as follows:

o Collect all .c source files in the main/ directory and use them as the source files of
the component;

> Register the main component to the ESP-IDF build system, and declare that it
depends on the custom components "bsp_audio” and "bsp_mic".

«+ In this way, during the build process, ESP-IDF will know to build these two components
first, and then build the main component.
LESSON11 main >

> build

~

nain.h
CMakelists.txt

main.c

~ peripheral

w udio

Note: In the subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other driver programs into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

//

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonll-Playback After Recording

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson11-Playback_After_Recording

Programming Steps

« Now that the code is ready, next, we need to flash it to the ESP32-P4 to observe the

actual behavior.

« First, connect the Advance-P4 device to your computer via a USB cable.

=
=
=

=

5]

vance HMI Display 10,1 V1.0

i [Hrurr THT —‘

P

« Before starting the flashing preparation, delete all files generated during compilation
to restore the project to its initial "unbuilt” state. (This ensures that subsequent
compilations are not affected by your previous operations.)

> wscode

> build

. app_main(void)

« include
mainh
CMakelistsxt
e er_t err = audio_ctrl_init();
- audio_init();

init_or_halt("audio

err - mic_init();
init_or_halt("n

err = mic_read_to_audio(5);

%s”, esp_err_to_name(err));

e (1) { vTaskDelay(pdHS_TO_TICKS(1000));

> ourune
> TELINE

> PROJECT COMPONENTS

b oeporssz uarr 0 coms o p p ® Buid £ [ESP-IDF: QEMU] _ [ESP-IDF: Ope

Here, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip first.

Next, we need to configure the SDK

Click the icon shown in the figure below.

PCoMI4 Tresp3zpa |88 B £ § O £ & ®33A0 SBuid O [

«+ After waiting for a short loading period, you can proceed with the relevant SDK
configurations.

SDK Configuration editor X

Discard

Er e Build type
. Bootloader config Application build type ©
Bootioader manager

Default (binary application + 2nd stage bootloader)
Serial Flash Configurations

Security features) =

Application manager No Binary Blobs ©

Boot ROM Behavior -

Bootloader config

Serial flasher config

Partition Table

~ Compiler options

Enable reproducible build @

Bootloader manager

 Use time/date stamp for bootloader ®
Replace ESP-IDF and project paths in binaries

DR e et Project version ©
~ Component config
Application Level Tracing 1
~ Bluetooth -
C::":‘;n — Bootloader optimization Level (®
Console Library
« Driver Configurations Size (-Os with GCC, -Oz with Clang)
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration TPy (@)
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations Info

Log

+ Subsequently, search for "flash” in the search box. (Make sure your flash configuration
is the same as mine.)

SDK Configuration editor X

Discard

Build type Bootloader config
~ Bootloader config

[T —— Serial Flash Configurations
Allow app adjust Dummy Cydle bits in SPI Flash for higher frequency (READ HELP FIRST)

e Enable the support for flash chips of XMC (READ DOCS FIRST)
SEETy TS Security features
Application manager Enable flash encryption on boot (READ DOCS FIRST) ©
Boot ROM Behavior
Szl Serial flasher config
R ET Disable download stub
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable G+ + exceptions
Component config
Application Level Tracing)
Sye—, Flash Sampling Mode ©
Common Options
Console Library STR Mode
~ Driver Configurations e —)
TWAI Configuration -
* Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration =3
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations

Flash SPI mode @

ao

Flash size ©

16MB

« After completing the configuration, remember to save your settings.

+ Next, we will compile and flash the code (detailed steps were covered in the first
lesson).

« Here, we also want to share a very convenient feature with you: there is a single button
that allows you to execute compilation, upload, and monitor opening in one go. (This is
on the premise that the entire code is confirmed to be error-free.)

+ Wait for a moment, and the code will finish compiling and uploading, with the monitor
opening automatically afterward.

+ Once the flashing is successful, you can speak near the Advance-P4 device. The
Advance-P4 will use its microphone to record the current sound within 5 seconds, and
then play it back automatically.

| R

S

The 5-second recorded audio is now playing.

Lesson 12
Playing Local Music from SD Card

Introduction

In this lesson, we will use the bsp_sd component and bsp_audio component (which
were used in previous lessons) to play WAV audio files stored in the SD card.

Hardware Used in This Lesson

Speaker on the Advance-P4

SD Card on the Advance-P4

PR

U

Operation Effect Diagram

After running the code, you will be able to hear the WAV audio saved in your SD
playing through the speaker on the Advance-P4.

PR

U

The WAV audio file from your SD card is now playing.

Key Explanations

« The key focus of this lesson is the combined use of the two components: bsp_sd and
bsp_audio.In fact, for the SD card component, we still use the same interfaces as in
the previous component. These interfaces were explained in detail earlier, so they will
not be covered again here.

« Next, we will focus on understanding the bsp_audio component.This component was
used in the previous lesson to play the original sound after 5 seconds of recording. We
already gained some knowledge about it back then, but only learned how to turn on
the speaker.In this lesson, we will increase the difficulty slightly and learn how to play
audio in WAV format.

First, click on the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessoni2-Playing_Loca_Music_from SD_Card

+ Then drag the code for this lesson into VS Code and open the project file.
+ Once opened, you can see the framework of this project.

In the example for this lesson, new folders named

> build
ain

bsp_sd and bsp_audio are created under the
peripheral\ directory.

Inside the bsp_audio folder, a new include folder and a
"CMakelists.txt” file are created. (The same structure
applies to bsp_sd.)

The bsp_audio folder contains the "bsp_audio.c” driver
file, and the include folder contains the "bsp_audio.h"
header file. (The same file structure applies to bsp_sd.)

The "CMakelists.txt" file integrates the drivers into the
build system. This allows the project to utilize the
functions defined in "bsp_audio.c” — including parsing
WAV audio and playing WAV audio from the SD card —
as well as the functions in "bsp_sd.c” — such as
initializing the SD card and retrieving SD card
information.

bsp_audio Code

Let's first look at the audio playback component, which includes two files: "bsp _audio.c”
and "bsp_audio.h”.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson12-Playing_Loca_Music_from_SD_Card

« Next, we will first analyze the "bsp_audio.h” program.

"bsp_audio.h" is the header file of the audio playback module, mainly used to:

Declare the functions, macros, and variables implemented in "bsp _audio.c” for
external programs, so that other .c files can call this module simply by #include
"bsp_audio.h".

.

In other words, it is an interface layer that announces which functions and constants
are available to the outside while hiding the internal details of the module.

In this component, all the libraries we need to use are placed in the "bsp_audio.h” file
for unified management.

« Then, we declare the variables we need to use as well as the functions, whose specific
implementations are in "bsp_audio.c”.

« Putting them uniformly in "bsp_audio.h" is for the convenience of calling and
management. (We will learn about their functions when they are used in
"bsp_audio.c”)

ESP_LOGI(
ESP_LOGD(
ESP_LOGE(

state);
audio_handle():

« Now let's look at the specific function of each function in "bsp_audio.c”.

« bsp_audio.h: A custom audio module header file for this project, which defines
macros, GPIO pins, and function declarations.

A global variable tx_chan is defined, with the type i2s_chan_handle_t, i.e, an 12S
channel handle.

This handle represents the audio output channel (TX), and all subsequent audio
playback operations will be performed through this channel.

audio_init()

This function is used to initialize the 12S audio output channel of ESP32, enabling it to play
audio in 16kHz, 16-bit, stereo format. It creates an 12S transmission channel, configures
standard audio parameters (such as sampling rate, bit width, left/right channels, GPIO
pins, etc.), and starts the channel to prepare for audio output.

« esp_err_terr = ESP_OK; —— Initializes the error status variable, defaulting to
successful operation.

« i2s_chan_config_t chan_cfg = {.h— Configures 12S transmission channel
parameters:

+ id: Uses I12S controller 1

- role: Master mode (generates clock signals)

« dma_desc_num and dma_frame_num: DMA buffer size settings
« auto_clear: Automatically clears DMA buffer underflow

« intr_priority: Interrupt priority

. i2$_new_channel(&chon_cfg, &tx_chan, NULL); —— Creates a new I2S transmission
channel and saves it to tx_chan.

« i2s_std_config_t std_cfg = {}, —— Configures standard 12S audio parameters:
« clk_cfg: Clock settings (sampling rate 16kHz, master clock multiplier 256)
« slot_cfg: Audio data format (16-bit, stereo, left-aligned)

+ gpio_cfg: GPIO pins corresponding to 12S signals (BCLK, LRCLK, SDATA output) and
whether to invert them

- i2s_channel_init_std_mode(tx_chan, &std_cfg); —— Initializes the 12S transmission
channel in standard mode, making the channel comply with the above clock, data
format, and GPIO configurations.

. i2s_chonnel_enable(tx_chcm); —— Enables the 12S channel to start working and
transmit audio data.

« return err; —— Returns the initialization status; if there is an error midway, an error code
will be returned in advance.

The main function of this function is to create and configure an 12S audio transmission
channel, enabling ESP32-P4 to output audio in 16kHz, 16-bit, stereo format through
specified GPIOs.

 audio > & audio_init)

g t chan_cfg = |
I25_NUM_1,

.role = I25_ROLE_MASTER,

.dma_desc_num =

.dma_frame_num = 256,

.auto_clear 5

.intr_priority = @,

i2s_: ig t std_cfg = {
.clk_cfg =
.sample_rate_hz = 16800,
.clk_src = I25_CLK_SRC_DEFAULT,
.mclk_multiple = I25_MCLK_MULTIPLE_256,

.slot_cfg =
_data_bit_width = I2S_DATA BIT_WIDTH_16BIT,
.slot_bit width = 25 SLOT_BIT WIDTH_AUTO,
.slot_mode = I25_SLOT_MODE_STERED,
.slot_mask = I25 STD_SLOT_BOTH,
.ws_width = I25_DATA_BIT_WIDTH_168IT,
.Ws_pol = b
.bit_shift =
.left_align =
.big_endian =
.bit_order_lsb =
.gpio_cfg
= 125_GPIO_UNUSED,

= I25_GPIO_UNUSED,
.invert flags = {
.mclk_inv =
.belk_inv
.ws_inv =
b

err = i2s_channel_init |std_mode(tx_chan, &std_cfg);

Therefore, any audio files you use later must meet this requirement (16kHz sampling rate,
16-bit bit depth, and stereo format, i.e., dual-channel).

.sample_rate_hz = 16898,
.clk_src = 125_CLK_SRC_DEFAULT,
.mclk_multiple = I25 MCLK_MULTIPLE 256,

,
.slot_cfg =
.data_bit width = T25 DATA BIT WIDTH 16BIT,
.slot_bit width = I25 SLOT BIT_WIDTH_AUTO,
.slot_mode = I25_SLOT_MODE_STEREQ,
.slot_mask = I25_STD_SLOT_BOTH,
.ws_width = I2S_DATA_BIT_WIDTH 16BIT,
.wWs_pol = 5
.bit_shift —
.left_align =
.big_endian =
.bit_order_lsb =

audio_ctrl_init:

This function is used to initialize the audio power ampilifier control pin, configuring it as an
output mode to control the on/off state of the power amplifier subsequently.

.pull_down_en = a
.intr type = GPIO INTR DISABLE,

(&audio_gpio_cofig);

set_Audio_ctrl:

This function is used to control the on/off state of the audio power ampilifier. It turns the
power amplifier on or off by setting the level of the power ampilifier control pin (active
low).

rr_t set_Audio_ctrl(state)

t err = ESP_OK;

Istate;
et level(, status);

validate_wav_header() :

This function is used to check whether the header of an opened WAV file is valid, confirm
if the file is in standard PCM WAV format, and verify that it supports common sampling
rates, channel counts, and bit depths. After validation, the function restores the file
pointer to its original position without altering the file reading state.

- if (file == NULL) —— Checks if the file pointer is null; returns false if it is.

« long original _position = ftell(file); —— Obtains the current position of the file pointer for
subsequent restoration.

« if (original_position == -1) —— Checks if the file position was obtained successfully.
. fseek(ﬁle, 0, SEEK_SET) —— Moves the file pointer to the beginning of the file.

+ uint8_t header[44]; size_t bytes_read = fread(header, 1, 44, file); —— Reads the first 44
bytes of the WAV file (the standard WAV file header).

- if (bytes_read != 44) —— Checks if the WAV header was read completely.

« memcmp(header, RIFF", 4) —— Verifies if the file starts with "RIFF" (the RIFF chunk
identifier).

« memcmp(header + 8, "WAVE", 4) —— Checks if the format is "WAVE".
. memcmp(heqder +12,"fmt ", 4) —— Verifies the existence of the fmt subchunk.

- uintl6_t audio_format = *(uint16_t *)(header + 20); —— Retrieves the audio format
field (1indicates PCM).

- uintl6_t num_channels = *(uint16 _t *)(header + 22); —— Obtains the number of
channels (supports 1 or 2 channels).

+ uint32_t sample_rate = *(uint32_t *)(header + 24); —— Retrieves the sampling rate
and verifies if it is a commonly used value.

+ uintl6_t bits_per_sample = *(uint16_t *)(header + 34); —— Obtains the number of bits
per sample (supports 8/16/24/32 bits).

« memcmp(header + 36, "data’, 4) —— Verifies if the data chunk identifier is "data’”.

. uint32_t file_size = *(uint32_t *)(header + 4) + 8; uint32_t data_size = *(uint32_t
*)(header + 40); —— Retrieves the total file size and audio data size for printing
information.

+ AUDIO_INFO(..) —— Outputs WAV file information (number of channels, sampling rate,
bit depth, data size, and file size).

- fseek(file, original_position, SEEK_SET); —— Restores the file pointer to its original
position.
« return true; —— Returns true if validation passes.

The function’s role is to check the validity of the WAV file header, ensuring the file is in
standard PCM WAV format, supports common sampling rates, bit depths, and channel
counts, and restores the file pointer position after validation.

« The first 44 bytes form the standard PCM WAV header, which describes information
such as audio format, number of channels, and sampling rate.

« Before playing or processing a WAV file, it is usually necessary to read and validate
this header to ensure the file format meets expectations.

« The volidqte_wav_heqder() function checks the validity of each field according to this
structure.

Audio_play_wav_sd:

Audio_play_wav_sd() is used to read WAV files from the SD card and play audio
through the 12S output of ESP32. It validates the WAV file header, skips the header, reads
audio data in chunks, processes the volume (qmplifies and limits the rcnge), sends the
data to the 12S player until the audio playback is completed, and then releases
resources.

« esp_err_terr = ESP_OK; —— Initializes the error status variable.

- if (flename == NULL) —— Checks if the input filename is null; returns a parameter error
if it is.

« FILE *fh = fopen(filename, 'rb"); —— Opens the WAV file in read-only binary mode.
« if (fn == NULL) —— Returns an error if the file fails to open.

- if (tvalidate_wav_header(fh)) —— Calls the previously written WAV header validation
function to check if the format is correct.

- fseek(fh, 44, SEEK_SET) —— Skips the WAV file header (44 bytes) to prepare for reading
audio data.

- Define buffer sizes
e SAMPLES _PER_BUFFER = 512 —— Number of samples read each time
e INPUT_BUFFER_SIZE, OUTPUT _BUFFER _SIZE —— Byte sizes of input and output buffers

+ heap_caps_malloc(..) —— Allocates input and output buffers in SPI RAM; if allocation
fails, releases the allocated resources and exits.

« Initializes variables for reading and writing: samples_read, bytes_to_write,
bytes_written, total_samples, volume_data.

. set_Audio_ctrI(true); —— Turns on the audio hardware or amplifier.

+ while (1) —— Loops to read audio data and play:

+ samples_read = fread(..) —— Reads audio samples from the file into the input buffer
- if (samples_read == 0) break; —— Exits the loop when the file reading is completed

« forloop —— Amplifies mono samples by 10 times, limits them to the int16 range, and
stores them in the output buffer (can be used for the left channel here, or extended to
stereo)

+ bytes_to_write = samples_read * sizeof(intl6_t); —— Calculates the number of bytes
to be written to 12S

+ i2s_channel _write(tx_chan, output_buf, ..) —— Writes audio data to the 12S output
channel

« Error checking: Prints an error and exits the loop if writing fails
« Accumulates total_samples to count the total number of played samples

« Cleans up resources after the loop ends:

- set_Audio_ctrl(false); —— Turns off the audio hardware

- free(input_buf); free(output_buf); fclose(fh); —— Releases buffers and closes the file

+ AUDIO_INFO(..) —— Prints playback completion information

« return err; —— Returns the playback result status

This function reads WAV files from the SD card, plays audio in chunks after validating the
format, outputs to the audio hardware through 12S, handles volume and buffer
management, and releases all resources after playback.

That's all for the introduction of the bsp_audio component. It's sufficient for you to know
how to call these interfaces.

To call them, we must also configure the "CMakelists.txt” under the bsp_audio folder.

This file, placed in the bsp_audio folder, mainly functions to tell the ESP-IDF build system
(CMake) how to compile and register the bsp_audio component.

EXPLORER
[~ LESSON12

> build

~ main

INCLUDE_D: “include”
REQUIRES driver bsp_sd)

» The reason why "driver” and "bsp_sd" are included here is that we have called them in
"bsp_audio.h” (other libraries are system libraries, so no need to add them).

« It uses interfaces from the SD component for SD card reading operations, among
others.

« As for the bsp_sd component, it was explained in detail in previous lessons, so it will
not be repeated here. We will directly use this component.
Converting MP3 to WAV

As mentioned above, if you want to play audio based on the code of this lesson, the
audio must meet the requirement of being a WAV file with 16kHz sampling rate, 16-bit bit
depth, and stereo format (i.e, dual-channel).

Next, | will show you how to convert an MP3 audio file to a WAV audio file that meets the
specifications of 16kHz, 16-bit, and stereo (dual-channel).

FFmpeg is an open-source toolkit for processing multimedia files such as video and
audio. It supports conversion, cutting, and editing of almost all multimedia formats,
making it an essential tool for developers and multimedia professionals.

Open the following link to download FFmpeg:

https://ffmpeg.org/download.html

<& G (& mpstimpegargidounioaahini) w g oo]

Download FFmpeg

& Download Source Code

fmpeg-5.0.ar.xz

4 More downloading options If you find FFmpe , you are welcome to contribute by

& Get packages & executable files @ Get the Sources

Fempeg oni urce code. Below are some links that provide it aie

= & Download Snapshot & Download PGP Signing Key

Linux Packages

» Taking Windows as an Example: Select the installation package "Windows builds from

gyan.dev".

G R e ——

& More downloading options

& Get packages & executable files

D

Windows EXE Files

If you find FFmy

@ Get the Sources

ome ik

& Download Snapshot

« Scroll down to find the "release builds" section, then select

"ffmpeg-7.1.1-essentials _

€ G (O ntosy/wayandev/fmpeg/uict

build.zip".

bulds

o) = &

o contribute by

@, Download PGP Signing Key

& Gt Repositories

release bullds

Itestreesse verson80 20250822

31me
100MB

fimpeg release-essentiais.72
mpes:-release-essentiais.zip

Fimpeg relesse-full 7z
Hmpeg-release-ullshared 7z

er

sha2s6
sha2se

ans256
sha256

miror @ gttt

itps://wowigyan.dev/Ffmpe/builds ffmpeg-release-github

sourcecode @ gt
hitps2/github.com/FFmpeg/FFmpeg commit/140fd653ae

previousreesse vesion:7:11_[complte archive @ mirrr)

Hmpeg 7.1 1-essentials_bulld72

2va
some

ahs25e
256

ahs256
shs256

« Once the download is complete, extract the file to get the "FFmpeg" folder.

QD > ThisPC > () > ffmpeg

N sort -
Name

" ffmpeg-7.1.1-essentials_build

7 ffmpeg-7.1.1-essentials_build.zip

>
= View - -
Date modified Type Size
10/16/2025 307 PM File folder
10/16/2025 11:07 AM Compressed (zipp.. 90,073KB

Recommended Saving Path

It is recommended to extract and save the folder to a non-system drive (not the C drive).
This avoids occupying space on the C drive (system drive), ensuring the stability and
performance of the system.

J > ThisPC > () > fimpeg > ffmpeg-7.1.1-essentials build >
T Sort v = View v
Name Date modified Type Size
T3 bin 10/16/2025 3:07 PM File folder
= doc 3/10/2025 11:09 AM File folder
= presets 3/10/2025 11:09 AM File folder
D LICENSE 10/16/2025 3:07 PM File 35KB
README.bxt 10/16/2025 3:07 PM Text Document 40KB

Directory Structure of the Extracted Folder
The extracted folder should contain the following directories:

» "bin": The folder containing FFmpeg executable files. Al commands to run FFmpeg
must be executed via the files in this directory.

« "doc™: Documentation and reference materials.
« "presets”: Preconfigured formats and encoding schemes.

Navigate to the "bin" directory, and you will see three core executable files of FFmpeg:

"ffmpeg.exe”, "ffplay.exe”, and "ffprobe.exe”.

J > ThisPC > () > ffmpeg > ffmpeg-7.1.1-essentials build > bin
T Sert ~ = View -
Name Date modified Type Size
ffmpeg.exe 10/16/2025 307 PM Application 85,381 KB
[play.exe 10/16/2025 3:07 PM Application 85,138 KB
[ffprobe.exe 10/16/2025 3:07 PM Application 85,246 KB

« To conveniently call FFmpeg directly in the command line, you need to add it to the
system’s environment variables.

« Search for "Environment Variables” in the Start Menu at the bottom left of the desktop,
find "Edit the system environment variables’, and click to open it.

= o Apps Documents Web Settings Folders Photos » 1
Best match
| B variables ==
Control panel

Edit the system environment variables
Settings Control panel

g Edit environment variables for
your account @ open

Search the web

environment variables - See more.
search results

B8 | Q fnvironment variables = D b

« Click the "Environment Variables" button.

System Properties x

Computer Name Hardware Advanced System Protection Remote

“You must be logged on as an Administrator to make most of these changes.
Peformance

Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your signdin

Settings...

Startup and Recovery
System startup, system failure, and debugging information

Settings...

Environment Variables...

OK Cancel Apply

» Locate the "Path” entry under "System Variables” and click "Edit".

- -
Environment Variables X
User variables for 14175

Variable Value

OneDrive C:\Users\14175\0OneDrive

OneDriveConsumer C:\Users\14175\OneDrive

Path C:\Python\Scripts\; C:\Python\;C:\Users\ 14175\AppData\Local\Micr...

TEMP Ci\Users\14175\AppData\Local\Temp

™P Ci\Users\ 14175\ AppData\Local\Temp

New... Edit... Delete
System variables

Variable Value

ComSpec CAWindows\system32\cmd.exe

DriverData C:\Windows\System32\Drivers\DriverData

NUMBER_OF_PROCESSORS 6

PATHEXT

PROCESSOR ARCHITECTURE

New... Edit... Delete
o

. £
« In the "Edit environment variable” window, click "New".
Edit environment variable X

FeSystemRoot
%65ystemRoot %\System32\Whbem Edit
F6SYSTEMROOT6\System 32\ WindowsPowerShellvw .04
F6SYSTEMROOT:\System32\OpenSSHY Browse...
C:\My_APP\SCode\MinGW-wb\ucrt64\bin
C:\Program Files\CMake\bin Delete
JAMy_APPYCursor\cursoriresourcesiappibin
Move Up
Mowve Down
Edit text...
cos

- Enter the path to the "bin” folder of FFmpeg (use your own FFmpeg path)

O > ThisPC > (1) > fimpeg > ffmpeg-7.1.1-essentials_build

i}) G T Sort v = View v ees
Name . Dste modified Type Size
\ ffmpeg.exe 10/16/2025 3:07 PM Application 85,381 KB
Fplay.exe 10/16/2025 3:07 PM Applicstion 85,198 KB
ffprobe.exe 10/16/2025 3:07 PM Application 85,246 KB
Edit environment variable x
%SystemRoot¥\systern32 New
965ystemRoot%
%65ystemRoot 6\ System32\Wbem Edit
SYSTEMROOT?:\ Systern32\WindowsPowerShell\w1.04
SYSTEMROOT6\ System32\Open55HY Browse...
CAMy_APPAVSCode\MinGW-wbd\ucrtbdbin
C:\Pregram Files\CMake\bin Delete
J\My_APP\Cursor\cursoriresourceshappbin
Jiffmpeg\ffmpeg-7.1.1-essentials_build\bin |
1 Move Up
Move Down

Edit text...

| 0K Cancel

+ Remember to save the settings after entering the path.

Note: Ensure the path is accurate so the system can correctly locate the FFmpeg files.

« Verifying Successful FFmpeg Installation

+ Press the Win + R keys, then type "cmd” to open the command line window.

5

=i Run X

[T¥psthe vame of a program, folder, document, orntemet
resource, and Windows will open it for you.

Open: [emd -

oK Cancel Browse...

« Type the following command in the command line to check the FFmpeg version:
ffmpeg -version

« If the FFmpeg version number and related information are displayed correctly, it
indicates that the installation is successful (as shown in the figure below).

B cawindowssystem3zemd.es X+ v

Microsoft Windows [Version 10.0.22631.6060]
(c) Microsoft Corporation. All rights reserved

C:\Users\14175>Ffmpeg -version

ffnpeg version 7.1.1-essentials_build-wm.gyan.dev Copyright (c) 2000-2025 the FFmpeg developers

built with gcc 14.2.8 (Revl, Built by MSYS2 project)

configuration: —enable-gpl —enable-version3 —enable-static —disable-w32threads —disable-autodetect ——enable—fontcon
fig —enable-iconv —enable-gnutls —enable-libxml2 —enable-gmp —enable-bzlib —enable-lzma —enable-zlib —enable-lib
srt —enable-libssh —enable-libzmnq —enable-avisynth —enable-sd12 —enable-libwebp —enable-libx26t —enable-libx265 -
—~enable-libxvid ——enable-libaon —-enable~libopenjpeg ——enable-Libvpx —-enable-mediafoundation ——enable-libass ——enable-1
ibfreetype —enable-libfribidi —enable-libharfbuzz —enable-libvidstab —enable-libvmaf —enable-Libzing —enable-amf —
~enable-cuda-1lvm —enable-cuvid —enable-dxva2 —enable-d3d1lva —enable-d3d12va —enable—ffnvcodec —enable-libvpl —e
nable-nvdec —-enable-nvenc --enable-vaapi —-enable-libgme ——enable-libopenmpt ——enable-Libopencore-amrub ——enable-libmp3
lame —enable-Libtheora —enable-libvo-anrwbenc —enable-Llibgsm —enable-Libopencore-amrnb —enable-Libopus —enable-lib
speex —enable-libvorbis —enable-Llibrubberband

Llibavutil 59. 39.1ee . 39.1ee

libavcodec 61. 19.101 . 19.101

libavformat 61. .1e0 . .100

libavdevice 61. 3.160 . 3.108

libavfilter 1e. .1e@ . .1e0

Llibswscale 8. .1e@ . .108

Llibswresample 5. 3.100 . 3.100

libpostproc 53. 3.100 . 3.100

C:\Users\1U175>

+ Then, still in the command window, install the dependency by running: pip install
pydub

C:\Users\14175>pip install pydub
Collecting pydub
Downloading pydub-8.25.1-py2.py3-none-any.whl.metadata (1.4 kB)
Downloading pydub-8.25.1-py2.py3-none-any.whl (32 kB)
Installing collected packages: pydub
Successfully installed pydub-8.25.1

C:\Users\141753

« After installation, open the script code we prepared for converting MP3 to WAV format
(meeting the specifications of 16kHz, 16-bit, and stereo/dual-channel) in the provided
code package.

+ Click the link below to open the script code:

thub.co >4-HMI-Al-Display-1024x

uch-Screen/tr

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/convert_wav

« Now | have placed this script on my desktop.

ai_chat

+ Inthe command window, | navigate to this path.

« Then put your MP3 files in the "Input” folder.

] > convertwav > Input

T Sort ~

Name #

[hushai.mp3

+ Run this script code. (Ensure your Python environment is Python 3.11.2.)

rthon --version

+ Starting from Python 3.13:The official team removed the audioop module (which pydub
depends on).Some third-party libraries (such as pyaudio, pygame, pydub) are not yet
fully compatible.

« For Python 3.11.x:
Stable, mature, and highly compatible;
Includes audioop;

Perfectly compatible with most Al, audio, and data analysis libraries.

+ Run our script:

« You will find the generated WAV files in the "Output” folder.
convert wav > Output

~ .
huahai.wav

« Then move this file to a USB flash drive.

(H) »

images huahaiway

+ Finally, remove the SD card and insert it into the Advance-P4 board.

Display 10.1 V1.0

P

U

Main function

« The main folder is the core directory for program execution, containing the main
function executable file main.c.

« Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER main.c x

LESSON12 main > main.c > .
> wscode
> build #include "main.h”
~ main
> include
ChMakelistsbit esp_ldo_channel_handle_t ldo4
main.c esp_ldo_channel_handle_t 1do3 =
~ peripheral
~ bsp_audio
~ include
bsp_audioh init_fail(*name, esp_err_t err)
bsp_audio.c
CMakelists.bxt
~ bsp_sd {
~ include if (!state
bsp_sd.h
bsp_sd.c
CMakeListstxt

"%s init [%s]”, name, esp_err_to_name(err));
state = z
CMakeLists.txt vTaskDelay(166@ / portTICK_PERIOD_MS);
@ partitions.csv }
£ sdkconfig

= sdkconfig.old
Init(void)

esp_err_t err
esp_ldo_channel config t 1do3 cof = {
-chan_id = 3
.voltage mv

- 2500,
err = esp_ldo_acquire_channel(&ldo3 cof, &ldo3);
if (err != ESP_OK

init_fail("1do3", err);

» 1do_channel config t 1do4 cof = {

-chan_id - 4,

.voltage mv = 33@0,

b TIMELINE esp_ldo_acquire_channel (&ldo4_cof, &ldod);
b PrROJECT COMPONENTS i rr = ESP_OK)

« This is the entry file of the entire application. In ESP-IDF, there is no int main(),
execution starts from void app_main(void).

+ Let's first explain main.c.

Init:

+ The Init() function is used to initialize the hardware required for the audio playback
system, including configuring and obtaining LDO3 (2.5V) and LDO4 (3.3V) channels,
initializing the SD card for reading WAV files, initializing the audio controller and turning
off the audio hardware, as well as initializing the 12S audio channel to prepare for WAV
playback. If any step fails, it will call init_fail() to print an error and stop program
execution.

main > main.c > &) app_main(void)
Init()
esp ldo channel config t 1do3_cof = {
err = esp_ldo_acquire_channel(&ldo3_cof, &ldo3);
if (err != ESP_OK)
init fail("ldo3", err);
esp_ldo channel _config t ldo4 cof = {
.chan_id = 4,
.voltage mv = 3360,
err = esp ldo acquire channel(&ldo4 cof, &ldo4);
if (err l= ESP_OK)
init_fail("ldo4", err);

err = sd_init();
if (err != ESP_OK)

init fail("sd", err);
vTaskDelay (588 / portTICK_PERIOD_MS);

err = audio_ctrl_init();

if (err != ESP_OK)
init fail("audio ctrl”, err);
set_Audio ctrl(
err = audio init();
if (err != ESP_OK)
init_fail("audioc”, err);
vTaskDelay (588 / portTICK PERIOD MS);

app_main(

Init();

Audio_play wav_sd("/sdcard/huahai.

« After waiting for the SD card and other components to complete initialization, the next
step is to execute Audio_play_wav_sd from the bsp_audio component to play the
converted WAV audio files stored in the SD card.

« Finally, let's look at the "CMakelLists.txt" file in the main directory.

« The role of this CMake configuration is as follows:

- Collect all .c source files in the main/directory as the component's source files.

> Register the main component with the ESP-IDF build system and declare its
dependencies on the custom components bsp_audio and bsp_sd.

« This ensures that during the build process, ESP-IDF knows to build these two
components first, followed by the main component.

EXPLOR main.c CMakelists.bxt main X
- LESSON12 . main > t
FILE(GLOB RECURSE main ${CMAKE SOURCE DIR}/main/*.c)
build

idf_component_register(SRCS ${main}
INCLUDE_DI|
REQUIRES bsp_audio bsp_sd)

CMakeLists.txt
Note: In subsequent courses, we will not create a new "CMakelists.txt" file from

scratch. Instead, we will make minor modifications to this existing file to integrate
other drivers into the main function.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessoni2-Playing Loca_Music_from_ SD_Card

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson12-Playing_Loca_Music_from_SD_Card

Programming Steps

+ Now that the code is ready, the next step is to flash it to the ESP32-P4 so we can
observe the results.

« First, connect the Advance-P4 device to your computer using a USB cable.

« First, double-check two things: whether the converted WAV audio file has been placed
in the SD card, and whether the SD card is inserted into the SD card slot of the
Advance-P4.

w‘llll:IIIIIYI‘

FEEEEEE

+ Before starting the preparation for flashing, delete all files generated by compilation to
restore the project to its initial "unbuilt” state. This ensures that subsequent
compilations are not affected by your previous operations.

EXPLORER

LESSON12 main > main.c > & app_main(void)
> wvscode Init()
> build esp_ldo_channel_config t 1ldo3_cof = {
err = esp_ldo_acquire_channel(&ldo3_cof, &ldo3);
if (err != ESP_OK
init_fail("1do3
esp_ldo_channel_conf
CMakeLists.txt .chan_id - 4,
main.c _voltage mv - 3308,

~ main
~ indude

main.h

~ peripheral
~ bsp_audio
v include

err = esp_ldo_acquire_channel(&ldoa_cof, &ldod);
if (err l= ESP_OK
init fail("1ldoa”, err);
bsp_audio.h -
ESP-IDF: Explorer © err = sd init();
CMakeLists.txt if (err l= ESP OK
~ bsp_sd init fail("sd", err);
v indude vTaskDelay (586 / portTICK_PERTOD_MS);
bsp_sdh
bsp_sd.c
CMakelists.txt
CMakelLists.txt
B partitions.csv set_Audio_ctrl(
£ sdkconfig err = audio_init();
if (err l= ESP_OK
init_fail("sudio”, err);
vTaskDelay(56@ / portTICK_PERIOD MS);

err = audio_ctrl_init();
if (err != ESP_OK
init fail("audio ctrl®, err);

= sdkconfig.old

app_main(

Init();
Audiu_play_wav_sd." /sdcard/huahai.wa

> ouTLINE
[TIMELINE
> PROJECT COMPONENTS
& ESP-IDF v5.42 ¥ UART _§ COM14 £ esp32pd

First, follow the steps in the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

Next, we need to configure the SDK.

Click the icon in the figure below.

QCOMI4 Cresplzpa B B 2 § O £ & ®33A0 &Buid O D

+ Wait for a short loading period, then you can proceed with the relevant SDK

configuration

SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
Gomponent config
Application Level Tracing
v Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy I2C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations
eFuse Bit Manager
ESPTLS
ADC and ADC Calibration
Wireless Coexistence

Next, enter "flash” in the search box. (Make sure you
mine.)

main.c SDK Configuration editor X

Build type
v Bootloader config
Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
(e
Application Level Tracing
~ Bluetooth
Common Options
Console Library
Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations
Legacy PCNT Driver Configurations
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations.
eFuse Bit Manager
ESPTLS
ADC and ADC Calibration
Wireless Coexistence

Discard

Build type
Application build type ©
Defautt (binary application + 2nd stage bootioader)
Enable reproducible build ()
No Binary Blobs ©
Bootloader config

Bootloader manager
 Usetime/date stamp for bootloader

Project version ®
1
Bootloader optimization Level ©
Size (-0s with GCC, -Oz with Clang)
Log
Bootloader log verbosity &
Info

Format
Color @

Timestamp &
Millseconds Since Boot

Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST)

Discard

Bootloader config

Serial Flash Configurations
Allow app acjust Dummy Cydle bits in SPI Flash for higher frequency (READ HELP FIRST)

 Enable the support for flash chips of XMC (READ DOCS FIRST)

Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub ®

Flash SPI mode

Qo

Flash Sampling Mode
STR Mode

Flash SPI speed @

Detect flash size when flashing bootloader ©

Before flashing @

Reset to bootloader

After flashing

Reset after flashing

flash configuration matches

« After completing the configuration, remember to save your settings.

« Next, we will compile and flash the code (detailed in the first lesson).

+ Here, we'd like to share a very convenient feature: a single button can execute
compilation, upload, and monitor opening in one go (provided the entire code is
error-free).

- After waiting for a while, the code will finish compiling and uploading, and the monitor
will open automatically.

+ Once the code runs, you will hear the speaker on the Advance-P4 playing the WAV
audio stored in your SD card.

HMI Display 10.1 V1.0

P

U

The WAV audio file from your SD card is now playing.

Lesson 13
Camera Real-Time

Introduction

In this lesson, we will start teaching you how to activate the camera, enabling real-time
display of the camera feed on the Advance-P4 screen.

Hardware Used in This Lesson

The camera on the Advance-P4

A FHEFE

IEEERERRNEEE!

Camera Schematic Diagram

— e _—

T P o
MLCC, driver IC,
Connector, resistors, etc.
are all SMT-mounted

~ PCB . components.

First, the lens serves as a "collector” of light. Its optical structure can capture light from
external scenes and, through its curvature and other design features, converge this light
to provide a basic optical signal for subsequent imaging.

. vem \

Next, the Voice Coil Motor (VCM) plays a key role in autofocus. Based on control signals
from the circuit, it uses the principle of electromagnetic induction to drive the lens to
move precisely within a certain range. By changing the distance between the lens and
the image sensor (Sensor), it adjusts the focal point of the light, ensuring that the object
being photographed is clearly imaged on the Sensor. Before the light reaches the Sensor,
the IR cut/blue glass filter (IR/BG) filters the light. The IR cut filter blocks infrared light, as
infrared light can interfere with visible light imaging and cause color distortion. The blue
glass filter not only blocks infrared light but also reduces the entry of stray light, further
improving light purity and making the light received by the subsequent Sensor more
conducive to forming images with accurate colors and clarity.

Then, the image sensor (Sensor), as a core component, is covered with photosensitive
elements such as photodiodes on its surface, which convert the received optical signals
into electrical signals. Light of different intensities causes the photosensitive elements to
generate electrical signals of different magnitudes, corresponding to information such
as brightness and color in the scene.

Finally, components such as Multilayer Ceramic Capacitors (MLCC), driver integrated
circuits (driver ICs), connectors, and resistors mounted on the Printed Circuit Board (PCB)
form a complete signal processing and transmission system through circuit connections.
The driver IC is responsible for preliminary processing of the electrical signals generated
by the Sensor, such as amplification and analog-to-digital conversion, converting
analog electrical signals into digital signals. Capacitors like MLCC and resistors stabilize
voltage, filter noise, and ensure the stable operation of the circuit.

The digital signals processed in this way are then transmitted through connectors to
subsequent devices (such as the main control chips of mobile phones and cameras),
and finally decoded and rendered into the digital images we see.

Operation Effect Diagram

After running the code, you will be able to see the real-time feed from the camera
displayed on the screen of the Advance-P4.

Key Explanations

+ Now, the key focus of this lesson is how to use the camera and display the camera
feed on the screen.

« Here, we will prepare another new component for you: "bsp_camera’”.
» The main functions of this component are as follows:

o Initialize the camera hardware (including 12C communication, MIPI CSl interface,
and ISP (Image Signal Processing)).

- Implement ISP (Image Signal Processing) workflows such as Auto Exposure (AE),
Auto White Balance (AWB), and Color Correction Matrix (CCM).

- Acquire real-time image data from the camera and display it on the screen (using
the LVGL graphics library).

> Provide functions for refresh control, display control, and buffer control.

* You just need to know when to call the interfaces we have written.
» Next, let's focus on understanding the "bsp_camera” component.
« First, click the GitHub link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display:

500-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessoni3-Camera_Real-Time

« Then drag the code for this lesson into VS Code and open the project file.

« Once opened, you can see the framework of this project.

> build

~ main

In the example of this lesson, a new folder named
"bsp_camera” has been created under "peripheral\".
Within the "bsp_camera\" folder, a new "include” folder
and a "CMakelists.txt" file have been created.

The "bsp_camera’ folder contains the driver file
"bsp_camera.c’, and the "include” folder contains the
header file "bsp_camera.h".

The "CMakelists.txt" file integrates the driver into the
build system, enabling the project to utilize the camera
initialization and related display functions written in
"bsp_camera.c”.

Camera Display Code
» The camera display code consists of two files: "bsp_camera.c” and "bsp_camera.h”.
+ Next, we will first analyze the "bsp_camera.h” program.

- "bsp_camera.h’ is the header file for camera display, mainly used to:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson13-Camera_Real-Time

Declare the functions, macros, and variables implemented in "bsp_camera.c” for use
by external programs;

Allow other .c files to call this module simply by adding #include "bsp_camera.h".

In other wordes, it serves as an interface layer that exposes which functions and
constants are available to the outside, while hiding the internal details of the module.

In this component, all the libraries we need to use are included in the "bsp_camera
file for unified management.

» Such as "esp_sccb_intf.h", "esp_sccb_i2c.h", "esp_cam_sensor.h",
"esp_cam_sensor_detect.h’, and so on (these are all libraries under the network
component).

sync_memcpy
cch -h"

We need to fill in the versions of "esp_cam_sensor’, "esp_cam_sensor”, and
"esp_cam_sensor” in the "idf_component.yml" file under the main folder.

Since these are official libraries, we need to rely on them to implement the camera
functionality on our Advance-P4.

~ LESSON13 main > ! idf componentyml
> .vscode :
> build
~ main
~ include
main.h
CMakelists.txt
idf_component.ym|
main.c
~ managed_components
espressif_cmake_utilities
espressif_esp_cam_sensor
espressif_esp_h264
espressif_esp_ipa
espressif_esp._lcd_ek79007
espressif_esp_lvgl_port
espressif_esp_scch_intf
espressif_esp video
espressif__usb_host_uvc
Ivgl_lvgl

+ During subsequent compilation, the project will automatically download the
esp_cam_sensor library version 1.2.0, esp_cam_sensor version 0.0.5, and esp_video
version 1.1.0. Once the download is complete, these network components will be stored

in the "managed_components” folder (which is automatically generated after filling in
the version numbers).

Next, we need to declare the variables we will use and the functions whose specific
implementations are in "bsp_camera.c”.

Centralizing these declarations in "bsp_camera.h” facilitates easier calling and
management. (We will explore their specific roles when they are used in
"bsp_camera.c”.)

"CAMERA™

(Fmt
(fmt.
(fmt.

13
12

esp_err_t camera_init();
camera_display();
esp_err_t camera_refresh();
camera_display refresh(};
1v_img_dsc_t img_camera;
esp_cam_ctlr_trans_t my_trans;
esp_cam_ctlr_handle_t cam_handle;

- Let's take a look at the specific functions of each function in "bsp_camera.c’.

» The "bsp_camera” component provides significant support for everyone to use the
camera later. By understanding the role of each function clearly, you can use the
camera conveniently.

« We won't explain the code in detail here; we'll only tell you what each function does
and under what circumstances to call it.

1. example_isp_awb_on_statistics_done_cb()

Function:

« This is a callback function for the Auto White Balance (AWB) module in the ISP (Image
Signal Processor). It is called when the AWB module completes its statistics
calculation.

+ Currently, it simply returns true to indicate "default processing after statistics
completion” and has no actual operational logic.

Calling Timing:

+ Automatically invoked by the underlying ISP driver (when the ISP finishes the white
balance statistics for a single frame of image).

2. camera_get_new_vb()
Function:
- Provides a new frame buffer for the Camera Controller.

+ When the camera is ready to capture a new frame of image, the driver will call this
function to obtain the memory address of the buffer.

Calling Timing:

« Automatically invoked by the underlying camera driver, when the controller detects
that it can capture a new frame of image.

3.camera_get_finished_trans()
Function:

+ Used to notify that the transmission of a frame of image has been completed.

+ Currently, the function does nothing internally (it simply returns false), meaning no
special processing is temporarily required for the completed image.

Calling Timing:

+ Automatically invoked by the camera controller, triggered when the transmission of a
frame of data from the camera to memory is completed.

4. camera_sensor_init()

Function:

« Initializes the operating parameters and communication interface of the camera
sensor itself.

« It mainly includes the following steps:
- Initialize SCCB (12C bus) communication;
o Automatically detect the model of the connected camera;
- Set resolution, pixel format (RAWS), and frame rate;
- Set mirroring (horizontal flip), exposure time, and exposure value;
> Enable video data stream output.
Calling Timing:

« During the overall camera system initialization (called within camera_init()).

5. camera_csi_init()
Function:

- Initializes the camera’s MIPI-CSl interface controller, which is the module responsible
for receiving camera data streams.

« It mainly completes the following tasks:
o Configure CSI controller parameters (resolution, data rate, number of channels, etc.);

- Register data transmission callbacks (camera_get_new_vb,
cqmerd_get_finished_trcns);

> Enable the controller.
Calling Timing:

+ Also during the camera initialization phase (called within camera_init()).

6.isp_init()
Function:
« Initializes the ISP (Image Signal Processor) module.

+ The ISP is responsible for processing the raw image data (RAW data) output by the
camera to convert it into RGB images.

« This includes:

> Enabling the main ISP module;
o Setting color adjustment parameters (brightness, contrast, saturation, hue);
- Enabling the Auto White Balance (AWB) controller;
- Enabling the Auto Exposure (AE) controller;
- Enabling the Color Correction Matrix (CCM).
Calling Timing:

- During the camera initialization phase (called within camera_init()).

7. camera_init()
Function:
- This is the "'main initialization function” for the entire camera subsystem.
- Itis responsible for:
- Allocating image buffers for the camera (located in external PSRAM);
o Calling the three core initialization functions mentioned earlier:
- camerq_sensor_init() — Initializes the camera sensor;
- camero_csi_init() — Initializes the image reception interface;
- isp_init() — Initializes image signal processing;
o Starting the camera data stream acquisition.
Calling Timing:

+ When the system powers on (usually called once in app_main() or during the device
initialization phase).

8. camera_refresh()

Function:

« Manually triggers the camera to capture a frame of image.

- Essentially, it calls esp_ccm_ctlr_receive() to receive a frame of image data.

Calling Timing:

+ Invoked when the application layer needs to refresh the camera image, such as:
> The first capture after program startup;
e Manual refresh by the user;

o Periodic calls in timed tasks.

9. camera_display_refresh()
Function:
« Notifies LVGL to refresh the camera feed display area.

« It calls lv_obj_invalidate(), which prompts LVGL to redraw the camera image in the
next rendering cycle.

Calling Timing:

+ Invoked after the image content is updated (e.g., within the loop of
camera_display_task()).

10. camera_display()
Function:
« Creates an image object in LVGL for displaying the camera feed.
« The specific steps are as follows:
o Create an lv_img object;
> Set center alignment for the object;
- Bind the image buffer (RGB565 data captured by the camera);
o Configure the image source;

> Unlock LVGL to allow rendering.

Calling Timing:

Called once after the camera is initialized successfully, to create and display the
image control (invoked within Init()).

This concludes our introduction to the bsp_camera component. For your purposes, it
is sufficient to know how to call these interfaces.

If you need to call these interfaces, you must also configure the "CMakelists.txt" file
under the bsp_camera folder.This file, located in the bsp_camera folder, primarily
functions to tell the ESP-IDF build system (CMake): how to compile and register the
bsp_camera component.

BXPLORER main. bsp_camera.c bsp_camera, CMakeliststxt X

| LESsON13 peripheral > b: era > M CMakelists.txt
> wscode FILE ECURSE component_sources "*
> build
— idf_component_register(SRCS ${component_sources}
RS "include”
river esp_cam_sensor esp_sccb_intf esp_video bsp_illuminate)

~ include
mainh
CMakelists.txt
idf component.yml
main.c
» managed_components
Testing pheral
~ bsp_camera
~ include
bsp_camerah
bsp_camera.c
CMakelists.txt
~ bsp.illuminate
 include
bsp_illuminateh
bsp_illuminate.c
CMakelLists.txt

+ The reason for including "driver’, "esp_cam_sensor’, "esp_sccb_intf’, "esp_video", and
"bsp_illuminate” is that we have called these in "bsp_camera.h” (other libraries that
are system libraries do not need to be added).

)_async_memcpy .h"

_sccb_intf.h"
scch i2c.h™

)_cam_sensor.h"

) _illuminate.h”

» For example, "bsp_illuminate.h” is a component related to screen display that we
explained earlier. Since it was covered in detail before, we won't go into it again her

It is used to initialize the screen, turn on the screen backlight, and enable the screen to
display relevant content.

~ main
v include
mainh
CMakeLists.txt
idf_component.ym!
main.c
> managed_components
 peripheral
~ bsp_camera
References de
bsp_camerah
bsp_camera.c
CMakeLists.txt
~ bsp_illuminate
v include
bsp_illuminateh
bsp illuminate.c
CMakeLists txt
£ .dangd
gitignore
CMakeLists.txt

£ dependencies.lock ##__VA_ARGS_)

##__VA_ARGS_)
READMEmd #2_VA_ARGS_)

B partitions.csv

Main function

+ The main folder is the core directory for program execution, which contains the main
function executable file main.c.

» Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER

LEssoNt3 C mainc > @ app_maintvoid)

> wscode Init(void)

g n1t_ran , err);
ML err = gpio_install_isr_service(8);
C mainh init_fail("gpio is
CMakeListsitxt

idf_componentyml err = display_init();

+ include

init_fail
components -

+ peripheral err = set_lcd blight(100);
~ bsp_camera
+ include

C bsp_camerah

 bsp_illuminate
+ include
C bsp.illuminateh
C bsp_illuminate.c camera_display();
CMakelists it
= dangd R
gitignore.
M CMakelists txt
= dependencieslock
B partitions.csv Init();
READMEmd
e, camera_refresh();

=y xTaskCreatePinnedToCore(camera_display_task, "came Y, . 5 - 4, &lvgl camera, 1);

+ This is the entry file of the entire application. There is no int main() in ESP-IDF; instead,
the program starts running from void app_main(void).

- First, let’s explain "main.c”.
+ When the program runs, the general process is as follows:

+ During program execution, the system first calls Init() in app_main() to initialize
hardware and modules: configure the LDO power supply, GPIO interrupts, LCD display
and backlight, and initialize the camera and display buffer.

«+ Afterinitialization is completed, the program first captures a frame of camera feed,
then creates the camera_display_task task and enters a loop: lock LVGL, refresh the
camera display, unlock LVGL, and delay for approximately 23ms. This loop
continuously updates the frame, enabling real-time camera display.

« Next, let's explain the main code "'main.c”.

« Itincludes the custom main header file 'main.h’, which typically contains log macros,
peripheral initialization declarations, and header files of other interfaces that need to
be used.

« Below is the content within "'main.h™

“MAIN"
(fmt, ...) ESP_LOGI(
(#mt.

- Let's continue to look at the content in "main.c”.
« Ivgl_camera: A handle for the LVGL display task, used to manage the display task.

+ LDO power control handles: Used to supply power to peripherals (such as the camera
and LCD).

+ ldo3 corresponds to a 2.5V output.
+ ldo4 corresponds to a 3.3V output.
« Function declarations:
o init_fail: Handles initialization failure.
o Init: Performs system hardware initialization.

o camera_display_task: Implements the camera display refresh task.

le_t lvgl_camera;

init_fail(
Ini H
camera_display_task(*param) ;

camera_display_task:

« A FreeRTOS task function used to continuously refresh the camera display.

Core Process:
« Infinite loop while(1).
+ Attempt to acquire the LVGL lock via Ivgl_port_lock(0).

« If the lock is successfully acquired, call camera_display _refresh() to update the
display buffer to the screen.

+ Unlock LVGL with Ivgl_port_unlock().

+ Delay for 23ms (vTaskDelay) to control the refresh rate, approximately 43 FPS.

Once the task is created after program startup, it will continuously refresh the camera
display.

(amel‘a_display_taskk *param)

Ivgl_port_lock(@)

camera_displa:
Ivgl port_unl

vTaskDelay(23 /

_ -
init_fail:
« Initialization failure handling function:
> Uses static bool state to prevent repeated printing.
e Runs in an infinite loop, printing initialization failure messages.
> Delays for 1 second per cycle.

» Function: Once any hardware initialization fails, the program stops further execution
and prints error messages.
init_fail(
(1
if (Istate

r_to_name(err));

vTaskDelay (1060 /

init:

+ Hardware initialization function during system startup.

Initialization Steps:

+ Configure LDO3 (2.5V) and LDO4 (3.3V) to supply power to the LCD.
« Install the GPIO interrupt service via gpio_install __isr_service.

+ Initialize the LCD display with display _init().

+ Turn on the LCD backlight using set_lcd _blight(100).

- Initialize the camera module with camera_init().

Calling Scenario: Invoked once within app_main() when the program starts.

Tnit(void)

esp_err_t err = 2
esp_ldo channel config t ldo3_cof =
.chan_id = 3,
.voltage mv = 25600,

err = esp_ldo acquire channel(&ldo3_cof, &ldo3);
if (err !=
init_fail("1ldo3", err});

esp_ldo_channel config t ldo4 cof = {

.chan_id = 4,

.voltage mv = 33600,
err = esp_ldo acquire channel(&ldo4 cof, &ldod);
if (err 1=

init_fail("ldo4", err);
err = gpio_install isr service(8);
if (err 1=

init_fail("gpio isr service”, err);
err = display init();
if (err -

init_fail("display”, err);
err = set_lcd blight(1ee);
if (err 1= {

init_fail("LCD Backli ", err);

("LCD backlight opened (brightness: 168)");

err = camera_init();
if (err 1=

init_fail(“camera”, err);

camera_display();
app_main:
» The program entry point for ESP32 FreeRTOS.

Process:

Print the log "Camera task’.

Call Init() to initialize the system.

Call camera_refresh() to retrieve a new frame of image data from the camera
controller into the buffer, providing the latest frame for subsequent display or
processing.

Create the camera_display_task task, attach the display task to Core 1 with a
relatively high priority.

Print the log "The screen is displaying” to indicate that the display has started.

app_main(

Init();
camera_re

xTaskCreatePinnedToCore(camera_display_task, ra_c . . - 4, &lvgl camera, 1);

Finally, let's take a look at the "CMakelists.txt” file in the main directory.
The role of this CMake configuration is as follows:
+ Collect all .c source files in the main/ directory as the source files of the component.

« Register the main component with the ESP-IDF build system, and declare that it
depends on the custom component "bsp_camera” and the custom component
"bsp_illuminate”.

In this way, during the build process, ESP-IDF will know to build "bsp_camera” and
"osp_illuminate” first, and then build "'main”.

GERLAa main >

L nain ${CMAKE_SOURCE_DIR)

idf_component_register(${main

~ peripheral
~ b

Note: In the subsequent courses, we will not create a new "CMakelists.txt" file from
scratch. Instead, we will make minor modifications to this existing file to integrate
other drivers into the main function

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ES P4-HMI-Al-Display-1024x600-IPS-To

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson13-Camera_Real-Time

Programming Steps

+ Now that the code is ready, the next step is to flash it to the ESP32-P4 so we can
observe the actual behavior.

« First, connect the Advance-P4 device to your computer via a USB cable.

&

P

« Before starting the flashing preparation, delete all compiled files to restore the project
to its initial "unbuilt” state. (This ensures that subsequent compilations are not affected

by your previous build artifacts.)

CMakeLsts.txt
err = set_lcd blight(160);
idf_componentymi
mainc
> managed_components
~ peripheral
~ bsp_camera
References de err = camera_init();
£ =
bsp_camerah it (err
init_fail("ca
bsp_camera.c
CMakeLists.txt R (E
~ bsp_illuminate
~ include
bsp_illuminate.h app_main(
bsp.illuminate.c stk
CMakeLists.txt famena fasie e
= dangd

A\r\n");

gitignore
CMakeLists.txt camera_rdfresh();

= dependencieslock

H partitions.csv
READMEmd

= sdkconfig

= sdkeonfig.old

xTaskCreatepinnedToCore(camera_display_task, "c - 4, &lvgl_camera, 1

> OUTLNE
> TIMELINE
> PROJECT COMPONENTS

B ESP-DFV542 YUART § COM14 Oespiopt & (8] £ 6 O S & B Bl ®2A0 Bouid £ [ESP-IDF: QEMU] _[ESP-IDF: §

« First, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip correctly.

.

Next, we need to configure the SDK.

.

Click the icon shown in the image below.

> OUTLINE

> TIMELINE
> PROJECT COMPONENTS

Wait for a short loading period, and then you can proceed with the relevant SDK
configuration.

SDK Configuration editor X

Discard Reset
Build type
Application build typ

Default (binary application + 2nd stage bootoader)

Bootloader config
Bootloader manager

D rati

TWAI Configurati I
9 og

Bootlo:
Info

Format

Timestamp &
Mil

Serial Flash Configurations
app adjust Dummy bits in SP1

- After that, enter "flash” in the search box to find flash-related settings. (Make sure your
flash configuration matches mine exactly.)

SDK Configuration editor X

Discard Reset

Bootloader config
Serial Flash Configurations
app ad
v Enable

Security features
Enable flash encry

paths in binari

After flashing ©

flashing

« After completing the configuration, remember to save your settings.

+ Next, we will compile and flash the code (detailed in the first lesson).

+ Here, we will also introduce a very convenient feature: a single button can execute
compilation, upload, and monitor activation in one go.

» OUTLINE

> TIMELINE

> PROJECT COMPONENTS
&3 ESP-IDF v54 Y UART & comi4 <

+ Wait for a moment until the code compilation and upload are completed, and the
monitor will open automatically.

« At this point, please remember to connect your Advance-P4 with an additional Type-C
cable via the USB 2.0 port. This is because the maximum current provided by a
computer’s USB-A port is generally 500mA, and the Advance-P4 requires a sufficient
power supply when using multiple peripherals—especially the screen. (It is
recommended to connect it to a charger.)

FH

FELEPEE LR

« After running the code, you will be able to see the real-time feed from the camera on
the Advance-P4 screen.

Lesson 14
SX1262 Wireless Module

Introduction

In this lesson, we will begin exploring the use of wireless modules. Since the SX1262 LoRa
module supports both transmission and reception, two Advance-P4 development
boards and two SX1262 LoRa communication modules are required.

The objective of this lesson is to implement a case study where, when an SX1262 LoRa
module is connected to the wireless module slot of the Advance-P4 board, the
transmitting board displays "TX_Hello World:i" on its screen, while the receiving board
displays "RX_Hello World:i" along with related LoRa signal information.

Hardware Used in This Lesson

SX1262 Wireless Module on the Advance-P4

Operation Effect Diagram

After inserting the $X1262 LoRa modules into both Advance-P4 development boards and
running the respective codes, you will observe the following behavior:

On the transmitting Advance-P4 board, the screen will display the message TX_Hello
World:i, with the value of i increasing by 1 every second.

Similarly, on the receiving Advance-P4 board, the screen will display RX_Hello World:i
whenever a message is received, with i also incrementing by 1 each second. In addition,
the screen will show relevant reception signal information such as RSSI and SNR.

LoRa RX Receiver

RX_Hello World:25

RSSI:-26.0dBm SNR:13.0 dB

TX_Hello World:24

//

Key Explanations

« The main focus of this lesson is to learn how to use the wireless module, including how
to initialize the SX1262 LoRa module and send or receive data.

+ In this section, we will introduce a new component called bsp_wireless.
« The main functions of this component are as follows:

- It encodes and modulates the data (such as strings or sensor information) sent
from the main controller and transmits it wirelessly.

It also receives wireless data packets sent from other devices via LoRa.

> Through a callback mechanism, it passes the received data back to the upper-layer
application.

- In addition to the above functions, this component also integrates the experimental
functionalities for the remaining three wireless modules: nRF2401, ESP32-C6, and
ESP32-H2.

+ Since the functions of each wireless module in the code are encapsulated within
#ifdef and #endif directives, and in this lesson we are using the SX1262 module, we
only need to enable the SX1262-related configurations.

How to enable it:

« Click SDK Configuration.

EXPLORER bsp_wireless.cpp X
LESSON14_TX wireless > € bsp_wireless.cpp > %8 BSP_NRF2401
> wscode
> build
~ main

BSP_SX1262

S Received_pack_radio(size_t len);

main.h

CMakeListstxt

idf_componentym! Module *bsp_sx_mod;

main_tx.c SX1262 *bsp_sx_radio;
> managed_components B2

~ peripheral
perp EspHal

Module *BSP_SX126 _sx_mod =
v include SX1262 *BSP_S sp_sx_radio
bsp_illuminateh
bsp_illuminate.c lora_transmissionstate =
CMakeLists.txt lora_transmittedFlag =
lora_receivedrlag -
size_t lora_received len -

~ bsp_illuminate

~ bsp_wireless
~ include
bsp_wirelessh
EspHalh (*rx_data_callback)(
bsp_wireless.cop
CMakelists.txt
= Kconfig
= .dangd
gitignore
CMakelists.txt
= dependendieslock
H partitions.csv
README.md
= sdkeonfig
= sdkeonfig.old

> OUTLINE
> TimELINE
> PROJECT COMPONENTS
EIESPIDFvSA2 YYUART QCOMI4 Oespi2pt (@ B 2 § 0O L & Bl ®oA0 @Buld & D

+ Search for "wireless” and open the configuration you are using.

SDK Configuration editor X

wireless| Discard

T Component config
~ Bootloader config - .
Wireless Coexistence
GPIO debugging for coexistence

BSP WIRELESS Setup

 Enable wireless mou config G

Bootloader manager

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config Enable NRF2401 config ©
Partition Table
~ Compiler options

Enable UART TRANSPOND @

- Since in this case we are using the $X1262, only check the option "Enable $X1262
config” and uncheck all the others.

(Enable the one that corresponds to the wireless module you are using.)

After making the changes, don't forget to click Save to apply and store the modifications.

bsp_wireless.cpp X

« As shown in the figure, we have enabled the SX1262-related configuration, so the other
wireless modules are currently disabled and not in use.

« Within the bsp_wireless component, you only need to know when to call the provided
interfaces that we have written.

+ Next, let's focus on understanding the bsp_wireless component itself.
« First, click the GitHub link below to download the source code for this lesson.

+ Transmitting end code:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessonl4_TX_SX1262_ Wireless_Module

+ Receiving end code:

P4-HMI-Al-Display-1024x600-IPS-To

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ES
/ 10/

uch-Screen/tree/master/example/V1.0/idf-code/lessonl4_RX_SX1262_Wireless_Module

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_TX_SX1262_Wireless_Module
https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_RX_SX1262_Wireless_Module

Then, drag the code for this lesson
into VS Code and open the project
file.

Once opened, you will see the project
structure.

The following section shows the
transmitter (TX) side of the project:

> .vscode
> build
~ main
~ include
main.h
CMakeLists.txt
idf_componentyml
main_tx.c
» managed_components
~ peripheral
~ bsp_illuminate
~ include
bsp_illuminate.h
bsp_illuminate.c
CMakeLists.bxt
~ bsp_wireless
~ include
bsp_wireless.h
EspHalh
bsp_wireless.cpp
CMakeLists.txt
£ Kconfig
.clangd
.gitignore
CMakeLists.txt
£ dependencies.lock
B partitions.csv
README.md
sdkconfig
sdkconfig.old

The following section shows the
receiver (RX) side of the project:

> .vscode
> build
~ main
~ include
main.h
CMakeLists.txt
idf_component.yml
main_m.c
> managed_components
~ peripheral
~ bsp_illuminate
~ include
bsp_illuminate.h
bsp_illuminate.c
CMakeLists.txt
~ bsp_wireless
~ include
bsp_wireless.h
EspHal.h
bsp_wireless.cpp
CMakeLists.txt
£ Kconfig
.clangd
.gitignore
CMakeLists.txt
= dependencies.lock
B partitions.csv
README.md
= sdkconfig
£ sdkconfig.old

In these two projects, the only
difference lies in the main functions:
main_tx.c for the transmitter and
main_rx.c for the receiver. All other
code files are identical. (For
convenience, we have prepared both
main functions for you to use
separately.)

In this lesson’s example, a new folder named bsp_wireless has been created under
peripheral\. Inside the bsp_wireless folder, there is a new include folder and a
CMakelists.txt file.

The bsp_wireless folder contains the driver file bsp_wireless.cpp, while the include
folder contains the header files bsp _wireless.h and EspHal.h.

The purpose of EspHal.h is to convert C code from ESP-IDF into the Arduino-style C++
code required by the Radiolib component library.

The CMakelists.txt file integrates the driver into the build system, allowing the project
to use the LoRa module transmission and reception functions implemented in
bsp_wireless.cpp.

Additionally, there is bsp_illuminate, our familiar component from previous lessons,
which we use to light up the screen and render text using LVGL.

SX1262 LoRa Code

The SX1262 LoRa transmission and reception code consists of two files:
bsp_wireless.cpp and bsp_wireless.h.

Next, we will first analyze the SX1262-related code in bsp_wireless.h.

bsp_wireless.h is the header file for the SX1262 LoRa wireless module. Its main
purposes are:

To declare the functions, macros, and variables implemented in bsp_wireless.cpp for
external use.

To allow other .c files to simply #include "bsp_wireless.h" in order to call this module.

In other words, it serves as the interface layer, exposing which functions and constants
can be used externally while hiding the internal details of the module.

Any libraries required for this component are included in both bsp_wireless.h and
bsp_wireless.cpp.

bsp_wirelessh X

main_rcc mainh bsp_wireless.cop X

peripheral > bsp_wireless > bsp_wireless.cpp > %g BSP_SX1262

+ Since the function implementation in bsp_wireless.cpp uses the function
encapsulation from EspHal.h, the reference to the header file needs to be placed in the
.cpp file.

Take #include <Radiolib.h> as an example; this is a library under the network
component.

main_ncc mainh bsp_wireless.cpp X

peripheral > wireless > bsp_wireless.cpp > ...

wireless.h™

This requires us to specify the version of jgromes/radiolib in the idf_component.ymi
file located in the main folder.

Since this is an official library, we need to rely on it to implement the SX1262 LoRa
wireless transmission or reception functionality on our Advance-P4.

EXPLORER main_rx.c mainh bsp. bsp. h idf componentyml X

LESSON14_RX DERLS main > ! idf componentym|
> .vscode
> build
~ main
~ include
main.h
CMakelLists.ixt
idf_componentyml
main_rx.c
" managed_components
> espressif_cmake._utilities
> espressif_esp_lcd_ek79007
> espressif_esp_Ivgl_port
> jgromes_radiolib
> lvgl_lvgl

« These three components, which we discussed earlier, are used in the bsp_illuminate
component to light up the screen and render information on the interface using LVGL.

main > idf_componentyml

« During the subsequent compilation process, the project will automatically download
the following library versions:

- jgromes/Radiolib version 7.2.1

- espressif/esp_lcd_ek79007 version 1.0.2
> lvgl version 8.3.11

- espressif/esp_Ivgl_port version 2.6.0

« Once downloaded, these online components will be stored in the
managed _components folder. (This is automatically generated after specifying the
version numbers.)

+ Returning to bsp_wireless.h,here we declare the pins used by the wireless module.

« The pin assignments should not be modified, otherwise the wireless module will not
work due to incorrect connections.

« Next, we declare the variables and functions that we will use. The actual
implementation of these functions is in bsp_wireless.cpp.

« By placing them all in bsp_wireless.h, it becomes easier to call and manage them.
(wWe will explore their specific functionality when we look at bsp _wireless.cpp.)

t len);
*callback

» Next, let's take a look at bsp_wireless.cpp to understand the specific function of each
function.

« The bsp_wireless component implements LoRa data transmission and reception,
communicates with the main controller via the SPI interface, and handles the sending
and receiving at the wireless data link layer.

+ Here, we won't go into the detailed code. Instead, we will explain the purpose of each
function and when to call them.

BSP_SX1262 Class:
This indicates that:

« Itis a C++ wrapper class for operating the SX1262 module.

« It mainly provides functions for initialization, de-initialization, and data
transmission/reception.

+ All hardware operations are performed based on the Radiolib library.

+ bsp_sx_mod and bsp_sx_radio are object pointers in memory for the SX1262 module
(statically shared).

x1262_tx init
S5x1262_tx_deinit
Send_pack_radio();

. init

5x1262_rx_deinit

Received_pack_radic

Defines the core global variables required by the $X1262 LoRa module driver, used to
manage the module instance, status, and data callbacks:

« lora_hal is the low-level SPI hardware abstraction layer object, responsible for SPI
communication.

+ bsp_sx_mod and bsp_sx_radio point to the generic RadioLib module object and the
SX1262 module object, respectively. They encapsulate the specific hardware pins and
transmission/reception interfaces. These objects are created during module
initialization (e.g., $x1262_tx_init() or Sx1262_rx_init()) and released or set to standby
during de-initialization.

« lora_transmissionState records the status code of the last transmission operation for
debugging and error handling.

« lora_transmittedFlag is the transmission completion flag, set by the transmission
interrupt callback set_sx1262_tx_flag(), indicating that the module is ready to send a
new data packet.

« lora_receivedFlag is the reception completion flag, set by the reception interrupt
callback set_sx1262_rx_flag(), indicating that new data is available to read.

« lora_received_len stores the length of the most recently received data.

« rx_data_callback is a function pointer that allows the upper layer to register a
callback. When the SX1262 receives data, this callback is automatically triggered,
passing the received dataq, its length, RSSI, and SNR information to the upper-level
processing.

sx1262_tx_init():

The function Sx1262_tx_init() in the BSP_SX1262 class is used to initialize the $X1262
module for data transmission.

« The function first uses lora_hal to configure the SPI pins (RADIO_GPIO_CLK,
RADIO _GPIO_MISO, RADIO_GPIO_MOSI) and the SPI clock frequency (8 MHz), then calls
spiBegin() to start SPl communication, providing the module with a low-level
communication interface.

« Next, it creates a Module object bsp_sx_mod to encapsulate the SX1262 hardware pins
(NSS, IRQ, NRST, BUSY) and uses this module object to create the SX1262 instance
bsp_sx_radio. By calling begin(), it configures the LoRa parameters (915 MHz
frequency, 125 kHz bandwidth, spreading factor 7, coding rate 4/7, sync word, 22 dBm
power, pre-gain 8, LNA 1.6, etc.), completing the module initialization.

« Finally, it calls setPacketSentAction(set_sx1262_tx_flag) to register the transmission
completion callback, which sets lora_transmittedFlag whenever a data packet is sent,
indicating that the module is ready to send the next packet.

This function is usually called at system startup or before starting LoRa data transmission.
It only needs to be initialized once to ensure the module is in a transmittable state, after
which data packets can be sent periodically using Send_pack_radio().

If two LoRa modules are used for transmission and reception, they must operate on the
same frequency band.

262_tx_init()

_hal.spiEnd
rn ;

ction(set sx1262 tx flag);

In bsp_sx_radio->begin(), the 915.0 MHz represents the operating center frequency of the
SX1262. This can be changed according to the LoRa frequency regulations of different
regions:

+ China commonly uses 433 MHz or 470-510 MHz
» Europe uses 868 MHz
+ The United States and Australia use 915 MHz

» Japan uses 923 MHz

When changing the frequency, the transmitter and receiver must match, otherwise
communication will fail. Additionally, ensure that the selected frequency falls within the
legally allowed ISM band for that region.

Parameters such as bandwidth and spreading factor can generally remain unchanged,
although some frequency bands may have officially recommended values.

Send_pack_radio:

The function Send_pack_radio() in the BSP_SX1262 class is the core function for sending
LoRa data packets.

« It first checks the transmission completion flag lora_transmittedFlag. If it is true, it
indicates that the previous packet has been sent and the module is ready to send new
data.

« If so, the flag is reset to false to prevent duplicate transmissions. The function then
checks lora_transmissionState to determine whether the previous transmission was
successful and prints the corresponding log.

+ Next, it calls bsp_sx_radio->finishTransmit() to complete any remaining operations
from the previous transmission, ensuring the module is ready for use. The transmission
counter sx1262_tx_counter is incremented, and a text message with the counter is
formatted and stored in the static buffer text.

« The function then calculates the message length and calls
bsp_sx_radio->startTransmit() to initiate the transmission of the new data packet. It
also updates lora_transmissionState to record the status of this transmission. If the
transmission fails to start, an error message is printed.

« Finally, the function returns true if the transmission event has been handled, or false if
the module is not yet ready to send.

This function is usually called periodically in the main loop or task scheduler to poll and
send LoRa data packets, and it must ensure that the previous transmission is complete
before sending a new packet.

sx1262_get_tx_counter()

This is a C-style interface used to obtain the value of the SX1262 module’s transmitted
packet counter sx1262_tx_counter. The function simply returns the global static variable
sx1262_tx_counter and does not modify any state. It is typically used in applications to
query the number of packets sent, for example, for debugging, statistics, or displaying
the transmission count. It can be called at any time and does not depend on the
transmission or reception status.

sx1262_tx_init()

This is a C-style wrapper interface for initializing the SX1262 transmission functionality.
Inside the function, a BSP_SX1262 object is created, and its method Sx]262_tx_init() is
called to complete the LoRa module SPI configuration, module object creation,
parameter initialization, and registration of the transmission completion callback. The
function returns ESP_OK if initialization is successful, or ESP_FAIL if it fails. This function is
typically called once at system startup or before starting data transmission to ensure
that the module is in a ready-to-transmit state.

sx1262_tx_deinit()

This is a C-style de-initialization interface for the SX1262 transmission function. Inside the
function, a BSP_SX1262 object is created, and its method sx1262_tx_deinit() is called to
shut down the transmission functionality. During de-initialization, it calls finishTransmit()
to complete any ongoing transmission, clears the transmission callback, switches the
module to standby mode, and closes the SPI interface. This function is generally called
when the system is shutting down, the module no longer needs to send data, or it enters
low-power mode, releasing resources and ensuring the module safely stops.

send_lora_pack_radio()

This is a C-style interface used to trigger the SX1262 to send a data packet. Inside the
function, a BSP_SX1262 object is created, and its method Send_pock_rcdio() is called. It
polls the transmission completion flag lora_transmittedFlag and, when ready, generates
a data packet and starts transmission. The function returns true if the transmission event
has been handled, or false if the module is not yet ready. It is usually called periodically in
the main loop or task scheduler to achieve continuous or scheduled data transmission.

set_sx1262_rx_flag()

This is a static internal function used as the callback for SX1262 reception completion.
Inside the function, it sets the global reception flag lora_receivedFlag to true, notifying
the system that a new data packet has been received.

It is not called directly. Instead, it is registered by calling
bsp_sx_radio—>setPocketReceivedAction(set_sx1262_rx_f|og), and the SX1262 hardware
automatically triggers it each time a reception is completed, driving the data reception
processing logic.

sx1262_rx_init()

The function $x1262_rx_init() in the BSP_SX1262 class is used to initialize the $X1262
module for reception.

« The function first uses lora_hal to configure the SPI pins (RADIO_GPIO_CLK,
RADIO _GPIO_MISO, RADIO_GPIO_MOSI) and the SPI clock frequency (8 MHz), then calls
spiBegin() to start SPl communication, providing a low-level interface for the SX1262.

« Next, it creates a Module object bsp_sx_mod and an SX1262 object bsp_sx_radio to
encapsulate the hardware pins and transmission/reception interfaces. It then calls
begin() to configure the LoRa parameters (915 MHz frequency, 125 kHz bandwidth,
spreading factor 7, coding rate 4/7, sync word, 22 dBm power, etc.), completing
module initialization. If initialization fails, an error is printed and the function returns a
failure status.

+ It then registers the reception completion callback via
setPocketReceivedAction(set_sx1262_rx_ﬂog), so that the module automatically sets
lora_receivedFlag whenever a packet is received.

- The function calls setRxBoostedGainMode(true) to enable boosted gain mode for
improved reception sensitivity, then calls startReceive() to start reception mode. If
starting reception fails, it prints an error and returns failure.

This function is usually called once at system startup or before starting LoRa data
reception to ensure the module is in a receivable state, after which received data can be
processed via polling or callback.

5x1262_rx_init()

Here, we are initializing the receiver module. Similarly, by keeping the frequency band at
915 MHz, the module can successfully receive the data sent from the transmitter.

Received_pack_radio:

The function Received_pock_rqdio(size_t len) in the BSP_SX1262 class is the core
function for handling received LoRa data packets.

« The function first checks the reception flag lora_receivedFlag. If it is true, it indicates
that a new data packet has arrived. The flag is then reset to false to prevent duplicate
processing.

It then obtains the actual length of the received data via
bsp_sx_rodio—>gethcketLength(). If a valid length is returned, it is used; otherwise,
the externally provided len serves as a fallback.

«+ Next, a buffer data[255] is defined, and bsp_sx_radio->readData() is called to read
the received data into the buffer. If reading succeeds, the function prints the received
data, RSSI (Received Signal Strength), SNR (Signal-to-Noise Ratio), and frequency
offset. If a callback function rx_data_callback has been registered, it passes the data,
length, and signal parameters to the upper-level application for processing.

This function is usually called periodically in the main loop or tasks. It executes after the
SX1262 reception interrupt sets lora_receivedFlag, allowing the upper-level application to
retrieve and process received packets promptly and reliably.

Received_pack_radid¢

etPacketlength();

> @
eived_len = actual len;

ed_len = len;

io->readData(data, lora_received len);

ata_callback I= NULL) {
callback: *)data, lora_received] 3 SIQ). bs I

", state);

sx1262_rx_init()

This is a C-style interface used to initialize the SX1262 module's reception function. Inside
the function, a BSP_SX1262 object is created, and its member function sx1262_rx_init() is
called to complete SPI configuration, module initialization, parameter setup, registration
of the reception callback, and starting reception mode. The function returns ESP_OK if
initialization succeeds, or ESP_FAIL if it fails. This function is typically called once at
system startup or before starting LoRa data reception to ensure the module is in a
ready-to-receive state.

received _lora_pack_radio(size_t len)

This is a C-style interface used to handle received LoRa data packets. Inside the function,
a BSP_SX1262 object is created, and its method Received_pack_radio(len) is called. The
function processes the data by checking the reception flag, reading the data, printing
logs, and invoking the upper-layer callback function.

This function is generally called periodically in the main loop or tasks and executes after
lora_receivedFlag is set, ensuring that the upper-level application can timely retrieve
and handle received data packets.

sx1262_set_rx_callback(void (*callback) (const char* data, size_t len, float
rssi, float snr))

This function is used to register the upper-layer callback rx_data_callback. When the
SX1262 module receives a data packet, this callback is automatically triggered, passing
the data, length, RSSI, and SNR information to the upper-layer application. This function is
typically called once after initializing the reception functionality to bind the data
processing logic.

sx1262_get_received_len()

This is a query interface that returns the length of the most recently received data
lora_received_len. Internally, the function simply returns the static variable without
modifying any state. It is usually called when processing received data or performing
debug/statistics, to obtain the actual length of the received packet.

sx1262_is_data_received()

This is a status query interface that returns the reception flag lora_receivedFlag, used to
determine whether a new data packet has arrived. The function simply returns the status
of the global variable without modifying it. It is typically polled in the main loop or tasks to
decide whether to call received_lora_pack_radio() to process new data.

That concludes the introduction to the bsp_wireless component. You only need to know
how to call these interfaces.

When calling these functions, you also need to configure the CMakelists.txt file in the
bsp_wireless folder. This file, located in the bsp_wireless directory, mainly tells the
ESP-IDF build system (CMake) how to compile and register the bsp_wireless component.

EXPLORER main_tx.c CMakeLists.txt X

~ LESSON14_TX GERLA peripheral > bsp,
> wvscode 1 FILE(GLO CURSE component_sou “*.cpp”)
> build
I idf_component_register(SRCS ${component_sources}
v include o > nclude”
REQUIRES driy esp_timer
main.h
CMakeLists.txt
idf_componentyml
main_tx.c
> managed_compaonents
~ peripheral
~ bsp_illuminate
~ include
bsp_illuminate.h
bsp_illuminate.c
CMakeLists.txt
~ bsp_wireless
~ include
bsp_wireless.h
EspHalh
bsp_wireless.cpp
CMakeLists:txt
£ Kceonfig

The reason driver, esp_timer, and Radiolib are included here is that we call them in
bsp_wireless.h and bsp_wireless.cpp. Other libraries are system libraries and do not

need to be explicitly added.

main_tec bsp_wirelessh X

peripheral >

bsp_wireless.cpp X CcM

peripheral > bsp_wireless > bsp_wireless.cpp > €4 BSP_NRF2401

"bsp_wireless.h"
ude <Radiolib.h>
ude "EspHal.h”
ude <stdio.h>

#include <string.h>

As well as the esp_timer used in the EspHal.h file.

EXPLORER
|- Lessonta rx
~ main
CMakelists txt
idf_componentyml
main x.c
~ managed_components
> espressif_cmake_utilties
> espressif_esp_lcd_ek79007
> espressif_esp_Ivgl port
> jgromes_radiolib Radiol ibHal

~ bsp_illuminate
 include ints_t sck, miso, mosi;
bsp_illuminate.h _spiPins = {-1 -1}
bsp_illuminate.c spiHandle;
CMakelists txt _spilnitialized = false;
S b v int32_t _spiFrequency - 8000660;
+ include
bsp_wirelessh EspHal
EspHalh
G- bsp_wireless.cpp

Main function

The main folder is the core directory for program execution and contains the main
executable file main_tx.c.

Add the main folder to the build system's CMakelists.txt file.

EXPLORER

LESSON14.TX

> wscode

> build

~ include
mainh
CMakeLists txt
idf_componentym!
main_tec

> managed_components

v peripheral

~ bsp_illuminate

1v_obj_t *s_hello_label =

 include 1vgl_show_counter_label_init()
C bsp.illuminateh
T — 1vgl_port_lock(e) !=
CMakeLsts.xt (EL I (il g
~ bsp,_wireless e
v include
bsp_wirelessh 1v_obj_t *screen = lv_scr_act();
EspHalh 1v_obj_set_style_bg_color(screen,
G- bsp. wirdless.cpp 1v_obj_set_style_bg_opa(screen, LV_OF
CMakeLsts.xt
= Keonfig

£ dangd

s_hello_label = 1v_label_create(screen);
 (s_hello_label {

gitignore
CMakelists et

£ dependendieslock

B partitions.csv
READMEmd

= sdkconfig

v_s t label_style;
1v_style_init(&label_style);
1v_style_set_text_font(&label_style, &lv_font_montserrat_42);
1v_style_set_text_color(&label_style, lv_color_black

£ sdkconfig.old 1v_style_set_bg_opa(&label_style, LV OPA T 5
1v_obj_add_style(s_hello_label, &label style, LV_PART_MAIN);

ouTuNE 1v_label_set_text(s_hello_label, "TX or1d:0");
TIMELINE 1v_obj_centen(s_hello_label);

This is the entry file for the entire application. In ESP-IDF, there is no int main(); execution
starts from void app _main(void).

Let's first go through the transmitter main function file main_tx.c to see how it calls
interfaces to send LoRa messages.

When the program runs, the general flow is as follows:

After the system starts, app_main() first calls Hardware_Init() to initialize the hardware,
including the LDO power channels (Ido3, Ido4), the LCD display and LVGL library, and the
SX1262 LoRa transmission module, ensuring all hardware resources are ready.

« Then, lvgl_show_counter_label_init() is called to create an LVGL label for displaying
the transmission count, centered on the screen. After initialization, the system enters
the task scheduling stage.

« The system creates two FreeRTOS tasks:

o ui_counter_task reads the SX1262 transmission counter every second, updates the
display via LVGL, and prints logs.

- lora_tx_task calls send_lora_pack_radio() every second to send LoRa data packets
and prints error messages if transmission fails.

+ The two tasks use vTaskDelayuntil() to ensure synchronized execution on a fixed
I-second cycle, enabling coordinated screen display and wireless transmission,
achieving the complete process of sending LoRa messages every second and
dynamically showing "TX_Hello World:count” on the screen.

Next, let's go through the main code in main_tx.c.

It includes the custom main header file main.h, which typically contains log macros,
peripheral initialization declarations, and headers for other interfaces that need to be
used.

Below is the content of main.h:

main_tx.c main.h X

main in.h

Let's continue looking at the content of main_tx.c.

lvgl_show_counter_label_init:

The function Ivgl_show_counter_label_init() initializes the counter label in the LVGL
display interface, used to show the LoRa transmission count.

+ The function first calls Ivgl_port_lock(0) to acquire the LVGL operation lock, ensuring
safe access to LVGL in a multi-task environment. If locking faiils, it prints an error and
returns.

« It then gets the current active screen object via Iv_scr_act() and sets the screen
background to white, fully covering the display.

« Next, it creates a label object s_hello_label. If creation fails, an error is printed, the lock
is released, and the function returns.

« Itthen creates and initializes a style label_style for the label, setting the font to
Montserrat size 42, text color to black, and background to transparent, and applies the
style to the label.

» Using Iv_label_set_text(), the initial text is set to "TX_Hello World:0", and
Iv_obj_center() centers the label on the screen.

< Finally, Ivgl_port_unlock() is called to release the LVGL lock, allowing other tasks to
safely operate on LVGL.

If you want to change the LVGL font size, you need to go into the SDK configuration and
enable the desired font.
Steps:

Click on the SDK Configuration option.

1vgl_port_unlock();

ui_counter_task(*param)

> OUTLINE
TIMELINE

Search for "font” and select the font size you want to use. After making changes,
remember to save.

SDK Configuration editor X € main

fon{ Discard Reset

Component config
LVGL configuration
Font usage
Enable buil

t paths in binaries

ui_counter_task:

The function ui_counter_task() is a FreeRTOS task that updates the LoRa transmission
count label on the LVGL display every second.

« Inside the function, a character array text[48] is defined to store the formatted display
text. The current system tick count is obtained via xTaskGetTickCount() as the task's
initial wake time last_wake _time, and the task period frequency is set to 1000
milliseconds.

+ The task enters an infinite loop. In each iteration, it calls sx1262_get_tx_counter() to
get the current number of LoRa packets sent, then formats the string as "TX_Hello
World:count” using snprintf.

« It then attempts to acquire the LVGL operation lock. If successful and the label object
s_hello_label is valid, it updates the label text and releases the lock, ensuring safe
LVGL access in a multi-task environment.

« Next, it prints the current transmission information using MAIN _INFO.

+ Finally, vTaskDelayUntil() is called with absolute timing to ensure each loop executes
precisely every one second.

Overall, this task continuously refreshes the display with the LoRa transmission count
while logging, providing real-time visual feedback.

Hardware_Init:

The function Hardware _Init() is used to initialize hardware modules when the program
starts, ensuring that all parts of the system work properly.

- First, it calls esp_Ido_acquire_channel() to acquire the LDO3 (2.5V) and LDO4 (3.3V)
power channels. If acquisition fails, it calls init_or_halt(), repeatedly waiting and
printing error messages to ensure stable power.

+ Next, it calls display _init() to initialize the LCD hardware and the LVGL graphics library,
which must be done before turning on the backlight, otherwise the display may
behave abnormally.

« Then, it calls set_lcd_blight(]OO) to turn on the LCD backlight and set the brightness to
maximum 100, using init_or_halt() to check for errors.

« Finally, it calls sx1262_tx_init() to initialize the LoRa transmission module. If initialization
fails, it is also handled via init_or_halt().

Overall, this function provides a reliable hardware environment for screen display,
backlight, and the wireless communication module, ensuring that subsequent program
functionality runs smoothly. It is typically called in app_main() during system startup.

lora_tx_task:

The function "lora_tx_task()" is a FreeRTOS task used to periodically send data packets
through the LoRa module.

+ The function first obtains the current system tick count using "xTaskGetTickCount()" as
the start time of the task, and sets the transmission period to 1000 milliseconds (l
second).

« Inan infinite loop, it calls "send _lora_pack_radio()” to attempt sending a LoRa data
packet. It determines whether the transmission is successful through the return value,
and if the transmission fails, it prints an error log using "MAIN_ERROR".

« Finally, it uses "vTaskDelayuntil()" to delay according to absolute time, ensuring that
each loop sends data at an accurate interval of 1 second, thus achieving timed and
stable wireless data transmission.

This task is usually created after the system starts and runs continuously to continuously
broadcast messages to the receiving end.
app_main:

The function "app_main()" is the entry point of the entire program. After the system
starts, it first prints the "LoRa TX" log to indicate entering the main process.

Subsequently, it calls "Hardware _Init()" to complete hardware initialization, including the
initialization of LDO power supply, LCD display, and LoRa module.

Then, it invokes “Ing_show_counter_IdbeI_init()” to create and display a text label for
counting on the LCD.

After that, it uses "xTaskCreatePinnedToCore()" to create two FreeRTOS tasks:
"ui_counter_task” is used to update the LVGL label displaying the transmission count
every second, and "lora_tx_task" is used to send LoRa data packets every second. Both
tasks have the same priority to maintain synchronization.

Finally, it prints a log indicating that the task creation is completed and synchronous
transmission starts.

Hardware_Init();

counter_lal

xTaskCreatePinnedToCore(ui_counter task, “u

xTaskCreatePinnedToCore(lora tx_task, "

Finally, let's take a look at the "CMakelists.txt" file in the main directory.
The role of this CMake configuration is as follows:
« Collect all .c source files in the main/ directory as the source files of the component.

+ Register the main component to the ESP-IDF build system, and declare that it depends
on the custom component bsp_wireless and the custom component bsp_illuminate.

In this way, during the build process, ESP-IDF knows to build bsp_wireless and
bsp_illuminate first, and then build main.

EXPLORER main_x.c CMakeLists.txt main X

LESSON14 TX main >
main ${CMAKE_SOURCE_DIR}/mai

idf component register main

in.h
CMakelists.txt

The above is the main function code for the transmitter. Next, let's take a look at the main
function code for the receiver.

This section of code defines several static global variables that are crucial in the LoRa
reception program:

- First, static esp_Ildo_channel_handle_tIdo4 = NULL; is used to store the handle of
ESP32's internal LDO channel 4. This channel is responsible for outputting 3.3V voltage
to power peripheral devices such as the display screen or wireless module.

« Next, static esp_ldo_channel_handle_t Ido3 = NULL; defines the handle of LDO
channel 3. It outputs 2.5V voltage and is often used to power low-voltage modules
(e.g. LoRa RF chips).

» Then, static Iv_obj_t *s_rx_label = NULL; defines a pointer to an LVGL label object,
which is used to display the received LoRa data content on the screen.

« static Iv_obj_t *s_rssi_label = NULL; is an interface label used to display the RSSI
(signal strength) value, allowing users to know the strength of the received signal.

» static Iv_obj_t *s_snr_label = NULL; defines another LVGL label, which is used to
display the SNR (signal-to-noise ratio) value to help determine the quality of the
received signal.

- Finally, static uint32_t rx_packet_count = 0; is a counting variable used to record the
number of received LoRa data packets. It increments by 1 each time data is received,
enabling real-time display of the reception count and system working status on the
interface.

r_label =
packet_count = @;

rx_data_callback:

The function rx_data_callback() is the core callback function of the entire LoRa
receiving program. It is automatically triggered and executed when the wireless module
successfully receives a frame of LoRa data, and is used to process the reception event
and update the interface display in real time.

« First, the function increments the reception count by rx_packet_count++ to record the
arrival of a new data packet.

« Then, it calls lvgl_port_lock(0) to acquire a lock, ensuring safe operation of the LVGL
graphical interface in a multi-tasking environment.

« If the lock is successfully acquired, it updates three interface elements in sequence:
first, it checks whether s_rx_label exists; if it does, it uses snprintf() to format the string
"RX_Hello World:<Number>", and updates the reception count displayed on the screen
via Iv_label_set_text().

+ Next, it updates the signal strength label s_rssi_label to display the current RSSI value
(Received Signal Strength Indicator, in dBm) on the interface.

« Then, it updates the signal-to-noise ratio label s_snr_label to display the SNR value
(Signal-to-Noise Ratio, in dB) of the current received signal, reflecting the signal
quality.

« After the interface update is completed, the function calls Ivgl_port_unlock() to
release the lock.

+ Finally, it prints a log via MAIN_INFO(), outputting the serial number of the data
received this time, the RSSI, and the SNR value to the console, facilitating debugging
and system status monitoring.

Overall, the function’s role is to synchronously update the screen and logs each time a
LoRa data packet arrives, intuitively reflecting the system's real-time reception status
and signal quality. It is a key link for data visualization and operation monitoring in the
application.

Ivgl_show_rx_interface_init:

The function Ivgl_show_rx_interface_init() is the initialization function for the Lora
receiver interface. It is responsible for creating and beautifying the graphical interface
used to display LoRa reception status before system startup or the beginning of the
reception task.

The function first acquires the LVGL graphics lock via lvgl_port_lock(0), ensuring safe
operation of interface objects in a multi-threaded environment.

Then it calls Iv_scr_act() to obtain the currently active screen object and sets the
screen background to white with full opacity, providing a clear display background.

Next, it defines and initializes a general style info_style, uniformly setting the font size,
text color (block), and transparent background, which is shared by the RSSI and SNR
labels.

Subsequently, it creates four main interface elements in sequence:

1. Title label title_label — displays the title "LoRa RX Receiver’, using a large font style and
centered at the top of the screen to identify the interface function.

2. Received content label s_rx_label — shows the currently received LoRa message
content, initially set to "RX_Hello World:0", positioned slightly above the center of the
screen.

3. signal strength label s_rssi_label — displays the RSSI (Received Signal Strength), initially
"RSSI: -- dBm", placed at the lower left of the interface.

4. Signal-to-noise ratio label s_snr_label — displays the SNR (Signal-to-Noise Ratio),
initially "SNR: -- dB", positioned at the lower right, symmetrical to the RSS! label.

All labels use predefined styles to ensure consistent fonts and colors. After creating the
interface, the function calls Ivgl_port_unlock() to release the lock, allowing other tasks to
access the LVGL system.

Overall, the function initializes the visual interface for the LoRa receiver, providing a clear
Ul layout for real-time display of received data (such as message content, signal
strength, and SNR). It serves as the core initialization function for the graphical display in
the program.

lora_rx_task:

The function lora_rx_task() is the LoRa reception task, responsible for continuously
detecting and processing data packets received from the $§X1262 module during system
operation.

« The function runs in a dedicated FreeRTOS task, using an infinite loop to continuously
listen for LoRa signals.

« Inside the loop, it first calls sx1262_is_data_received() to check whether a new data
packet has arrived.

« If areception event is detected, it calls sx]262_get_received_len() to obtain the length
of the received data, then passes this length as a parameter to
received_lora_pack_radio(len), which handles data parsing and display logic (e.g.,
updating the received content, RSSI, and SNR on the interche).

+ If no data is currently received, the program delays 10 ms using vTaskDelay (10 /
portTICK_PERIOD _MS), reducing CPU usage and maintaining balanced task execution.

Overall, this function maintains the real-time listening mechanism for the LoRa receiver,
ensuring that any incoming wireless data is captured and processed promptly. It is the
core background task responsible for data reception and event handling in the LoRa
communication system.

app_main:
The function app_main() serves as the main entry function of the entire LoRa receiver

program, responsible for completing core startup tasks such as system initialization, Ul
interface configuration, and task creation.

1. At the beginning of the function, it outputs a startup log via MAIN_INFO("----------
LoRa RX -=-------- ") to indicate that the system has entered LoRa reception mode.

2. It then calls Hardware _Init() to initialize all underlying hardware resources, including
power management, SPl communication interfaces, and LoRa modules, laying the
foundation for subsequent communication.

3. Subsequently, it executes Ivgl_show_rx_interface_init() to create and initialize the
LVGL graphical interface, which is used to display real-time information such as
received messages, RSSI, and SNR on the screen.

4. Next, it calls sx1262_set_rx_callback(rx_data_callback) to register a data reception
callback function. When the LoRa module receives data, the system will automatically
trigger this callback to process and display the information.

5. Finally, it creates an independent task lora_rx_task under FreeRTOS through
xTaskCreatePinnedToCore(), which is pinned to core 1to continuously monitor LoRa
signals, enabling asynchronous data reception and real-time response.

This concludes our explanation of the main function code for both the receiver and
transmitter ends.

Complete Code

Kindly click the link below to view the full code implementation.
« Transmitting end code:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
uch-Screen/tree/master/example/VI1.0/idf-code/Lessonl4 TX_SX1262_Wireless_Module

« Receiving end code:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/VI1.0/idf-code/Lessonl4 RX_SXI262_ Wireless_Module

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_TX_SX1262_Wireless_Module
https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson14_RX_SX1262_Wireless_Module

Programming Steps

« Now that the code is ready, the next step is to flash it onto the ESP32-P4 so we can
observe the actual operation.

« First, connect the Advance-P4 device to your computer using a USB cable.

]

FHPHSH

« Before starting the flashing preparation, delete all files generated during compilation
to restore the project to its initial "unbuilt” state. This ensures that subsequent
compilations are not affected by your previous build results.

EspHalh app_main(void)

oUTUNE
TIMELINE
= o

« Next, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip correctly.

« Then, we need to configure the SDK.

« Click on the icon shown in the figure below.

> OUTLINE
> TIMELINE
> PROJECT COMPONENTS

+ Wait for a short loading period, and then you can proceed with the relevant SDK
configuration

SDK Configuration editor X

Discard

B Build type
B] Application build type ©
Bootloader manager

Defautt binary application + 2nd stage bootioader)
Serial Flash Configurations
Security features
Application manager
Ew RO Behavior Bootloader config
erial flasher config
Partition Table
v Compiler options
Replace ESP-IDF and project paths in binaries)
Enable C:++ exceptions Project version
Component config
Application Level Tracing 1
v Bluetooth Bootloader optimization Level
Common Options
Console Libra
> hT Con'zwam - Size (-0s with GCC, -Oz with Clang)
TWAI Configuration Log
~ Legacy ADC Driver Configuration i
Legacy ADC Calibration Configuration Pzt ey ©)
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations i
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations Format
Legacy 12C Driver Configurations Color @
Legacy PCNT Driver Configurations =@
Legacy SDM Driver Configurations
Legacy Temperature Sensor Driver Configurations Millseconds Since Boot
eFuse Bit Manager

Enable reproducible build ()

No Binary Blobs

Bootloader manager

 Use time/date stamp for bootloader ®

+ Then, type "flash” into the search box. (Ensure you

SDK Configuration editor X

flash configuration matches mine.)

Discard

Build type

~ Bootloader config

Bootloader manager

v log

Format

Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options

Replace ESP-IDF and project paths in binaries

Enable C++ exceptions
Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration

Legacy ADC Calibration Configuration

Legacy MCPWM Driver Configurations

Legacy Timer Group Driver Configurations

Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations

Bootloader config
Serial Flash Configurations
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) @
/ Enable the support for flash chips of XMC (READ DOCS FIRST)
Security features
Enable flash encryption on boot (READ DOCS FIRST) @

Serial flasher config
Disable download stub

Flash SPI mode G
Qo

Flash Sampling Mode
STR Mode

Flash SPI speed ®
20MHz

Flash size
16MB

Detect flash size when flashing bootloader)

+ After completing the configuration, remember to save yo

+ Next, we will compile and flash the code (detailed in the first lesson).

» Here, we'd like to share a very convenient feature with you: a single button can execute
compilation, uploading, and serial monitor opening in one go.

» OUTLINE

> TIMELINE

» PROJECT COMPONENTS
B ESP-IDFv54.2 ¥ UART § COM14 pd g & | & B ®oMA0 @Build & D

« After waiting for a moment, the code will finish compiling and uploading, and the serial
monitor will open automatically.

« At this point, remember to connect your Advance-P4 using an additional Type-C
cable via the USB 2.0 interface. This is because the maximum current provided by a
computer's USB-A port is generally 500mA, while the Advance-P4 requires a sufficient
power supply when using multiple peripherals—especially a display. (Using a
dedicated charger is recommended.)

/% B ‘

I III4IDI\HI
W

l éi
-r.- & k“" w
|

« Insert the LoRa module SX1262 into the two Advance-P4 development boards
respectively.

Lk
i ¥ g

AHE

L

4
i

}
e |l

R

oy e |
E,E..,,.m
™ |

« After inserting the modules and running the code on each board respectively, you will
be able to see the LoRa module transmitting "TX_Hello World:i" on the screen of the

transmitter-side Advance-P4, with the value of "i" increasing by 1 every second.

« Similarly, on the screen of the receiver-side Advance-P4, you can see the LoRa module
receiving "RX_Hello World:i". When a message is received, "i" also increases by 1 every
second. At the same time, you can also view the relevant received signal status: RSSI

and SNR.

- RSSI (Received Signal Strength Indicator) indicates the strength of the received
signal, with the unit of dBm (decibel-milliwatts). A larger value (closer to 0) means
a stronger signal; a smaller value (e.g., -120 dBm) means a weaker signal. It can
reflect the distance between the receiver and the transmitter, as well as the stability
of the communication link.

- SNR (Signal-to-Noise Ratio) represents the ratio of the signal to noise, also with the
unit of dB (decibels). A higher SNR indicates better signal quality and lower noise; an
excessively low SNR (even negative values) means the signal is severely interfered
with by noise.

LoRa RX Receiver

RX_Hello World:25

RSSI:-26.0 dBm SNR:13.0 dB

e TX_Hello World:24

Lesson 15
NRF2401 Wireless RF Module

Introduction

In this lesson, we will start using another wireless module. Since we will implement the
transmission and reception functions of the nRF2401 module, two Advance-P4
development boards and two nRF2401 wireless RF (Radio Frequency) communication
modules are required.

The project to be completed in this lesson is as follows: When the nRF2401 module is
connected to the wireless module slot of the Advance-P4, the transmitter-side
Advance-P4 screen will display "NRF24 _TX _Hello World:i", and the corresponding
receiver-side Advance-P4 screen will display "NRF24 _RX _Hello World:i". The value of "i"
on the receiver will only increment by 1 when it receives the signal from the transmitter.

Hardware Used in This Lesson

nRF2401 Wireless Module on Advance-P4

o —

*

94y 6o
el oy

Operation Effect Diagram

After inserting the nRF2401 wireless RF modules into the two Advance-P4 development
boards and running the code on each respectively, you will be able to see the nRF2401
module transmitting "NRF24 _TX_Hello World:i" on the screen of the transmitter-side
Advance-P4, with the value of "i" increasing by 1 every second.

Similarly, on the screen of the receiver-side Advance-P4, you can see the nRF2401
module receiving "NRF24 _RX_Hello World:i". When a message is received, "i" also
increases by 1 every second.

NRF24L01 RX Receiver

NRF24_RX_Hello World:23

NRF24_TX_Hello World:23

Key Explanations

The focus of this lesson is on how to use the wireless module, including initializing the
NRF2401 module and sending or receiving information.

Here, we will still use the bsp_wireless component from the previous lesson.
The main functions of this component are as follows:

o Itis responsible for encoding and modulating data sent by the main controller
(such as strings, sensor information, etc.) before transmitting it.

It also handles the reception of wireless data packets sent by other devices via the
NRF2401.

o It returns the received data to the upper-layer application through a callback
mechanism.

In addition to the aforementioned functions, we have also encapsulated the relevant
experimental functions of the remaining three wireless modules - nRF2401, LoRa
module, ESP32-C6, and ESP32-H2 - into this component.

Since in the code, the function usage of each wireless module is wrapped with ifdef
and endif, and we are using the nRF2401 wireless module in this lesson, we only need to
enable the configurations related to NnRF2401.

How to enable it:

« Click on the SDK configuration.

app_main(

> OUTLINE
> TIMELINE

PROJECT COMPONENTS
B ESP-IDF V542 T UART ¢ COM14

+ Search for "wireless” and open your configuration.
SDK Configuration editor X

wireless Discard
Build type Component config
- Bootloader config
Bootloader manager
v Log
Format

Wireless Coexistence

GPIO debugging for coexistence ©
Serial Flash Configurations BSP WIRELESS Setup
Security features v
Application manager Enable $X1262 config (
Boot ROM Behavior
Serial flasher config Enable NRF2401 config
Partition Table

Enable wireless mou config @

Enable UART TRANSPOND (©
- Compiler options

Since | am using NRF2401 here, | only check "Enable NRF2401 config” and uncheck the
others.

+ (Enable whichever module you are using.)

« After making changes, click Save to save the configuration.

main_tx.c bsp_wireless.cpp X

peripheral wireless > € bsp_wireless.cpp > () 5x1262_tx_init()

BSP_NRF2401

BSP_NRF2401(
~BSP_NRF2401() {}:
esp_err_t NRF24_tx_init();
NRF24_tx_deinit();
Send_pack_radio();
esp_err_t NRF24_rx_init();
NRF24_rx_deinit();

Received pack_radio(size_t len);

+ As shown in the figure, we have enabled the nRF2401 configuration, so the other
modules are temporarily disabled and not applicable.

« Inthe bsp_wireless component, you only need to call the prepared interfaces when
needed.

« Next, let's focus on understanding the bsp_wireless component.

« First, click the GitHub link below to download the code for this lesson.
« Transmitting end code:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32

uch-Screen/tree/master/example/V1.0/idf-code/lessonl5_TX_nRF2401_Wireless_RF_Module

P4-HMI-Al-Display-1024x600-IPS-To

+ Receiving end code:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessonl5_RX_nRF2401_Wireless_RF_Module

« Then, drag the downloaded code into VS Code and open the project files.
» Once opened, you can see the project structure:

« This is the transmitter side:

> build

~ main

(config

clangd

README.md

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_RX_nRF2401_Wireless_RF_Module
https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_TX_nRF2401_Wireless_RF_Module

« And this is the receiver side:

In these two projects, only the implementations in the main
functions main_tx.c and main_rx.c differ; all other code files
~ mam

are identical. (For convenience, we have provided two

separate main functions for use.)

~ include

In this lesson’s example, under peripheral\, a new folder
named bsp_wireless is created. Inside the bsp_wireless\
components folder, there is a new include folder and a CMakelists.txt file.

~ peripheral

The bsp_wireless folder contains the driver file
bsp_wireless.cpp.

The include folder contains the header files bsp_wireless.h
and EspHal.h.

EspHal.h converts ESP-IDF C code into the Arduino-style C++
syntax required by the Radiolib component library.

The CMakelists.txt file integrates the driver into the build
system, allowing the project to use the nRF2401 module send
and receive functions implemented in bsp_wireless.cpp.

Additionally, there is bsp_illuminate, our familiar component
used to light up the screen and draw text via LVGL.

NRF2401 Communication Code

+ The code for nRF2401 transmission and reception consists of two files:
"bsp_wireless.cpp” and "bsp_wireless.h".

» Next, we will first analyze the nRF2401-related code in the "bsp_wireless.h” program.
« "bsp_wireless.h" is the header file for the nRF2401 wireless module, primarily used to:

> Declare functions, macros, and variables implemented in "bsp_wireless.cpp” for use
by external programs.

> Allow other .c files to call this module simply by adding #include "bsp_wireless.h".

« In other words, it acts as an interface layer that exposes which functions and
constants are available to the outside, while hiding the internal details of the module.

« In this component, the libraries we need to use are placed in the "bsp_wireless.h” and
"bsp _wireless.cpp’ files.

main_rx.c main.h bsp_wirel PP bsp_wireless.h X

main_rx.c main.h bsp_wireless.cpp X

peripheral > bsp_wireless > € bsp_wireless.cpp > %g BSP_SX1262

sp_wireless.h”

+ Since the function implementations in bsp_wireless.cpp use the function wrappers
provided in EspHal.h, the header file needs to be included in the .cpp file.

« For example, #include <RadioLib.h> (this is a library under the networking
components)

main_ncc mainh bsp_wireless.cpp X sp_wireless idf componentyml

peripheral > bsp_wireless > bsp_wireless.cpp > ...

#include “"bsp wireless.h™
Jinclude <RadioLib.h>

ude pHal_h"

ude

« This inclusion requires us to specify the version of jgromes/radiolib in the
idf _component.yml file located in the main folder. Because this is an official library, we
rely on it to implement the wireless transmission or reception functionality of the
NRF2401 on the Advance-P4.

EXPLORER main_rx.c mainh y5p_wireless.cpp idf componentyml X

LESSON14 RX FEF O @ main> ! idf componentyml
> wscode
> build
~ main
v include
main.h
CMakeLists.txt
df_componentyml
main_xc
 managed_components
> espressif_cmake_utilties
> espressif_esp.lcd_ek79007
> espressit_esp_lvgl_port
S (TR
> vgl_val

+ These three components, which we discussed previously and used in the
bsp_illuminate component, are employed to illuminate the screen and render
information on the interface using LVGL.

main >

« During the subsequent compilation process, the project will automatically download
the following libraries: jgromes/radiolib version 7.2.], espressif/esp_lcd _ek79007
version 1.0.2, Ivgl version 8.3.11, and espressif/esp_Ivgl_port version 2.6.0. Once
downloaded, these networking components will be stored in the
managed _components folder. (This is automatically generated after specifying the
version numbers.)

+ Returning to bsp_wireless.h, this is where we declare the pins used by the wireless
module.

« The pin definitions should not be modified; otherwise, the wireless module will not
function correctly due to incorrect wiring.

« Next, we declare the variables we need to use, as well as the functions. The actual
implementations of these functions are in bsp_wireless.cpp. Placing all declarations in
bsp_wireless.h is intended to make them easier to call and manage. (We will examine
their specific functionality when they are used in bsp_wireless.cpp.)

*callback

+ Next, let’s take a look at the specific functionality of each function in bsp_wireless.cpp.

+ Inthe bsp_wireless component, BSP_NRF2401 is a BSP driver wrapper class for the
NRF24L01 wireless transceiver module. It provides initialization, execution,
de-initialization, and callback mechanisms for sending and receiving.

« This allows the application layer to complete wireless communication simply by
calling straightforward C interface functions (such as nrf24_tx_init() or
send_nrf24_pack_radio()), without needing to directly manipulate the underlying SPI
registers or the Radiolib interface.

« Here, we won't go into a detailed code walkthrough; we will only explain the purpose of
each function and the situations in which it should be called.

BSP_NRF2401 Class:
This means:

This code defines a class named BSP_NRF2401 to encapsulate the driver logic for the
NRF2401 wireless transceiver module, implementing initialization, sending, and receiving
functionalities for wireless communication.

« The class declares initialization and de-initialization functions for both the transmitter
and receiver (such as NRF24_tx_init, NRF24_rx_init), as well as data sending and
receiving handling functions (Send_pock_rcdio, Received_pctck_rddio).

« Two static pointers, bsp_nrf_mod and bsp_nrf_radio, are defined to point to the
underlying hardware module object and the radio object, respectively, allowing global
sharing.

nrf_hal is the hardware abstraction layer object, used to manage hardware
communication with the chip.

Two volatile variables are defined: radio24 _transmittedFlag indicates whether
transmission is complete, and radio24 _receivedFlag indicates whether reception is
complete.

nrf24 _tx_counter is used to record the number of transmissions.

Finally, a function pointer nrf24 _rx_data_callback is defined to trigger an upper-layer
callback when data is received.

Overall, this code establishes the basic control framework for the nRF2401 module,
providing a unified interface and state management mechanism for subsequent
wireless data transmission and reception.

: CE_ESP_HRFELEI
BSP_NRF2401()
~BSP_NRF2481()
esp_err_t NRF24 tx init();
NRF24_tx_deinit();
Send_pack_radio();
esp_err_t NRF24_rx_init();
NRF24_rx_deinit();

Received pack radio(size_t len);

Module *bsp_nrf_mod;
nRF24 *bsp_nrf_radio;

L

EspHal nrf_hal;
Module *BSP_NRF2481::bsp_nrf mod -
nRF24 *BSP_NRF2481::bsp_nrf_radic =

radio24_transmittedFlag -

radio24 receivedFlag =
uint32 t nrf24 tx counter = 8;

(*nrf24_rx_data _callback){ data, size t len) =

NRF24 _tx_init:

Initializes the transmitter of the nRF2401 module by configuring the SPI interface, creating
the communication object, setting the wireless parameters, and specifying the
transmission channel, enabling the module to send data.

« At the beginning of the function, nrf_hoI.setSpiPins(RADIO_GPIO_CLK,
RADIO _GPIO_MISO, RADIO _GPIO_MOSI) sets the SPI communication pins between the
NRF2401 and the main controller (Clock, Master In Slave Out, Master Out Slave In).

- setSpiFrequency(8000000) sets the SPI clock frequency to 8 MHz to improve
communication speed.

- spiBegin() formally initializes the SPI bus.

+ A module object bsp_nrf_mod is then created via new Module(...), binding the SPI
interface along with control pins such as Chip Select (CS), Interrupt (IRQ), and Chip
Enable (CE), providing a hardware interface for the nRF24 module.

« Next, bsp_nrf_radio = new nRF24(bsp_nrf_mod) creates the specific nRF24 radio
object and begins the driver logic.

« Calling begin(2400, 250, 0, 5) completes the core initialization of the wireless module.
The parameters represent, in order: operating frequency 2400 MHz (i.e., 2.4 GHz band),
data rate 250 kbps, output power level 0 (typically 0 dBm), and communication
channel number 5. If initialization fails (return value is not RADIOLIB_ERR_NONE), the
error is logged and the function exits.

- Then, a transmit address is defined as uint8_t addr[] = {0x01, 0x02, Ox11, 0x12, OxFF},
which is a 5-byte transmit pipe address (similar to a "device address” or "channel
identifier" in wireless communication), ensuring that the transmitter and receiver
communicate over the same address.

- setTransmitPipe(addr) sets this address as the current transmit pipe, allowing the
module to send data through this channel. If configured successfully, the function
returns ESP_OK, indicating that initialization is complete.

Send_pack_radio:

This function sends a wireless data packet through the nRF2401 module and records and
prints the transmission status.

- Specifically, the function first defines a static character array text[32] to store the
message to be sent. It then uses snprintf to format the message as "NRF24 _TX_Hello
World:<transmit_count>", where <transmit_count> comes from nrf24_tx_counter and
represents the current number of transmissions.

« The function calculates the message length using strlen and stores it in tx_len.

+ Next, it calls bsp_nrf_radio->transmit((uint8_t *)text, tx_len, 0) to send the message
through the nRF2401 module. If the return value is RADIOLIB_ERR_NONE, the
transmission is successful, and NRF2401_INFO prints the completion message along
with the content sent. Otherwise, it prints a transmission failure message and the error
code.

« The function finally returns true, indicating that the send operation has been executed.

nrf24_tx_init():

This is a C-language interface function used to initialize the nRF2401 transmitter module.
Inside the function, a BSP_NRF2401 object obj is instantiated, and its member function
NRF24_tx_init() is called to complete SPI configuration, wireless parameter setup, and
transmit pipe address configuration, returning the initialization result.

Purpose: Provides a unified interface for upper-layer or C code to prepare the nRF2401
module for data transmission

nrf24_tx_deinit():

This is a C-language interface function used to release or shut down the nRF2401
transmitter resources. It creates a BSP_NRF2401 object internally and calls its member
function NRF24_tx_deinit(), putting the wireless module into an idle state and closing the
SPI bus.

Purpose: Called when the transmission task is finished or the module is no longer in use,
safely releasing transmitter resources.

send_nrf24_pack_radio():

This is a C-language interface function used to send a data packet via the nRF2401.
Internally, it creates a BSP_NRF2401 object and calls its member function
Send_pack_radio() to send the formatted message and print the transmission result.

Purpose: Provides a simple interface for the upper layer to send wireless data without
needing to handle the underlying driver details.

nrf24_get_tx_counter():

This is a C-language interface function used to get the current value of the nRF2401
transmit counter nrf24 _tx_counter.

Purpose: Allows upper-layer programs to obtain the number of packets sent, useful for
statistics or debugging.

nrf24_inc_tx_counter():

This is a C-language interface function used to increment the transmit counter
nrf24_tx_counter by 1.

Purpose: Updates the counter after each successful packet transmission, used to record
the number of sends or to mark a sequence number in the message.

set_rx_flag():

This is a static internal function called within the receive interrupt or callback, used to set
radio24 _receivedFlag to true, indicating that the nRF2401 module has received new data.

Purpose: Serves as a receive event flag to notify the upper-layer program that new data
is available for processing.

NRF24_rx_init:

This function, BSP_NRF2401::NRF24 _rx_init(), initializes the receiver side of the nRF2401
module, enabling it to receive wireless data.

« Specifically, the function first sets the SPI communication pins using
nrf_hoI.setSpiPins(RADIO_GPIO_CLK, RADIO_GPIO_MISO, RADIO_GPIO_MOSI), sets the
SPI clock frequency to 8 MHz with setSpiFrequency(8000000), and initializes the SPI bus
using spiBegin().

+ A module object bsp_nrf_mod is then created via new Module(...), binding the SPI
interface and control pins. Next, bsp_nrf_radio = new nRF24(bsp_nrf_mod) creates
the nRF24 radio object.

+ Calling bsp_nrf_rodio—)begin(2400, 250, 0, 5) initializes the wireless parameters,
where 2400 represents the 2.4 GHz operating frequency, 250 is the data rate in kbps, 0
is the output power level, and 5 is the communication channel. If an error occurs, it
logs the failure and returns.

+ Areceive pipe address is defined as addr[] = {0x01, 0x02, Ox11, 0x12, OxFF}. The function
then calls setReceivePipe(0, addr) to set pipe 0 as the receive address, ensuring the
module only receives data sent to this address.

. sethcketReceivedAction(set_rx_ﬂqg) registers a receive callback, setting
radio24_receivedFlag to notify the upper layer. Finally, startReceive() puts the module
into receive mode. If successful, the function returns ESP_OK.

Received_pack_radio:

This function, BSP_NRF2401::Received _pack_radio(size_t len), handles data packets
received by the nRF2401 module.

« Specifically, the function first checks the receive flag radio24_receivedFlag. If it is true,
it indicates that new data has arrived. The flag is then reset to false to avoid repeated
processing.

- Abuffer data[len] is defined to store the received data, and
bsp_nrf_radio->readData(data, len) is called to read len bytes from the module.

« If the return value is RADIOLIB_ERR_NONE, the data is successfully read. The function
uses NRF2401_INFO to print a success message along with the received data, and
checks whether the callback function pointer nrf24_rx_data_callback has been
registered. If it is registered, the callback is called to notify the upper-layer application.

« If reading fails, NRF2401_ERROR prints the error code. Finally,
bsp_nrf_rqdio->stortReceive() is called to re-enter receive mode, waiting for the next
data packet.

nrf24 _rx_init()

This is a C-language interface function used to initialize the receiver side of the nRF2401
module. Internally, a BSP_NRF2401 object obj is instantiated, and its member function
NRF24_rx_init() is called to complete SPI configuration, wireless parameter initialization,
receive pipe address setup, and callback registration, returning the initialization result.

Purpose: Provides a unified interface for upper-layer or C-language programs to
prepare the nRF2401 module for data reception.

nrf24_rx_deinit()

This is a C-language interface function used to release the nRF2401 receiver resources.
Internally, a BSP_NRF2401 object is created, and its member function NRF24_rx_deinit() is
called to put the module into an idle state, clear callbacks, and close the SPI bus.

Purpose: Called when the reception task is finished or the module is no longer in use,
safely releasing receiver resources.

received _nrf24_pack_radio(size_t len)

This is a C-language interface function used to handle received data packets. Internally,
it creates a BSP_NRF2401 object and calls its member function
Received_pack_radio(len) to read the datg, log the results, and notify the upper-layer
application via a callback.

Purpose: Provides an upper-layer interface to trigger the nRF2401 data reception
processing flow.

nrf24_set_rx_callback(void (*callback)(const char* data, size _t len))

This is a C-language interface function used to register a callback for received data,
notifying the upper-layer application when data arrives. Internally, the passed function
pointer is saved to nrf24_rx_data_callback.

Purpose: Allows the upper-layer program to set a custom callback for immediate
processing or response upon receiving nRF2401 data.

We will conclude the introduction of the bsp_wireless component here. It is enough for
everyone to understand how to call these interfaces.

If you want to use it, you also need to configure the CMakelists.txt file under the
bsp_wireless folder. This file, located in the bsp_wireless directory, primarily tells the
ESP-IDF build system (CMake) how to compile and register the bsp _wireless component.

EXPLORER main_tx.c el CMakelists.txt X
\~ LESSON15_TX peripheral > bsp_wireless > CMakelLists.txt

> vscode FILE(GLOB_RECURSE component_sources "*.cpp")

> build

© T idf_component_register(SRCS ${component_sources}

INCLUD RS "include™

= il REQUIRES driver esp_timer radiolib)

ET]
CMakelLists.txt
idf_componentyml
main_tx.c

> managed_compenents
~ peripheral
~ bsp_illuminate
~ include
bsp_illuminate.h
bsp_illuminate.c
CMakelists.txt
~ bsp_wireless
~ include
bsp_wireless.h
EspHalh
bsp_wireless.cpp
CMakelists.txt

The reason only driver, esp_timer, and radiolib are listed is that we use them in
bsp_wireless.h and bsp_wireless.cpp. (Other libraries are system libraries, so they do not
need to be added.)

main_tu.c bsp_wire p M bsp_wirelessh X

peripheral > bsp_wireless > include bsp_wirelessh > .

main_bc bsp_wirelesscpp X CMakel

peripheral > bsp_wireless > vireless.cpp > &3 BSP_NRF2401

#include "bsp_wireless.h
#include <Radiolib.h>
#include “EspHal.h”

#include <stdio.h>
#include <string.h>

As well as esp_timer, which is used in the EspHal.h file.

EXPLORER

[\ Lessonta rx peripheral > bsp_wireless > indude > € EspHalh >

~ main

1 CMakeLists.txt
idf_componentyml

C main_rxc

~ managed_components
> espressif_cmake_utilties
> espressif_esp_lcd_ek79007
> espressif_esp_Ivgl port
> jgromes_radiolib

~ periphera
~ bspluminate
 indlude ints_t sck, miso, mosi;
bsp.lluminateh e e
. handle t _spiHandle;
CMakeListsxt _spilnitialized se;
2.t _spiFrequency - 800000;

EspHal() : RadioLibHal,
GPIO_MODE_INPUT,

Main function

The main folder is the core directory for program execution and contains the main
executable file main_tx.c.

The main folder should be added to the build system in the CMakelists.txt file.

EXLORER
LESSON14 TX
> wscode
> build
~ main
+ include
mainh
CMakeLists esp_ldo_channel_handle_t
idf componentymi esp_ldo_channel_han
main te.c
> managed_components
v peripheral
~ bsp_illuminate
 include 1vgl_show_counter_label_init(
€ bsp.iluminateh
e if (1vgl_port_lock(e
LV

1v_obj_t *s_hello_label = NULL;

CMakeLists txt
+ bsp_wireless A58

~ include
bsp_wirelessh 1v_obj_t *screen = lv_scr_act();
pHalh 1v_obj_set_style_bg_color(screen, » LV_PART_MATN);
G bsp_wireless.cpp 1v_obj_set_style_bg opa(screen, LV_OPA_COVER, LV_PART_MAIN);

CMakelists txt
s_hello_label = 1v_label_create(screen);

Keonfi
— f (s_hello_label

dangd -
gitignore 1vgl_port_unlock();
CMakeLists it urn;

£ dependencieslock

B partitions.csv
READMEmd
sdkeonfig

v_style_t label style;
1v_style_init(&label_style);
1v_style_set_text_font(&label_style, &lv_font_montserrat_42);
1v_style_set_text_color(&label_style, lv_color_black());
dkconfig.old 1v_style_set_bg_opa(&label_style, LV_OP B
1v_obj_add_style(s_hello_label, &label style, LV_PART_MAIN);

1v_label_set_text(s_hello_label, “TX ¢
1v_obj_center(s_hello_label);

This is the entry file of the entire application. In ESP-IDF, there is no int main(); instead,
execution starts from void app_main(void).

Let’s first explain the transmitter's main function file, main_tx.c, to see how it calls the
interfaces to send information via the nRF2401.

When the program runs, the general workflow is as follows:

« First, Hardware_Init() is called in app_main() to initialize the hardware. This includes
configuring the LDO power channels, initializing the LCD display and turning on the
backlight, and initializing the nRF24L01 wireless module.

+ Next, Ivgl_show_counter_label_init() is called to create and display an LVGL label on
the screen for showing the transmit counter.

« The program then creates two FreeRTOS tasks:

e ui_counter_task reads the nRF24L01 transmit counter every second and updates
the screen label.

o nrf24_tx_task increments the transmit counter every second and calls
send_nrf24_pack_radio() to send a wireless data packet, achieving wireless
transmission.

The entire process uses task scheduling to keep the display and transmission
synchronized, forming a loop system that automatically sends data every second while
showing the real-time count on the LCD.

Next, let’s explain the main code in main_tx.c.

Includes the custom main header file main.h, which typically contains logging macros,
declarations for peripheral initialization, and other interface header files that need to be
used.

Below is the content of main.h:

main.h X

Let’s continue to look at the contents of main_tx.c.

lvgl_show_counter_label_init:

The function Ing_show_counter_IobeI_init() initializes the counter label on the LVGL
display, used to show the nRF24L01 transmit count. Its workflow and purpose of each step
can be summarized as follows:

« First, Ivgl_port_lock(o) is called to lock LVGL resources, preventing concurrent access.

- The current active screen is obtained via Iv_scr_act(), and the background is set to
white and fully covering.

« Alabel is created using Iv_label_create(screen) and checked for successful creation;
if creation fails, the lock is released and the function returns.

« The label style is initialized with Iv_style_init, setting the font size, text color to black,
and background to transparent, and the style is applied to the label.

« Iv_label_set_text sets the initial text to "NRF24_TX_Hello World:0", and Iv_obj_center
centers the label on the screen.

« Finally, lvgl_port_unlock() releases the LVGL resource lock.

Overall, this function creates and initializes a styled, dynamically updatable label to
display the transmit count.

1vg175howicounter‘ilabeliinitl(

Ivgl por

_style_set bg opa(&label_style,
1v_obj add hello label, &lal

1v_label_set_text(s_| label,
1v_obj_center(s_hello_label);

1vgl_port_unlock

If you want to change the LVGL font size, you need to enable the fonts in the SDK

configuration

Steps: Click on the SDK configuration options

~ main
S obj_t *s_hello_label =
o 1vgl_show_counter_label_init(
CMakelistsixt
idf component ymi (vgl_port_lock(e) !
main_tx.c “LVGL lock fai
> managed components return;
~ peripheral
~ bsp.iluminte 1v_obj_t *screen = lv_scr_act();
= s 1v_obj_set_style_bg_color(screen,
bsp_illuminate.h 1v_obj_set_style_bg_opa(screen, LV_OPA_COVE!
bsp_illuminate.c
CMakelistsxt

~ bsp_wireless

s_hello_label = lv_label create(screen);
(s_hello_label

~ include 1vgl_port_unlock();
bsp, irelessh e
EspHalh }
bsp,wireless.cpp
CMakeListsitxt

2 t label_style;
1v_style_init(&label style);
Keonfig 1v_style_set_text_font(&label_style, &lv_font_montserrat_42);
dangd 1v_style_set_text_color(&label_style, lv_color_black());
1v_style set_bg_opa(&label _style, LV OPA_TRANSP);
s 1v_obj_add_style(s_hello_label, &label style, LV_PART_MAIN);
CMakelists et

£ dependendieslock 1v_label_set_text(s_hello_label, "NRF24_

B partitions.csv 1v_obj_center(s_hello_label);

READMEmd
sdkconfig
£ sdkconfigold

1vgl_port_unlock();

ui_counter._task(void *param)

> ouTune text[48];
TickType_t last_wake_time = xTaskGetTickCount();

> TIMELINE
TickType_t frequency 1600);

> PROJECT COMPONENTS

© ESPDFvsA2 UART QcoMis Oespi2ps [B] 8 £ 8 O » & B ®0A0 @ruid T D [ESP-IDF: QEMU] _ [ESP-IDF: OpenOCD

Search for font, then select the font size you want to use. After making the changes, be
sure to save them.

SDK Configuration editor X mainh

fon{ Discard

Build type Component config

~ Bootioader config . .
Bootloader manager LVGL configuration
~ Log Font usage

Format .

Serial Flash Configurations Enable built-in fonts .
Sy Enable Montserrat 8
Application manager Enable Montserrat 10 ©
Boot ROM Behavior
Serial flasher config
Paritio Table Enable Montserrat 14 ©
» Compiller options

Replace ESP-IDF and project paths in binaries

Enable C++ exceptions -~

Enable Montserrat 18 ()

Component config

Application Level Tracing

Enable Montserrat 12 ()
Enable Montserrat 16

Enable Montserrat 20 (®
~ Bluetooth i
~ Bluedroid Options Enable Montserrat 22 (D
BT DEBUG LOG LEVEL Enable Montserrat 24 ©
Enable BLE 5.0 features(please disable BLE 4.2 if enable BLE 5.0)
Enable BLE 4.2 features(please disable BLE 5.0 if enable BLE 4.2) Enable Montserrat 26 O
[opti
ormmon Options Enable Montserrat 28
ESP BLE Mesh Support
Console Library
s Driver Configurations S
TWAI Configuration nable Montsermat 32)
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations Enable Montserrat 38

Enable Montserrat 30 ®

Enable Montserrat 34 ©

Enable Montserrat 36 ©

Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations R YR E)
Legacy PCNT Driver Configurations

Legacy SDM Driver Configurations

1 enars Temneratiira Sencor Nrivar Confinnratinns

Enable Montserrat 40

Enable Montserrat 44 ©

ui_counter_task:

The function ui_counter_task() is responsible for refreshing the nRF24L01 transmission
count information displayed on the LCD every second.

Its workflow and the role of each part can be summarized as follows:
- First, define a character array text[48] to store the display text.

+ Record the system tick count last_wake_time when the task starts, and set the loop
interval to 1000ms (1 second).

« Enter an infinite loop. In each loop, first read the current transmission count using
nrf24_get_tx_counter(), and format it into the string "NRF24_TX _Hello World:<count
value>" using snprintf.

+ Attempt to lock the LVGL resource with Ivgl_port_lock(0). If successful and the label
exists, call lv_label _set_text to update the display text and release the lock.

- Finally, use vTaskDelayUntil to delay according to absolute time to ensure an accurate
one-second cycle, realizing the function of updating the display every second.

Overall, its role is to continuously refresh the transmission count on the interface to
achieve real-time display.

Hardware_Init:

The function Hardware_Init() is used to initialize hardware modules when the program
starts, ensuring all parts of the system can work properly.

« First, it acquires the LDO3 (2.5V) and LDO4 (3.3V) power channels respectively through
esp_ldo_acquire_channel(). If the acquisition fails, it calls init_or_halt() to wait in a
loop and print error messages, ensuring stable power supply.

+ Then it calls display_init() to initialize the LCD hardware and LVGL graphics library,
which must be completed before turning on the backlight; otherwise, the display may
work abnormally.

+ Next, it calls set_lcd_blight(100) to turn on the LCD backlight and set the maximum
brightness to 100, with errors also checked via init_or_hqlt().

« Finally, it calls nrf24_tx_init() to initialize the NnRF2401 wireless transmission module. If
initialization fails, it is also handled through init_or_halt().

Overall, its role is to provide a reliable hardware environment for the screen display,
backlight, and wireless communication module, ensuring the subsequent functions of
the program can run smoothly. It is usually called during system startup in app_main().

nrf24 _tx_task:

The function nrf24_tx_task() is responsible for transmitting nRF24L01 wireless data
packets once per second and maintaining the transmission counter.

Its workflow and the role of each part can be summarized as follows:

« First, it records the system tick count last_wake_time when the task starts and sets the
loop interval to 1000ms (1 second).

- It enters an infinite loop. In each iteration, it first calls nrf24_inc_tx_counter() to
increment the transmission counter.

«+ Then, it calls send _nrf24_pack_radio() to transmit a data packet containing the
current count. It uses nrf24_tx_OK to check if the transmission is successful; if failed, it
prints an error log.

+ Finally, it uses vTaskDelayUntil(&last _wake_time, frequency) to delay by 1second
based on absolute time, ensuring precise transmission intervals.

Overall, its role is to automatically send count data every second, update the counter,
and implement the timed wireless transmission function of the nRF24L01.

app_main:

app_main() is the program entry function, responsible for completing hardware
initialization, interface display setup, and launching wireless transmission and interface
refresh tasks to implement the synchronized transmission and display functions of the
NRF24L01.

The specific workflow is summarized as follows:

- First, it prints the log "---------- NRF24L01 TX ——---=---- " to indicate program startup.

+ It calls Hardware_Init() to initialize hardware, including LDO power supplies, LCD
display, and the nRF24L01 module.

- Itinvokes Ivgl_show_counter_label_init() to create and initialize an LVGL label for
displaying the transmission count, and prints the log "-------- LVGL Show OK

« Then, it uses xTaskCreatePinnedToCore to create two FreeRTOS tasks: ui_counter_task
(for refreshing the transmission count display on the LCD every second) and
nrf24_tx_task (for transmitting wireless data packets once per second). Both tasks use
the same priority to maintain synchronization.

- Finally, it prints the log "Tasks created, starting synchronized transmission..." to indicate
that task creation is complete and the system has started synchronized transmission
and interface display.

app_main(

xTaskCreatePinne

xTaskCreatePinne

Finally, let's take a look at the "CMakelists.txt" file in the main directory.
The role of this CMake configuration is as follows:
« Collect all .c source files in the main/ directory as the source files of the component.

« Register the main component with the ESP-IDF build system, and declare that it
depends on the custom component bsp_wireless and the custom component
bsp_illuminate.

This ensures that during the build process, ESP-IDF knows to build bsp_wireless and
bsp_illuminate first, and then build the main component.

EXPLORER i CMakelists.txt main X
~ LESSON15_TX GELA
KE_SOURCE_DIR)

> build i
${main

~ peripheral

The above is the main function code for the transmitter. Next, let’s take a look at the main
function code for the receiver.

Open your receiver code in the same way as you did for the transmitter.

rx_data_callback:

rx_data_callback() is the callback function triggered when the nRF24L01 receives data.
Its role is to count received data packets, update the interface display, and print logs.

The specific workflow is as follows:

« First, rx_packet_count++ increments the receive counter by 1.

« Then, it attempts to acquire the LVGL lock with Ivgl_port_lock(O) to ensure thread
safety. If successful and s_rx_label has been created, it formats the current receive
count into the string "NRF24_RX_Hello World:i" using snprintf and calls
Iv_label_set_text to update the display label.

- After updating the interface, it releases the lock with lvgl_port_unlock().

« Finally, it formats the receive count using the local buffer rx_display_text and prints a
log via MAIN_INFO, facilitating debugging and monitoring of reception status.

Overall, its role is to promptly update the interface and logs whenever the nRF24L01
receives data, enabling real-time feedback.

Ivgl_show_rx_interface_init:

Ivgl_show_rx_interface_init() is a function used to initialize the LVGL display interface for
the nRF24L01 receiver. Its role is to create and layout interface elements for displaying
received data.

The specific workflow is as follows:

+ First, it attempts to acquire the LVGL lock with Ivgl_port_lock(0) to ensure thread
safety. If it fails, it prints an error and returns.

« It retrieves the screen object with Iv_scr_act() and sets the background color to white
with full opacity.

- It creates a title label title _label and sets its text to "nRF24L01 RX Receiver”. It initializes
the style title_style (large font, black text, transparent background), applies this style,
and positions the title at the top center of the screen.

« Next, it creates a receive information label s_rx_label with initial text "NRF24 _RX _Hello
World:0". It defines the style rx_style (large font, black text, transparent background),
applies this style, and positions the label slightly above the center of the screen.

+ Finally, it releases the LVGL lock with Ivgl_port_unlock().

Overall, its role is to provide an LVGL interface for the receiver to display received data in
real time.

Hardware_Init:

This function is identical to the hardware initialization function described earlier. It
initializes the LDOs, screen, and nRF2401 module in the same way. The only difference
here is that the nRF2401 module is configured in receiver mode.

nrf24 _rx_task:

nrf24_rx_tqsk() is a FreeRTOS task function for the nRF2401 receiver, responsible for
continuously polling and receiving wireless data.

«+ The function enters an infinite loop while(1) to ensure continuous operation.

+ Ineach loop iteration, it calls received_nrf24_pack_rodi0(32) to check for and
process received data packets. The parameter 32 represents the maximum packet
length supported by the nRF24L01.

« It then delays for 10 milliseconds using vTaskDelay(10 / portTICK _PERIOD_MS) to
reduce CPU usage.

Overall, its role is to periodically poll the nRF2401 receive buffer and trigger
processing/callbacks when data is available, enabling real-time data reception.

app_main:

« app_main() is the entry function of the nRF24L01 receiver program, used to initialize
hardware, the interface, and reception tasks.

« First, the function prints startup information via MAIN_INFO, then calls Hardware_Init()
to initialize hardware peripherals (such as power management, LCD, and the nRF24L01
module).

« Next, it invokes Ivgl_show_rx_interfoce_init() to initialize the LVGL display interface
and prints a confirmation log.

« Subsequently, it registers the reception callback function using
nrf24_set_rx_callback(rx_data_callback)—this function is used to process data and
update the interface when data is received, and a log is printed for confirmation.

« Finally, it creates the FreeRTOS task nrf24 _rx_task using quskCreatePinnedToCore(),
which continuously polls for and receives data on the specified core. A log is printed to
indicate that the receiver has started.

« This concludes our explanation of the main function code for both the receiver and
transmitter of the nRF24L01.

We have now finished explaining the main function code for both the receiver and the
transmitter.

Complete Code

Kindly click the link below to view the full code implementation.
+ Transmitting end code:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl5_TX nRF2401_ Wireless RF_Module

+ Receiving end code:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/lessonl5_RX_nRF2401_Wireless RF Module

Programming Steps

+ Now that the code is ready, the next step is to flash it onto the ESP32-P4 so we can
observe the actual operation.

- First, connect the Advance-P4 device to your computer using a USB cable.

« Before starting the preparation for flashing, first delete all compiler-generated files to
restore the project to its initial "unbuilt” state. This ensures that subsequent
compilations are not affected by your previous operations.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_RX_nRF2401_Wireless_RF_Module
https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson15_TX_nRF2401_Wireless_RF_Module

main,
CMakeLists.txt
idf_componentyml
main_rx.c
> managed_components
~ peripheral
~ bsp.illuminate
> include
bsp_illuminate.c
CMakelists.txt
~ bsp_wireless
~ include
bsp_wirelessh
EspHalh
bsp_wireless.cpp
CMakelists.txt
Kconfig
dangd
gitignore
CMakelists.txt
lependencies.lock
B partitions.csv
README.md
dkconfig
= sdkeonfig.old

> OUTLINE
> TIMELINE

> PROJECT COMPONENTS

esp_err_t BSP_NRF2401::NRF24_rx_init()

nrf_hal .setSpiPins(.
nrf_hal .setSpiFrequency(8860006) ;
nrf_hal .spiBegin();

bsp_nrf_mod Module (&nrF_hal,
bsp_nrf_radio = new nRF24(bsp_nrf_mod);

state = bsp_nrf_radio->begin(2400, 250, 0, 5);
if (state 1=

eturn

uints_t addr[] = {@xe1, ex62, exil, 6xi2, exFF};
state = bsp_nrf_radio->setReceivepipe(e, addr);
if (state !=

radio rx init failed, code :%d”, state);
eturn H
bsp_nrf_radio->setPacketRaceivedAction(set_rx_flag

state = bsp_nrf_radio->startReceive:

if (state !=

:%d”, state);

NRF24_rx_deinit()

radio2a_receivedflag = ;
bsp_nrf_radio->clearPacketReceivedAction

EJESP-IDFv542 TYUART QCOMIE Oepidpt @ [@]2 6 O £ & Bl ®oA0 @Build & D

« Here, follow the steps from the first section to select the ESP-IDF version, code upload
method, serial port number, and target chip.

+ Next, we need to configure the SDK

+ Click the icon shown in the figure below.

> OUTLINE
> TIMELINE
> PROJECT COMPONENTS

& ESP-IDF v54.2 ¢ UART & COM14 { esp32p4

@O0A0 BBuild & D

+ After waiting for a short loading period, you can proceed with the relevant SDK
configurations.

SDK Configuration editor X

Build type
~ Bootloader config
Bootloader manager
“ Log
Format
Serial Flash Configurations
Security features
Application manager
Boot ROM Behavior
Serial flasher config
Partition Table
~ Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions
~ Component config
Application Level Tracing
~ Bluetooth
Common Options
Console Library
~ Driver Configurations
TWAI Configuration
~ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations

Discard

Build type
Application build type (
Default binary application + 2nd stage bootloader)
Enable reproducible build ©
No Binary Blobs
Bootloader config
Bootloader manager
J Usetime/date stamp for bootloader ®
Project version (
1

Bootloader optimization Level (D

Size (-Os with GCC, -Oz with Clang)

Log

Bootloader log verbosity ®

Info

+ Then, enter "flash” in the search box to search. (Make sure your flash configuration
matches mine.)

Configuration editor X
Save Discard Reset

Bootloader config

Serial Flash Configurations
app adjust Dummy Cycle bits in SPI Flash for higher freq

Security features
enable flash encry

Serial flasher config

+ After completing the configuration, remember to save your settings.

+ Next, we will compile and flash the code (detailed in the first lesson).

+ Here, we also want to share a very convenient feature with you: a single button that
can execute compilation, upload, and open the monitor in one go.

> OUTLINE
> TIMELINE
» PROJECT COMPONENTS

O coMi4 &

« After waiting for a moment, the code will finish compiling and uploading, and the
monitor will open automatically.

At this point, remember to connect your Advance-P4 using an additional Type-C
cable via the USB 2.0 interface. This is because the maximum current provided by a
computer’s USB-A port is generally 500mA, and the Advance-P4 requires a sufficient
power supply when using multiple peripherals—especially the screen. (It is
recommended to connect it to a charger.)

I

+ Insert the NRF2401 wireless RF module into each of the two Advance-P4 development
boards.

T

T

|
i

e B .

T3
1AL

« After running the code on both boards respectively, you will be able to see on the
transmitter's Advance-P4 screen that the nRF2401 module is sending data labeled
"NRF24_TX_Hello World:i", where "i" increases by 1 every second.

+ Similarly, on the receiver's Advance-P4 screen, you will see that the nRF2401 module is
receiving data labeled "NRF24_RX_Hello World:i"; after receiving the message, "i" will
also increase by 1 every second.

NRF24L01 RX Receiver

NRF24_RX_Hello World:23

NRF24_TX_Hello World:23

Lesson 16
Get weather temperature via WiFi

Introduction

In this class, we will learn a new component - the Wi-Fi component. We will also use the
display-related components we learned before to achieve Wi-Fi connection together,
and then obtain the weather conditions and temperature of your local areq, and display
the relevant information on the Advance-P4.

Hardware Used in This Lesson

The ESP32-C6 Wi-Fi module on the Advance-P4

The ESP32-P4 does not integrate Wi-Fi wireless radio and MAC/PHY modules by itself. Its
positioning is as a high-performance application processor, mainly responsible for
graphic display, audio and video, multimedia, human-computer interaction, and
complex business logic, rather than wireless communication. Therefore, when ESP32-P4
needs to connect to the network, the Wi-Fi function must be realized through an external
network coprocessor.

The ESP32-C6 is a complete Wi-Fi 6 + Bluetooth + 802.15.4 wireless SoC that has a mature
and stable network protocol stack and radio capabilities. In the actual solution, ESP32-P4
communicates with ESP32-C6 through interfaces such as SPI, UART, and SDIO. The C6 is
responsible for the underlying network work such as Wi-Fi scanning, authentication,
encryption, and TCP/IP protocol processing, while P4 only needs to send network
requests and receive data through the SDIO communication protocol.

This "master control + wireless coprocessor” architecture not only reduces the power
consumption and design complexity of P4, but also improves the reliability and
scalability of the system. It is a typical design concept adopted by Espressif in high-end
human-computer interaction and edge computing products.

Operation Effect Diagram

After running the code, you will be able to see the relevant information about the local
weather on the screen of the Advance-P4.

25.4°C

Sunny
2025/12/31
Wednesday

Key Explanations

« The main focus of this class is on how to connect to Wi-Fi and how to use Wi-Fi to
connect to the network to obtain weather information.

« Here, we will prepare a new component called "bsp _wifi" for you.

+ The function of the "bsp_wifi" component is to encapsulate and manage the native
Wi-Fi functionality of ESP-IDF at the board level, and complete the initialization of the
Wi-Fi system, creation of STA/AP modes, network interface management, event
callback processing, connection and reconnection after disconnection, as well as
maintenance of the network connection status. It shields the complex Wi-Fi underlying
details from the upper-layer business and only provides "initialization, connection,
disconnection, status query” and other capabilities through simple interfaces, so that
the application layer can use the network function stably, clearly, and flexibly, without
having to directly operate esp_wifi, esp_netif and the event system.

+ As you all know, you can simply call the interfaces that we have written at the
appropriate time.

+ Next, we will focus on understanding the bsp_wifi component.
« First, click on the Github link below to download the code for this lesson.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
20WiFi

Oweather%20via

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl6_GetZ

« Then, drag the code of this lesson into VS Code and open the project file.

« After opening it, you can see the framework of this project.

In the example of this class, a new folder
named "bsp _wifi" was created under the
"components\" directory.

Inside the "bsp _wifi\" folder, a new "include”
folder and a "CMakelists.txt" file were created.

The "bsp_wifi" folder contains the "bsp_wifi.c”
driver file, and the "include” folder contains the
"bsp_wifi.h" header file.

. The "CMakelists.txt" file will integrate the driver
idf componentyml into the build system, enabling the project to
utilize the relevant functions for Wi-Fi

main.c

connection as described in "bsp_wifi.c".

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson16_Get%20weather%20via%20WiFi

Wifi Connection Code

» The code for Wi-Fi connection consists of two files: "bsp_wifi.c” and "bsp_wifi.h".
« Next, we will first analyze the "bsp_wifi.h" program.
- "bsp_wifih"is the header file for the Wi-Fi connection code, mainly used for:

» Making the functions, macros, and variables implemented in "bsp_wifi.c" available for
use by external programs,

+ Allowing other .c files to simply include "bsp_wifi.h" to call this module.

« In other words, it is the interface layer, exposing which functions and constants can be
used externally while hiding the internal details of the module.

« In this component, all the libraries we need to use are placed in the "bsp_wifi.h" file for
centralized management.

+ Such as "esp_wifi.h" and so on (these are libraries under the network component)

Used in bsp_wifi.c:

In this case, we need to fill in the version of esp_wifi_remote in the idf _component.ymi
file located in the main folder.

Since this is an official library, we need to use the official library to implement the
wifi-related functions on our Advance-P4.

main.c idf_componentyml X
" LESSON16 main >
~ components

~ bsp_display
Kconfig

vance-P4\Lessonl6>
risc

esp32pd
connected to AP successfully
Connected RSSI:

+ When the project is compiled in the future, it will automatically download the
esp_wifi_remote library version 0.16.1. After the download is completed, these network
components will be saved in the managed_components folder. (This is automatically
generated after filling in the version number.)

Other related network components have all been covered in our previous projects.

« Then comes the declaration of the variables we need to use, as well as the declaration
of the functions. The specific implementations of these functions are in "bsp_wifi.c"

+ They are all unified in "bsp_wifi.h" for ease of calling and management. (When used in
"bsp _wifi.c’, we will understand their functions later.)

+ password);

Two enumerations in Bsp _wifi.h:
1. EM_WIFI_MODE _STATE (Wi-Fi Operating Mode State)

EM_WIFI_MODE_STATE is used to describe the current operating mode and lifecycle
stage of the Wi-Fi module. It focuses on the "what role Wi-Fi is currently playing in the
system’, rather than whether the network is already connected. By differentiating
between states such as IDLE, STA, AP, and DEINIT, it can clearly identify whether Wi-Fi is
not enabled, acting as a terminal to connect to a router, acting as a hotspot for other
devices to connect, or being in the transitional stage of deinitialization and resource
release.

This enumeration mainly serves the BSP and system control logic, to prevent repeated
initialization, incorrect mode switching, or re-enabling Wi-Fi before the resources have
been released completely. It also provides a clear state basis for subsequent extensions
(such as STA/AP switching, networking process, or multi-mode management), making
the overall operation process of the Wi-Fi module safer, more controllable, and more
maintainable.

2. EM_WIFI_STATE (Wi-Fi connection status)

EM_WIFI_STATE is used to describe the actual networking status of the device in the STA
mode. It focuses on the most critical issue at the business layer - "Is the current network
available?”.

This enumeration fully expresses the entire process from not connected, attempting to
connect, successfully connecting to the network, to abnormal disconnection through
states such as IDLE, CONNECTING, CONNECTED, and DISCONNECTED.

In implementation, this status is not solely based on "whether connected to the router’,
but rather takes successfully obtaining an IP address as the criterion for truly successful
networking, ensuring the availability of the network both logically and functionally.

The status is provided externally through bsp _wifi_get_state(), allowing the application
layer to safely decide whether to execute HTTP requests, time synchronization, or other
network business logic without caring about the details of the underlying events.

Let's take a look at "bsp_wifi.c” again. We'll discuss the specific functions of each function
in this component.

bsp _wifi: This component provides significant support for the subsequent use of the
Wi-Fi connection function. By understanding the functions clearly, you can easily utilize
the Wi-Fi functionality.

Here, we won't go into detail about the code. We will only tell you what each function
does and under what circumstances it should be called.

1. void wifi_event_handler(void* arg, esp_event_base_t event_base,int32_t
event_id, void* event_data)

This is the "event hub” of the entire WiFi module, responsible for receiving and processing
various asynchronous events sent by the ESP-IDF WiFi and IP subsystems.

For example: WiFi startup, successful connection, disconnection, AP having devices
connected, STA obtaining IP, etc.

Inside the function, the event type is determined through event_base and event_id, and
depending on the situation, it updates wifi_sta_state_, prints logs, or automatically
reconnects WiFi.

It is not manually called by you; instead, it is registered using
esp_event_hdndler_register(), and the system will automatically call it when an event
occurs. It is a typical "passive execution function”.

Call scenarios:

Just register it once during the WiFi initialization stage, and it will be automatically
triggered throughout the entire WiFi lifecycle. The application layer does not need to care
about when to call it.

2. void bsp_wifi_connect(char* ssid, char* password)
The function’s purpose is to actively initiate a STA mode WiFi connection.

It will first stop the current WiFi, then configure the SSID, password and security mode of
the STA, then start the WiFi and call esp_wifi_connect() to initiate the connection
request, while setting wifi_sta_state_ to WIFI_CONNECTING.

The actual connection status and whether an IP address has been obtained are not
judged here; instead, they are handled by the wifi_event_handler for subsequent events.

Call scenario:

When you have initialized WiFi (bsp _wifi_init + bsp_wifi_sta_init) and the user has
entered WiFi information or you want to switch networks, call this function.

3. void bsp_wifi_disconnect(void)

This is a function that actively disconnects the WiFi connection and stops the WiFi
module. It first calls esp_wifi_disconnect() to break the current connection, and then
calls esp_wifi_stop() to stop the WiFi driver. This function does not release the network
interface or reinitialize WiFi; it merely stops the WiFi.

Call scenarios:

This function is called when you need to temporarily disconnect from the network, enter
a low-power mode, switch WiFi modes (such as STA — AP), or when the user manually
clicks the "Disconnect WiFi" button.

4. void bsp_wifi_init(void)

This is the "overall initialization entry point” of the WiFi subsystem, responsible for all
one-time, low-level initialization tasks. It initializes NVS (which the WiFi must use), the
network stack (esp_netif_init), the event loop (esp_event_loop_create _default), and
the WiFi driver itself (esp_wifi_init). This function only performs initialization and does not
start the WiFi or connect to the network.

Call scenario:

In app_main(), this function is called only once throughout the entire program lifecycle,
and it must be called before any WiFi-related operations.

5. void bsp_wifi_sta_init(void)
bsp_wifi_init() — bsp_wifi_sta_init() — bsp_wifi_connect()
This function is used to configure WiFi to the STA (client) mode and start it.

It creates the default STA network interface, registers WiFi and IP event callbacks, sets the
WiFi working mode to STA, and starts WiFi.

Note: It does not automatically connect to the router; it merely puts the device into a
state where it can connect to WiFi.

Calling scenario:

This function is called when you want the ESP32 to act as a client to connect to the router.
The usual sequence is: bsp_wifi_init() — bsp_wifi_sta_init() — bsp_wifi_connect()

6. void bsp_wifi_ap_init(void)

This function is used to configure the ESP32 to operate in AP (hotspot) mode. It creates
the AP network interface, registers WiFi events, sets the AP's SSID, password, channel,
maximum connection number and other parameters, then starts WiFi, making the ESP32
a hotspot that can be connected to by other devices. After success, it prints the account
information of the AP.

Calling scenario:

This function should be called when you want the ESP32 to act as a hotspot (such as in
pairing mode, local network control, or communication without a router). Generally,
bsp_wifi_connect() is not called anymore.

7. EM_WIFI_STATE bsp_wifi_get_state(void)

This is a status query function, used to return the current connection status of the STA
(such as WIFI_IDLE, WIFI_CONNECTING, WIFI_CONNECTED, WIFI_DISCONNECTED) to the
external module.

It does not perform any operations on its own; it merely reads the internal maintained
status variables.

Call scenarios:

For occasions such as Ul refresh, business logic judgment (such as "request the weather
after being connected to the network"), task state machine judgment, etc.,, to determine
whether the WiFi has truly connected to the network.

8. void bsp_wifi_ap_sta_deinit(void)

This is the complete de-initialization function for WiFi STA/AP. It will stop WiFi, cancel
event callbacks, destroy the network interface object, and restore the running state to
idle. This function is used to completely exit the current WiFi mode, rather than simply
disconnecting from the network.

Call scenarios:

This function is called when you need to completely disable the WiFi function, switch to
STA/AP mode again, or prepare to reinitialize the entire WiFi subsystem.

That's all about the components of bsp_wifi. Just make sure you know how to call these
interfaces.

Then, if we need to make a call, we must also configure the "CMakelists.txt" file located in
the "bsp_wifi" folder.

This file is placed in the "bsp _wifi" folder and its main function is to inform the build
system (CMake) of ESP-IDF: how to compile and register the "bsp _wifi' component.

@ EXPLORER df_cc n bsp. c CMakelLists.tt X

The reason why it is named as nvs_flash and esp_wifi is that we called them in the
"bsp_wifi.h" file (for other libraries that are system libraries, there is no need to add them)

app_weather component

Now that the components with Wi-Fi connection are available, how can we obtain the
local weather conditions?

Here we provide an app called "app_weather” for obtaining weather information.

EXPLORER

 LESSON16
> wscode
> build
~ components
v app_weather
~ include
weather.h
CMakelLists.txt
weather.c
> bsp_display
> bsp_i2e
> bsp_wifi
~ main
CMakelLists.txt
idf_componentyml

main.c

It's the same. Let's first take a look at the content of the weather.h file.

components > app_weather > include > weather.h > () weather_create(void)

eather”

*jcon_response;
} weather_t;

weather_t* weather_create(1;

weather

weather_destroy(weather_t* weather);

weather
temp_c
weather_text
timestamp

weather_get_weather(weather_t* weather, *weather_text,

*timestamp);

Let me focus on this particular URL link.

This link is the server address of our Elecrow company. You can set this link as the fixed
URL for accessing the weather information.

Because no matter where you are, when you connect to a Wi-Fi network and access this
URL link to obtain the local weather conditions, our URL will, based on the IP of the Wi-Fi
network you are connected to, obtain the weather conditions and local time stamp of
the location corresponding to your IP.

This is very convenient for you to use. Just directly access this URL.
You can open this URL link to have a look:
C () https://service.thinknode.cc/apifusers/weather
Pretty-print [
{"code™:200, "msg": "success", "data”: {"temp" :11.3, "weather": "Sunny", "timestamp":1765972253}}
(This URL link does not support a large number of accesses)

What we have is a JSON code. You can extract the information you need from it. We will
also explain it next.

Then, like the function names listed below, we will proceed to explain in detail in the
weather.c file. The declaration in weather.h is to provide an interface that is convenient
for use in the .c file.

T
{
*json_response;

weather_t* weather_create(

weather

weather_destr t* weather);

r_t* weather, *temp_c, weather *timestamp);

weather.c

Entering the code for the main implementation, let's take a look at what each function
does and how to call them.

1. weather_create

The function weather_create is responsible for creating and initializing an instance of the
weather module, which is an alternative implementation of a C++ constructor in the C
language. It allocates memory for the weather _t structure itself, allocates space for the
internal json_response buffer (used to store JSON data returned by HTTP), and clears this
buffer to ensure the safety and reliability of subsequent string concatenation.

It is invoked before the program needs to use the "weather” functions. Typically, it is
called once after the system initialization is completed and the Wi-Fi connection is
successful to obtain a valid pointer to the weather object.

2. weather_destroy

The role of weather_destroy is to release all resources allocated by weather_create,
including the JSON buffer and the weather_t structure itself, to prevent memory leaks.
This is the equivalent implementation of a "destructor” in the C language.

It should be invoked when the weather functionality is no longer required by the
program—for example, before system shutdown, before task exit, or when the module is
dynamically unloaded. It must be used in pairs with weather_create to form complete
resource lifecycle management.

3. http_event_handle

http_event_handler is the event callback function of the ESP-IDF HTTP client, used to
receive data returned by the server during the HTTP request process. Whenever the
underlying TCP/HTTP receives a segment of data, this function will be automatically
called, and by using evt->user_dataq, it retrieves the current weather_t instance and
safely concatenates the received data into the json_response buffer.

The invocation timing is not directly called by user code, but is triggered internally by
esp_http_client_perform(), which is an indispensable part of the HTTP communication
mechanism.

4. weather_http_get_json

The function of weather_http_get_json is to initiate an HTTP request and fully obtain the
weather JSON data. It encapsulates the entire process of HTTP client configuration,
initialization, execution, and resource cleanup. Inside the function, the old JSON buffer will
be cleared, the request URL and callback function will be configured, and then the HTTP
request will be blocked and waited for completion. Finally, the original JSON string
returned by the server will be saved in weather->json_response.

This function is called when it is necessary to "obtain the latest raw weather data”.
However, it is an internal implementation function and is only used by this module. It will
not be directly called by the outside.

5. weather_analyse_weather_json

The role of weather_analyse_weather_json is to parse the JSON string returned by the
server and extract the data that the business layer actually cares about, including
temperature, weather description, and timestamp. It uses the cJSON library to parse the
JSON structure and performs validity checks on each field, ensuring that the data format
is correct before outputting the data to the variables provided by the caller.

It is invoked after successfully obtaining HTTP JSON data, and is used to convert "string
data" into "directly usable business data”. This function also belongs to the internal
functions of the module.

6. weather_get_weather

weather_get_weather is the only core external interface function of the entire weather
module, responsible for providing an "end-to-end weather retrieval service” to external
callers. Internally, it first invokes weather _http_get_json to fetch the latest weather data
from the network, then calls weather_analyse_weather_json to parse the JSON and
output the results. Callers do not need to care about the details of HTTP, JSON, or memory
management.

It is invoked when the Wi-Fi connection is successfully established and the application
layer requires real-time weather information—for example, scenarios such as Ul refresh,
periodic weather data updates, etc.

This concludes our explanation of the weather.c file. Although the code implementation
is complete, we still need to link the file via CMakelists.

Therefore, in the CMakelists.txt file under the app_weather folder, we need to add the
relevant components that are used.

CMakelists.txt X

idf_component_f

The reason why esp_http_client and json are used is that these two libraries were called
in the weather.c file.

weatherc X

Let me clarify here that it is recommended to place these two library files only in the
"weather.c” file. Since there is no need to expose these two files in the "weather.h" file here,
they can be used directly in the "weather.c” file.

Main function

The main folder is the core directory for program execution, and it contains the
executable file main.c for the main function.

Add the main folder to the "CMakelists.txt" file of the build system.

EXPLORER main.c x
| Lessonts main > € mainc > &) app_main(v
> wscode
> build
“ components
~ app_weather
~ include
weatherh
CMakeLists.bxt
weather.c
> bsp_display
> bsp_izc
> bsp_wifi
~ main
CMakeListsbxt
idf_componentyml
main.c
> managed_components
CMakeListsibt
= dependencies.ock
B partitions.csv
= sdkeonfig
keonfig.defaults
= sdkeonfig.defaults.esp32ps
.chan_id = 3,
.voltage mv = 2508,
err = esp_ldo_acquire_channel(&1do3 cof, &ldo3);
if (err 1=

", err);

This is the entry file of the entire application. In ESP-IDF, there is no int main(), but the
program starts running from void app_main(void).

There is a "ui” folder under the "Main" folder, and under the "ui” folder there is a file named
"image_both.c”. What exactly is this file?

This "image_both.c” is our image with the Earth as the background, converted into a.c
file.

25.4°C

Sunny
2025/12/31
Wednesday

How to convert the image you want to display on Advance-P4 into a .c file that can be
displayed?

First, open this link provided by the LVGL official website:

https://Ivglio/tools/imageconverter

This is a tool provided by LVGL itself for converting images into C arrays.

€ G (& hitpssigliofoolsmageconverier M ERE E

LVGLPra V10 s released! » Checktout Onfine or in 30 days riall >

M LveL LVGLPrO ForDevelopers Caso Studies Demos Boards Services Company

Image
Converter

Convert BMP, JPG, PNG, or SVG to C array
to use them in LVGL.

WoLve LGLvE

Selectimage fle(s) | image.boin.png

Golorformat

CFTRUE COLORALPHA

lpha byte Add 2§ bt Aloha value 0 evry pixel
Chroma keyed Make LV_COLOR_TRANSP (Lv_conf.h) picl o ransparent

Output format

Carmay

Ditherimages (can improve quaity)

Outputin big-endian format

Then, make the selection as indicated in the figure below.

Step I: The LVGL-related components in 1

our project all use the v8 version.
pro ; o [|
Therefore, we choose LVGL v8. f—

2
Step 2: Select the image you want to "“399—“‘“ g

convert. This image must maintain a Color format
resolution of 1024*600, as our screen 3 s
reSO|Ution is 1024*600 Alpha byte Add a 8 bit Alpha value to every pixel

Chroma keyed Make LV_COLOR_TRANSP (lv_conf.h) pixels to transparent
Step 3: Make sure to select Output format

CF_TRUE_COLOR_ALPHA. Since our 4 5

screen is 16-bit, LVGL will automatically

Dither images (can improve quality)

convert the 32-bit pixels into the 16-bit Outputin big-endian format

pixels of the screen configuration, and >
the transparency effect will still exist. i
Step 4: Choose the method of

converting to a C array.

Step 5: Perform the conversion and obtain the corresponding .c file.

LVGL Prov1.0is released! » Check it out Online o in 30 days tiall

6L LVGLPro ForDevelopers CaseStudies Demos Boards Services Company

Seemore

Image
Converter

Convert BMP, JPG, PNG, or SVG to C array
to use them in LVGL.

WGLW LWGLVB

Selectimage file(s)

Alphabbyte
Choma keyed Make LV_COLOR_TRANSP (Ly_conf..h)

Output format

qualty)

cian format

Then, place the converted .c file in the "ui” folder under the "main” folder of the project.

>
> build

~ main

v oui

idf_comp:

And add this statement in the CMakelists.txt file under the main folder. You need to
specify the exact location of this image C file.

uifimage_both.c”
wifi
p_display bsp wifi app
~ components

CMakelists.txt

In this way, our code can find the "image.c” file during compilation.
For the main file body, let's first explain main.c.
When the program runs, the general process is as follows:

First, complete the initialization of the underlying hardware and system resources, then
establish a network connection and obtain weather and time information, and finally
initialize and display the graphical interface.

After the program starts, it first configures and enables the LDO3 power channel of the
ESP32-P4 to provide 2.5V voltage to the screen; then initializes the basic hardware
modules such as NVS, 12C, touch, and display to ensure a complete and usable system
operating environment.

Next, start the Wi-Fi subsystem and connect to the specified hotspot in STA mode. In the
loop, wait for the network connection to be successful, then send an HTTP request
through the weather module to obtain real-time weather data and timestamp, and
synchronize the timestamp to the system clock.

After completing the data preparation, the program enters the initialization stage of the
LVGL graphical interface, creates the main interface object and date, temperature, and
weather text labels, displays the obtained data on the screen, and finally turns on the
backlight to complete the interface presentation.

Now, let's explain the main code file "main.c”.

Here, the components required for screen display (bsp_display), the component for
connecting to Wi-Fi (bsp_wifi), and the component for obtaining weather information
(app_weather) are all included here.

 LESSON16 G CO main > M CMakeLists.txt
> wvscode 1 idf_component_register(SRCS "main.c” "ui/image_both.c”
S build REQUIRES nvs_flash esp wifi
& bsp_i2c bsp_display bsp wifi app_weather
“ components INCLUDE_DIRS ".")

~ app_weather
> include
CMakeLists.txt
weather.c
> bsp_display
> bsp_i2c
> bsp_wifi
~ main
~ i
image_both.c
CMakelists.txt
idf_component.yml

main.c

In the Cmakelists.txt file under the main folder, these components are chosen because
of the header files included in main.c.

EXPLORER main.c

~ LESSON16 main > main.c > B init_fail{fmt, _VA_ARGS)
> .vscode
> build
v components

~ app_weather
~ include
weather.h
CMakelists.txt
weather.c
> bsp_display
> bsp.i2c
> bsp_wifi
~ main
CMakeLists.txt
idf_compaonent.yml
main.c
> managed_components
CMakelists.txt
£ dependencies.lock
H partitions.csv
= sdkconfig
£ sdkconfig.defaults

= sdkconfig.defaults.esp32p4
.chan_id =

Let's continue to look at the content in main.c.
1. Initialization of power supply and chip-level resources (bottom-level guarantee)

At the beginning of app_main, the LDO3 power channel of ESP32-P4 is configured and
allocated. Its output is set to 2.5V, which is a prerequisite for providing a stable power
supply to external peripherals such as the onboard camera.

This step belongs to the initialization of chip-level resources. If this step is not completed
first, subsequent peripherals may experience non-functioning or unstable operation.

By checking the return value of esp_Ildo_acquire_channel, hardware-level errors can be
detected at the earliest stage of the system, avoiding “running the program with defects”.

app_main{

2. NVS Initialization (A prerequisite for Wi-Fi [System Services)

Subsequently, NVS (Non-Volatile Storage) is initialized. This is a mandatory module for
components such as Wi-Fi and network protocol stack in ESP-IDF.

In the code, handling for "insufficient space or version mismatch” is performed for
erasing and re-creating, ensuring that NVS is in a usable state.

This step must be completed before Wi-Fi initialization, as failure to do so will prevent
Wi-Fi from starting normally, and thus it must be placed before Wi-Fi initialization.

app_main(void)

esp_ldo_channel_handle_t 1do3 =
toerr = ;
hannel_config t 1do3_cof = {
.chan_id = 3,
.voltage_mv = 2588,

err = esp_ldo_acquire_channel(&ldo3_cof, &1ldo3);
(err 1=)
(*1do3", err);

t ret = nvs_flash_init();
Il ret ==
nus_flash_erase()) ;
ret = nvs_flash_init();
(ret);
err = i2¢_init();

if (err =

iZc", err);

3. Initialization of 12C, Touch and Display Subsystem

Next, the 12C bus, touch module, and display module are initialized in sequence. 12C
serves as the communication foundation for the touch chip and some display
controllers; touch and display correspond to the input and output devices of the Ul
respectively.

The core objective of this stage is to ensure that the human-computer interaction
hardware is fully available before entering the business logic; otherwise, the
LVGL-created interface will have no actual display carrier for subsequent operations.

app_main{)

esp_ldo_channel_handle_t 1do3 =
_t err = 2
do_channel_config t 1ldo3_cof = {
.chan_id = 3,

voltage_mv = 2508,

= esp_ldo_acquire_channel(&ldo3_cof, &ldo3);
(err !=)
("1do3", err};

r_t ret = nvs_flash_init();
et == Il ret ==
nvs_flash_erase());
ret = nvs_flash_init();

(ret);

= i2¢_init

= touch_init();

= display_init();
(err 1=)

("display”, err);

4. Wi-Fi subsystem startup and networking
You can enter your Wi-Fi name and password here to connect to your Wi-Fi.

After the hardware is prepared, the program starts the Wi-Fi BSP module and completes
the following three steps:

« Initialize the Wi-Fi driver and event system
- Start Wi-Fi in STA (Station) mode

« Connect to the specified wireless router

Here, the state polling (bsp_wifi_get_state) method is used instead of blocking waiting,
leaving room for subsequent expansion of multi-tasking or real-time Ul refresh.

5. Weather module creation and network data acquisition

After Wi-Fi is activated, the program creates an instance of the weather module, which is
a typical "C language object-oriented encapsulation” approach.

Then, it enters a loop to continuously check if Wi-Fi is connected.

Once the connection is successful, it immediately initiates an HTTP request through the
weather_get_weather function to obtain weather data.

Once the data is retrieved successfully, not only is the temperature and weather text
parsed, but the timestamp returned by the server is also written to the system clock,
synchronizing the device time with the network time.

This step lays the foundation for subsequent time display and logging.

. local_time);

vTaskDelay (1000));

6. LVGL Interface Creation and Data Display

After the data is prepared, the program enters the stage of building the LVGL graphical
interface.

By using Ivgl_port_lock to ensure thread safety, the main interface container is created,
and three label controls for date, temperature, and weather are created one by one.

The relevant data obtained previously is directly bound to the UL.

At this point, the data flow has completed a complete closed loop from the network —
parsing — system time — Ul display.

main > main.c > (¥ app_main{void)
app_main(
Ivgl_port lock(@!
ui_home = lv_img create(lv_scr_act());
1v_img set src(ui_home, &image bath);
1v_pbj_align(ui_home, LE
1v_obj_set_size(ui_home,

1v_obj_clear_flag(ui_home, (Iv_obj_flag t)(LV_0B] FLAG S A 083_FLAG_SCROLL_ELAS G_SCROLL_MOMENTUM)) ;
1v_obj_set_style_bg_opa(ui_home, LV_O _PAR ¢_STATE_DEFAULT) ;

1v_obj_set_style_radius(ui_home, 8, LV

1v_obj_set_style_text_align(ui_hame, L'

temperature_label_ = lv_label_create{ui_home);
1v_obj_set_width(temperature_label_,
1v_obj_set_height(temperature label ,
1v_obj_align(temperature label , LV_ALTGN_TOP_|
1v_label_set_text(temperature_label , temp_text);

1v_obj_set_style_text_font(temperature_label_, &lv_font_montserrat_d8, 8);
1v_obj_set_style_text_color(temperature_label_, 1v_calor_hex(@xFFFFFF), 8);

weather_label_ = lv_label_create(ui_home);
1v_obj_set_width{weather_label_, 3
1v_obj_set_height(weather_label, I ! 3
1v_pbj_align(weather_label_, p_T IGHT, -58, 148);
1v_label_set_text(weather label , weather text);
1v_obj_set_style_text_font{weather_label_, &lv_font_montserrat_38, 8);
1v_obj_set_style_text_color(weather_label_, lv_color_hex(8xFFFFFF), 8);

date_label_ = lv_label_create(ui_home);
1v_obj_set_width{date_label_, ;
1v_obj_set_height(date_label , 2 ;
1v_obj_align(date_label_, LV_ALIGN_TOP_RIGHT, -50, 188);
1v_label_set_text(date_label_, date_str);
1v_obj_set_style_text_font{date_label_, Blv_font_montserrat_38, 8);
1v_obj_set_style_text_color(date_label_, lv_color_hex(8xFF

week_label_ = lv_label_create(ui_home);
1v_obj_set_width{week_label_, ;

1v_obj_set_height (week_label_, ;
1v_pobj_align(week_label_, LV_ALIGN_TOP_RIGHT, -58, 228);
1v_label_set_text(week_label_, week_str);
1v_obj_set_style_text_font{wesk_label_, Blv_font_montserrat_38, 8);
1v_obj_set_style_text_color(week_label , lv_color_hex(8xFFFFFF), 8);

1vgl_port_unlock(};

Here, we will import the C array file of the image we just obtained, and make the screen
display this image in full screen.

main.c image_both,

main > ui > C image both.c > [l image_both

#endif

image_both = {

_IMG_CF_TRUE_COLOR_ALPHA,
.header.always_zero = @,
.header.reserved = @,
.header.w = 1024,
.header.h = 600,
.data_size
.data = image_both_map,

main > main.c > () app_main(void)
app_main(void)
if (1vgl_port_lock(:

ui_home = lv_img create(lv_scr_act());
1v_img_set_src(ui_home, &image_both);
1v_obj_align(ui_home, L\
1v_obj_set_size(ui_home,

X G_SCROLL_ELASTIC | BI_FLAG_SCROLL_MOMENTUM)) 3
j_set_style_bg_opa(ui_home, LV
_set_style radius(ui_home, 0,
_set_style text align(ui_home,

temperature_label_ = 1v_label_create(ui_home);
1v_obj_set_width({temperature_label_,
1v_obj_set_height(temperature_label_, 5
1v_obj_align(temperature_label , L LIGN_TOP_RIGHT, -5@, 8@);
1v_label_set_text(temperature_label_, temp_text);

1lv_obj_set_style_text_font(temperature_label_, &lv_font_montserrat_48; 8);
1lv_obj_set style text color(temperature label , lv_color_hex{@xFFFFFF), 8);

weather_label = lw_label create(ui_home);
1v_obj_set_width(weather_label , 2
1v_obj_set_height(weather_label_, F
1v_obj_align(weather_label_, LV_ALIGN_TOP_RIGHT, -58, 148);

1v_label set_text(weather_label , weather_ text);
1v_obj_set_style_text_font(weather_label_, &lv_font_montserrat_38:a);

1v_obj_set_style_text_color(weather_label_, lv_color_hex(8xFFFFFF), 8);

H

date_label_ = 1v_label_create(ui_home);

1v_obj_set_width{date label_, ;
1v_obj_set_height(date_label_, R

1v_obj_align(date label , LV_ALTGM_TOP_RIGHT, -58, 180); |
1v_label_set_text(date_label_, date_str);
1v_obj_set_style_text font(date_label_, &lv_font _montserrat_38, @);
1v_obj_set_style_text_color(date_label_, 1v_color_hex(@xFFFFFF), @);

v_obj_set_helg . B
1v_obj_align(date_label_, LIGM_TOP_RIGHT, -58, 138);

1v_label set_text(date_label , date str);
1lv_obj_set_style text font(date_label_, &lv_font_montserrat_3@, @);
1lv_obj_set_style text color(date_label_ , 1v_color_hex{8xFFFFFF), @);

week_label_ = 1v_label_create(ui_home);

1v_obj_set width(week_ label ,
1v_obj_set_height(week_label , g

Tv nhi alienfweek lahel . Al TGN TOP RTGHT. -5A. 22@1:

COM14 Fesp2pd || W £ £ O H O ®@oMo

After opening the SDK, search for "font”, select the font you want to use, and then save it.

SDK Configuration editor X

font Discard Reset

Font usage
Enable built-in fonts

paths in binaries

if enable BLE

7. Turning on the backlight and entering the stable operation state of the system

Finally, after the interface is constructed, turn on the LCD backlight to allow users to see
the complete UL.

At this point, the system has completed initialization and entered a stable operation
state.

Subsequently, functions such as periodic weather updates, touch interaction, or
multi-page switching can be further expanded.

set_lcd blight(108);

Complete Code

Kindly click the link below to view the full code implementation.

2-P4-HMI-Al-Display-1024x60

Ovia%20WiFi

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch 0-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl6 _Get%20weathe

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson16_Get%20weather%20via%20WiFi

Programming Steps

« Now the code is ready. Next, we need to flash the ESP32-P4 so that we can observe the
results.

« First, we connect the Advance-P4 device to our computer host via the USB cable.

AP

« Before starting the burning process, delete all the compiled files and restore the
project to its initial "uncompiled” state. (This ensures that the subsequent compilation

will not be affected by your previous actions.)

> OUTLINE
> TIMELINE
¥ > PROJECT COMPONENTS

[

« Here, following the steps in the first section, we first select the ESP-IDF version, the code
upload method, the serial port, and the chip to be used.

« Then here we need to configure the SDK.

Click the icon in the picture below.

> OUTUINE
> TIMELINE
> PROJECT COMPONENTS
& ESP-IDF v54.2 £7 UART _ © COM14

+ Wait for a moment for the loading process to complete, and then you can proceed
with the relevant SDK configuration.

Discard Reset

Build type Build type
~ Bootloader config
Application build type ©
Bootloader manager
i) Default (bi i 2nd stage bootioad
e efault (binary appiication + 2nd stage bootioader)
Serial Flash Configurations
Security features
e No ginary Blobs ®
Boot ROM Behavior -
Bootloader config
Serial flasher config
Partition Table
« Compiler options
Replace ESP-IDF and project paths in binaries
Enable C++ exceptions Project version ©

Enable reproducible build @

Bootloader manager
J Usetime/date stamp for bootloader

Component config

Application Level Tracing 1

~ Bluetooth Bootloader optimization Level (O
Common Options

Console Library

e i Size (-0s with GCC, -Oz with Clang)

Then, search for "flash” in the search box. (Make sure your flash settings are the same
as mine.)

SDK Configuration editor X

Discard

Build type

~ Bootloader config . e .
Bootloader manager Serial Flash Configurations
~ log
sen:z;i; TS Enable the support for flash chips of XMC (READ DOCS FIRST) @

Security features

Bootloader config

Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST) ©

Security features
R ad e Enable flash encryption on boot (READ DOCS FIRST) @
Boot ROM Behavior
Sl (e e Serial flasher config
COIRmEES Disable downlozd stub @
 Compiler options
Replace ESP-IDF and project paths in binaries
Enable C+ + exceptions
Companent config
Application Level Tracing R
* Bluetooth Flash Sampling Mode ©
CCommon Options
Console Library STR Mode
~ Driver Configurations P v——
TWAI Configuration
+ Legacy ADC Driver Configuration
Legacy ADC Calibration Configuration 0
Legacy MCPWM Driver Configurations
Legacy Timer Group Driver Configurations
Legacy RMT Driver Configurations
Legacy 125 Driver Configurations
Legacy 12C Driver Configurations

Flash SPI mode @

ao

Flash size ©
16MB

Detect flash size when flashing bootloader

After the configuration is completed, remember to save your settings.
«+ Then we will compile and burn the code (this was explained in detail in the first class).

« Here, we would like to introduce to you a very convenient feature. With just one button
press, you can perform the compilation, upload, and open the monitor all at once.

> OUTLINE
> TIMELINE
» PROJECT COMPONENTS

B ESP-IDFv542 YT UART © COMI4 Despizpa & & £ 8 0O £ [& Bl @oAo @euid O D

« After waiting for a while, the code compilation and upload were completed, and the
monitor also opened.

+ At this point, please remember to use another Type-C cable to connect your
Advance-P4 through the USB2.0 interface. This interface provides a maximum current
of about 500mA for the computer's USB-A interface. When the Advance-P4 is using
more external devices, especially the screen, it needs a sufficient current source. (It is
recommended to use a charger for connection.)

PEERTETITy

+ After running the code, you will be able to see the local weather conditions you have
obtained on the screen of the Advance-P4.

25.4°C

Sunny
2025/12/31
Wednesday

Lesson 17
WiFi Mode

Introduction

In this section, we will conduct a systematic study on the Wi-Fi core functions of the
ESP32 series chips (including models such as ESP32-CB8): Firstly, we will deeply analyze
the underlying fundamental principles of Wi-Fi communication, including the technical
logic and application scenarios of the three core working modes: Station (STA), SoftAP
(AP), and STA+AP coexistence.

ESP32 Wi-Fi Function Overview

The ESP32 series of chips, with their highly integrated wireless communication
capabilities, have become the core preferred solution in fields such as the Internet of
Things (IoT), smart home, and industrial automation.

Most models of this series are equipped with high-performance wireless modules,
among which 2.4 GHz Wi-Fi is the basic standard, which can meet the needs of most
low-power, short-range data transmission scenarios.

The new models represented by ESP32-C6 have further expanded the boundaries of
wireless capabilities, not only supporting 5 GHz dual-band Wi-Fi, but also being
compatible with the new Wi-Fi 6 (802.11ax) protocol, while also being compatible with
traditional standards such as 802.11b/g/n.

They can provide higher transmission rates, lower network latency, and more stable
concurrent connection experiences for multiple devices.

It is worth noting that some special models in the ESP32 family (such as the P series and
H series) have simplified the Wi-Fi function modules to focus on exclusive scenarios such
as high-performance computing and industrial-level control, in exchange for more
abundant computing resources and more stable industrial-level performance.

The details of the wireless functions supported by each model can be accurately
selected according to the official document "ESP32 Product Overview" released by
Espressif.

The Wi-Fi function of the ESP32 series chips offers a wide range of working modes, which
can flexibly adapt to various development requirements:

- Station (STA) mode: The chip acts as a Wi-Fi client, actively connecting to existing
wireless networks such as routers and hotspots, obtaining a dynamic IP address and
joining the local network, enabling data communication with devices in the external
network or within the local network;

- SoftAP (soft AP) mode: The chip creates an independent Wi-Fi hotspot by itself,
allowing devices such as mobile phones, computers, and other single-chip
microcontrollers to connect. This builds a point-to-point or small local area network
without the need for an external router, suitable for local device debugging, offline
data interaction, etc,;

+ STA + AP coexistence mode: The chip runs both of these modes simultaneously. It can
connect to the external network to achieve data upload and remote control, and also
act as a local hotspot for debugging devices to connect, balancing the dual needs of
remote operation and local development.

In terms of security and performance, the Wi-Fi function of ESP32 also performs
exceptionally well:

In terms of security, it supports mainstream encryption protocols such as WPA2, WPAS,
and enterprise-level authentication, which can effectively ensure the security of data
transmission and prevent network attacks and data leakage;

In terms of performance, its maximum transmission rate can reach 150 Mbps (with some
high-end models having even higher rates), and it is equipped with multiple refined
power-saving modes, which can dynamically adjust power consumption according to
actual business needs, extend the battery-powered device's battery life, and some
models also support multi-antenna diversity technology, further enhancing the stability
and anti-interference ability of wireless signals in complex environments.

https://products.espressif.com/static/Espressif$20SoC%20Product%20Portfolio.pdf

& ESPRESSIF
Espressif SoC Product Portfolio

Comprehensive Connectivity, Al and HMI SoCs

:SP32-C:
Tib/g/n

P32
Tb/g/n

Tib/g/n Tb/g/n NMab/g/n/ac/ex Tb/g/n/ax Tb/g/n/ax

150Mbps 150Mbps 150Mbps 150Mbps 150Mbps 150Mbps 722 Mbps 150 Mbps
v
v v v
v v v v v v v v
v v v v ™ v v
> WeAS WPAS WeAS WPAS WPAS WeAS WPAS
s v v % v v v v v
S| Buuetooth Low Energy 50 53 53 50 50 50 54 50 BT Classio/d2
(RS Le-audio v
g ¥} Direction Finding v
FABR Long Range v v v v v v v
8 | 2Mops Data Rete v v v v v v v 2
[} Extended Advertising v v v v v v v
BLE Mesh v v v v v v v
Thread v v 7 e
Zighee v v v
Matter i Wikl WiFi WA Thread Thread Wi
Ethernet v v
SoC v v v v v v v v v v v
Module v v v v v v v v v v
Frequency 2.46Hz 2.4GHz 240tz 2.46Hz 2.46Hz 2.4Hz 2.46Hz 2.46Hz 246Hz 246Hz
Tx-Power 0to20dBm 0t020d8m 0to20dBm 0t020dBm 0to20dBm dBm 0to20dBm 01020 dBm
ORI g0z Wi)
xSty (68m) LMDy SRULESCED SGLTL) -SSR osaMM 0MREM) (LEH) s BLE) S UBR
104 (BLE M) 107 -10S(BLET25K) 105 (BLET25K) 106 (BLE- (02154) 1025(02.154) 94 (BLEM
O coe54) @) 08 (ELERS) -(60215.4) (@02150) 94 BLEM)
o DualCore DualCore SingleCore SingleCore SingleCore SingleCore SingleCore SingleGore DualCore Single Core Single/Dual
> RISV Xtensa Xtensa RISC-V RISC-V RISCV RISCV RISC-V RISCY RISCV CoreXtensa
g Clock 400MHz 240MHz 240MHz 240MHz 160MHz 160MHz 160MHZ 120MHz 96MHz 96MHz 240MHz
(1] FPu Extenstion v v v v
b Al Extenstions v v
o3 .y 17.5MHZRISC-V 8MHz RISCY .
2 LpoRy 40MHz RISC.v T7-EMH IMHZRISCY 40MHz RISC-V. 20MHz RISC-V ULP Core
768K8 (HP) 5128 G2OKB(HP) G8AKB(HP) 512KB (HP) 400KB 320K8 520KB
& SRAM 16KB (LP) 16KB (LP) 16KB (LP) 16K8 (LP) 16KB (LP) P20 KB (RTC) Z2E R208E) 4KB(RTC) 16KB (RTC)
Extornal Flash v v v v v v v v v v
PSRAM Support v v v v v v v
Secure Boot v v v v v v v v v v v
S Fissh Encrypion v v v v v v v v v v v
£
= RSAAES, RSAAES, RSAAES, AES,ECC, RSA, AES, RSA, AES, AES,ECC, RSA,AES,ECC, RSA,AES
3 Crypto Accelerators g6, HMAC HMAC HMAC ~ HMACRSA ECC,HWAC COCSHA HMAC ECC.SHA HMAC HMAC SHa
KA oigtai signature ECDSA, RSA RsA RSA £CDSA, RSA RsA £CDSA RSA ECDSA ECDSA
e v v v v v v v v
Key Manager v v
MIPLCSI 2-ane.
H.264 Encoder 1080p@301ps
MIPLDSI 2+ane.
RGB Display v v v v
Camera Interface v v v v
Touch Inputs 1 1 m 14 10
10 P 55 5 a3 28 s00rz2 220018 22016 u 35 1 w
SDIO Host 1 1 1
SDI0 Slave. 1 1 1 1
i3 1
axspl 2x 8Pl 2xsPL
i LR SPI 4 4 WGPSPI 1xGPSPI g 6 2 C 8 &
uss o6 HS X FS wFS xFS 1
UsB serial 1 1 1 1 1 1 1 1
OB can-Fomwal SxTWAI WTWAL IXTWAKI 2xCANFD 2xTWAI WAl WCANFD X TWAI XTWA
©
£ X UART 2x UART
s K X LP UART 3 2 2 1xLP UART 3 2 2 2 2 3
S 2x120 w120 120
= | 2xLPI2C 8 8 KLP I2C. XLP I2C i i i 2 2 8
) axizs
o B e 2 1 1 1 1 1 1 1 2
LEDSCh TxLEDEch XLED6Ch IxLED 6ch IXLEDBch TLEDGCch TXLEDiech
P 2MCPWMGch 2xMCPWM XMEPBN i vcpwMech ixMcpwm XLEDSEh TXLED6h IXLED6Ch o ycowM MCPWM 2x MCPWM
A0C 2x12bit 2xi2bit 2x13bit2och | ixi2bitech | i2bitch | i2bit 2xi2bitech ixi2bitsch | Txi2bit | ii2bitsch | Ixi2bitisch
oac 2x8bit 2x8bit
e G T ST TKGPT, IXST, 3 ST.2XGPT,IX 1x ST, 2XGPT, 2xGPT, 3¢ 2xPT,
XHPWDT X LPST 4xGPT, ST, HIGY HEE L 2KGPT. | 0P, ST, b 1 GPT, 2¢ " axePTsT.
Tmes.wor AHEMOTXIPST SOTTNST ypruar s AT osoneT, | aOWT STSL: Dwnw MR e STEST sonacer
WOT. i ASWDT
Temp Sensor 1 1 1 1 1 1 1 1 1 1 1
451085 4010105 4010105 -40t085 -40t0105 4010105 -40t0105 -40t0105 -40t0105 -40t0105 -40t0125
Supply Voltage 301036 301036 30136 30036 301036 30136 3036 301036 171050 181036 23/3.01036
GFNS6 GFNAO aFNG2 FNzs aFNas
Package Type GFN104 e GFNSG GFNag o= &8 == GFN2a GFNS2 oFNG2 v

General steps for Wi-Fi programming

When developing Wi-Fi applications using the ESP32 series chips based on the ESP-IDF
framework, regardless of whether the goal is to configure the Station (STA) client mode
or the SoftAP (AP) access point mode, the core programming process follows three main
stages: initialization, configuration, connection, and event handling.

The operation logic of each stage is highly universal and standardized.

If you want to deeply understand the complete process of specific scenarios (such as
disconnection and reconnection in STA mode, and device access management in AP
mode), you can refer to the detailed guidelines in the official ESP-IDF documentation for
"Wi-Fi Station Development Process” and "Wi-Fi AP Development Process”.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-guides/wifi-driver/overview.html

< C (& nup pressif.com/proj p p: pi-g ifi-dl iew.html
Reproducible Builds

Preparation
RF Calibration

Standard 1/0 and Console Output 0 Generally, the most effective way to begin your own Wi-Fi application is to select an example

Thread Local Storage which is similar to your own application, and port the useful part into your project. It is not a MUST,

e but it is strongly recommended that you take some time to read this article first, especially if you
want to program a robust Wi-Fi application.
Unit Testing in ESP32-53

Running ESP-IDF Applications on This article is supplementary to the Wi-Fi APIs/Examples. It describes the principles of using the
= Wi-Fi APIs, the limitations of the current Wi-Fi APl implementation, and the most common pitfalls
USB OTG Console in using Wi-Fi. This article also reveals some design details of the Wi-Fi driver. We recommend you
USB Serial/JTAG Controller Console to select an example .

B Wi-Fi Driver
a wifi/getting_started/station demonstrates how to use the station functionality to connect to an

AP.

wifi/getting_started/softAP demonstrates how to use the SoftAP functionality to configure
ESP32-53 as an AP.

wifi/scan demonstrates how to scan for available APs, configure the scan settings, and display
the scan results.

./

wifi/fast_scan demonstrates how to perform fast and all channel scans for nearby APs, set
thresholds for signal strength and authentication modes, and connect to the best fitting AP
based on signal strength and authentication mode.

wifi/wps demonstrates how to use the WPS enrollee feature to simplify the process of
connecting to a Wi-Fi router, with options for PIN or PBC modes.

wifi/wps_softap_registrar demonstrates how to use the WPS registrar feature on SoftAP mode,

simplifying the process of connecting to a Wi-Fi SoftAP from a station.

Seiimn i « wifi/smart_config demonstrates how to use the smartconfig feature to connect to a target AP

WI-Fi Modes using the ESPTOUCH app.

Wi-Fi MAC Protocols - wifi/power_save demonstrates how to use the power save mode in station mode.

ey e + wifi/softap_sta demonstrates how to configure ESP32-53 to function as both an AP and a

- Save st?h?n simultaneously, ef‘fectlveAIy enabling it to act as a Wi-Fi NAT r.outer.
« wifi/iperf demonstrates how to implement the protocol used by the iPerf performance
'Wi-Fi Vendor Features N .
measurement tool, allowing for performance measurement between two chips or between a

Wi-Fi Security single chip and a computer running the iPerf tool, with specific instructions for testing
Wi-Fi Expansion station/soft-AP TCP/UDP RX/TX throughput.

wifi/roaming/roaming_app demonstrates how to use the Wi-Fi Roaming App functionality to
efficiently roam between compatible APs.
wifi/roaming/roaming_11kvr demonstrates how to implement roaming using 11k and 11v APIs.

1. Initialization phase: Establish the basic environment for Wi-Fi operation

The core objective of this phase is to complete the initialization of the underlying protocol
stack, hardware drivers, and system event framework, laying a solid foundation for the
operation of Wi-Fi functions. The specific operations are as follows:

Initialization of protocol stack and network interface:

Firstly, initialize the lightweight TCP/IP protocol stack (LwIP), which is the core underlying
component for implementing network data transmission; simultaneously, initialize the
esp-netif network interface management module, which is responsible for uniformly
managing various network interfaces of ESP32 (such as STA, AP, Ethernet, etc.), serving as
the key bridge between upper-layer applications and the underlying hardware.

Building event-driven framework:

Create the system'’s default event loop (esp_event) and register Wi-Fi-related event
handling callbacks. The Wi-Fi status changes (such as successful connection, obtaining
IP, disconnection, etc.) are triggered in the form of asynchronous events, and the event
loop is the core mechanism for implementing status monitoring and automated
processing.

Creation of default network interface:

Create corresponding default network interface instances (such as

ESP_NETIF_DEFAULT _WIFI_STA or ESP_NETIF_DEFAULT _WIFI_AP) based on the target
mode (STA/AP), bind the network interface with the Wi-Fi hardware, and ensure that data
can be transmitted and received through the specified interface.

Wi-Fi driver initialization:

Call the esp_wifi_init() interface to complete the initialization of the Wi-Fi hardware
driver. This operation will start the Wi-Fi task thread inside ESP32, complete the
adaptation of the radio module, protocol stack, and hardware, and ensure that the Wi-Fi
hardware is in a configurable and operational state.

2. Configuration Phase: Customizing Wi-Fi Operating Parameters

After initialization is completed, the core operating parameters of Wi-Fi need to be
configured according to actual business requirements to match the target network
environment or functional requirements:

Connection Parameter Configuration:

Define the wifi_config_t structure variable and fill in the core parameters corresponding
to the mode - in STA mode, the SSID (network name), password, authentication method
(such as WPA2-PSK) of the target Wi-Fi need to be configured; in AP mode, the hotspot
name, password, maximum number of connected devices, authentication method, and
channel need to be configured.

Mode Setting:

Call the esp_wifi_set_mode() interface to clearly set the Wi-Fi operating mode (such as
WIFI_MODE_STA, WIFI_MODE _AP, or WIFI_MODE_APSTA), and this operation will lock the
core working logic of Wi-Fi.

Configuration Parameters Take Effect:

Call the esp_wifi_set_config() interface to apply the parameters configured in the
wifi_config_t to the corresponding network interface (STA/AP), so that the parameters
are bound with the hardware driver and protocol stack.

3. Connection and Event Handling Phase:

Initiating Wi-Fi and Handling State Changes

After configuration is completed, start the Wi-Fi function and handle various
asynchronous states through event callbacks to ensure the stable operation of the Wi-Fi
function:

Starting Wi-Fi function:

Call the esp_wifi_start() interface to start the Wi-Fi module. At this point, the ESP32 will
initialize the radio module according to the configured mode and enter the "waiting to
connect (STA)" or "hotspot broadcasting (AP)" state.

Initiating network connection (only in STA mode):

Call the esp_wifi_connect() interface to send a connection request to the configured
target Wi-Fi network; in AP mode, this step is not required and the hotspot will be
automatically broadcasted and waiting for device access.

Asynchronous event handling:

By registering the WIFI_EVENT and IP_EVENT event callback functions, handle various
critical states - such as "connection success/failure” "obtaining IP address” "connection
disconnection” in STA mode, and "device access/disconnection” in AP mode.

Event handling is the core to ensure the robustness of the Wi-Fi function, for example,
adding reconnection logic in the "connection disconnection” event and triggering data
transmission tasks in the "obtaining IP" event.

After understanding the above professional knowledge, next we will guide you to have a
better understanding of these three modes.

Station (STA) mode

1. Professional Definition

The Station (STA) mode refers to the device operating in the IEEE 802.11 Station role,
actively scanning (Active Scan) or passively scanning (Passive Scan) to search for and
associate with an Access Point (AP), then obtaining network parameters (IP / Gateway [
DNS) through the DHCP protocol, and finally joining an Infrastructure Network.

You don't need to memorize all the key words at once, but being familiar with them is
very important.

2. What exactly did the STA mode do in the engineering aspect?

Under the STA mode, the ESP32-C6 actually completed a complete set of processes:
+ Channel scanning (Channel Scan), 2.4GHz (Channels 1-13)

- Authentication WPA2 [WPA3

+ Association

+ 4-Way Handshake for Key Agreement

+ DHCP Request

« Completion of IP Layer Network Establishment

In your code, you only wrote one sentence:
bsp_wifi_connect(ssid, password);

But the underlying layer has already executed the entire Wi-Fi protocol stack.

3. Understanding STA
You can think of STA as:
» "I'm just an ordinary user, and | want to access the internet”
Its characteristics are very clear:
No Wi-Fi
Regardless of others
Only concerned with:
® Whether | have connected
* Whether | have an IP address

e Whether | can access the server

4. Our role in the project
In the ESP32-P4 + ESP32-C6 architecture:

C6 (STA)

« Connect to the router
« Access the internet
+ Request weather / time / cloud services

P4

+ Focus on Ul [LVGL [Business Logic
This is a typical "network coprocessor” design concept.

Now that we have understood the Station mode, let's use it to enhance our
understanding.

Click the link below to download the code for the Station mode.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl7-Wi-Fi_function

After downloading, open the Station mode code using VScode.

The framework of this code can be seen:

~ ESP32_P4-STATION

>
> build

¥ main

Let's be straightforward: How to use:

Click on "station_example_main.c" to enter the main code.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson17-Wi-Fi_function

If you want to connect to Wi-Fi, simply replace the Wi-Fi name and password here.

EXPLORER station_example_main.c X sdkco,

ESP32_P4-STATION main > SP_WIFI_SSID
> .vscode z
> build
~ main
CMakelists.bet
idf_component.yml
£ Kconfig.projbuild
station_example_main.c
S managed_components
= dangd
CMakeLists.txt
£ dependencies.lock
H partitions.csv
README.md
= sdkconfig

Then you can start preparing to compile your project.

Simply click the "One-click Upload"” button, and your code will be compiled and uploaded
all at once. After the upload is complete, open the serial port monitor.

> OUTLINE

E
Manage
7 PrUIECT COMPONENTS

£) EDESPIDFvSA2 YYUART O COMI4 Fesppd @& W £ £ O 2 |0 BH B ®@12A0

--- 8x4884b7f2: hri’fiistaireceive at J:/My A

SoftAP (AP) mode
1. Professional Definition

The SoftAP (Software Access Point) mode refers to the device simulating a Wi-Fi access
point (Access Point) through software, periodically sending Beacon frames to broadcast
the SSID, and acting as a DHCP Server and local gateway to construct an independent
wireless local area network (WLAN).

2. What does SoftAP do in engineering
In AP mode, the ESP32-C6 will:

Regular broadcast:

« SSID

« Encryption method

« Channel information

Accept client association requests

For each connected device:

« AssignIP

« Maintain connection table

That is to say:

At this point, the ESP32 "behaves like a router”

3. Understanding SoftAP

You can think of SoftAP as:

« A ’router without broadband”

It enables mobile phones to connect;

It allows for commmunication between devices;

But it does not access the internet by default.

4. Why are embedded devices particularly fond of using APs?

Because it solves a real engineering problem:

+ When the device is powered on for the first time, it has no idea how to handle the Wi-Fi
password?

Answer:

Enable AP for the device

Connect the mobile phone to the device

Enter the actual Wi-Fi information

Save to NVS

Restart - STA mode

5. The actual applications in the architecture

In the P4 + C6 project, the AP mode is typically used for:

Distribution network

Local web control

Offline debugging

Now that we have understood the SoftAP mode, let's use it to enhance our
understanding.

Click the link below to download the code for the SoftAP mode.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To

uch-Screen/tree/master/example/V1.0/idf-code/Lessonl7-Wi-Fi_function

After downloading, open the SoftAP mode code using VScode. The framework of this
code can be seen:

“ ESP32_P4-SOFTAP
>
> build

~ main

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson17-Wi-Fi_function

Let's be straightforward and say how to use it:

Click on softap_example_main.c, then enter the main code.

EXPLORER example_main.c 9+ X

v ESP32_P4-SOFTAP BesaCc O main > € softap_example_main.c >
> wscode
> build
v main
CMakeLists.txt
idf componentyml
= Kconfig.projbuild
softap_example_main.c
> managed_components

wifi_event_handler(void * int32_t, void *)

= .clangd
CMakeLists.txt

£ dependencies.lock

H partitions.csv
README.md

= sdkconfig

Since now we are treating Advance-P4 as a router, we can use a mobile phone or a
laptop to connect to the Wi-Fi that is set in the code.

can fill in the name and password of the router Wi-Fi in the code.

EXPLORER softap_example_main.c x

ESP32_P4-SOFTAP main > softap_example_main.c >

> .wscode
> build
~ main
CMakelLists.txt
idf componentyml
£ Kceonfig.projbuild
softap_example_main.c
> managed components
£ .dangd
CMakelists.bxt
£ dependencies.lock
B partitions.csv
README.md
sdkconfig
sdkconfig.defaults
sdkconfig defaults.esp32pa

Then you can start preparing to compile your project.

Simply click the "One-click Upload" button, and your code will be compiled and uploaded
all at once. After the upload is complete, open the serial port monitor.

wifi_init_softap(void)

ESP_ERROR_CHECK (esp_netif_init());
ESP_ERROR_CHECK (esp_event_loop_create_defauld());
> OUTLINE esp_netif_create_default_wifi_ap();
> TIMELINE . -
i _config t cfg =
> PROJECT COMPONENTS OR_CHECK (esp_wifi inip¢&cfg));

£ ®IESP-IDFv542 YTUART O COM14) esplzpd 2 E\'?}’ S R > T) B ®@nio

After the upload is completed, you will be able to see the relevant information indicating
that the AP mode is ready.

At this moment, you should use your mobile phone or laptop to connect to the Wi-Fi of

this router.

——
<
WLAN
WLAN

Network acceleration

= ELECROW

Tap to share password

= elecrow888

= elecrow888_5G (¢

< elecrow_5G2 (s
Available networks
= elecrow_yidong
= vyanfal (@
< RVBUST

= elecrow

17856
wers ol

= elecrow_yidong-5G

1> = @

(H

A
u

Refresh

You can also see from the serial port monitor that you have connected successfully, and
it prints out the IP address of your mobile phone or laptop.

However, this Wi-Fi has no network available for access. You can think of it as a router
without an Ethernet cable. You can try to connect it, but you won't be able to access the
internet.

STA + AP coexistence mode
1. Professional Definition

The STA + AP coexistence mode (Station + SoftAP Concurrency) refers to the scenario on
a single-radio-frequency (Single RF) Wi-Fi SoC where:

- A Station Interface (STA)

« A SoftAP Interface (AP)

are simultaneously running through a virtual network interface (Virtual Wi-Fi Interface,
VIF), and the MAC layer scheduler (MAC Scheduler) switches the transmission and
reception between the two roles through time-division multiplexing (TDM) in a
time-sharing manner.

2. Underlying Facts
TA + AP = Two Wi-Fi modules

Rather:

« One set of RF
« One set of PHY
« One set of MAC

« Two logical identities

The ESP32-C6 "pretends” to be two devices at the protocol level.

3. How is the protocol and system layer implemented?
Virtual Interface (Virtual Interface, VIF)

In ESP-IDF, STA + AP is actually: Wi-Fi Driver

- netif_sta (STA interface)

+ netif_ap (AP interface)

Each interface has:

+ Independent MAC state machine

+ Independent IP stack (IwlIP)

+ Independent DHCP behavior

However, they share the same radio frequency hardware.

4. What is Time Division Multiplexing (TDM) doing?
Since there is only one antenna, the ESP32-C6 will:

« Sometimes "listen to the router”

« Sometimes "send Beacons to the mobile phone”

+ Sometimes receive data from the cloud

« Sometimes respond to the phone's requests

You can think of it as: The Wi-Fi chip rapidly switches between two identities.

This switching is transparent to the upper-layer applications.

5. Channel Binding

In the STA + AP mode, the channel of the AP must be the same as the channel of the
router that the STA is connected to. Reason:

« Single RF cannot operate simultaneously on two channels.
+ The STA has a higher priority than the AP.

Therefore:

« The router is on Channel 6.

« The SoftAP can only be on Channel 6.

6. Understanding STA + AP

Think of the device as a person:

- STA:

Using a mobile phone to call the company headquarters (the external world)
- AP:

At the same time, using a walkie-talkie, and everyone nearby can call you

One action, two communication methods.

7. The fundamental difference from the standalone STA/AP mode

The standalone STA mode only allows the ESP32 to act as a Wi-Fi client and connect to
an existing wireless network outside, with the core requirement being "accessing the
network to enable external communication”;

The standalone AP mode only enables the ESP32 to become a Wi-Fi hotspot itself, with
the core requirement being "building a local local area network for other devices to
access’;

While the STA+AP coexistence mode simultaneously enables these two working modes
on a single chip, its essence is to balance the "accessing an external network to achieve
remote/external network communication” and "building a local hotspot to enable local
device interaction” capabilities.

Although it experiences a slight decrease in throughput due to radio frequency time
division multiplexing, it can simultaneously meet the dual scenarios of remote operation,
local debugging/ networking configuration, etc., expanding the functional boundaries of
a single mode.

Now that we have understood the Sta+AP mode, let's use it to reinforce our
understanding.

Click the link below to download the code for the Sta+AP mode.

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.linch-ESP32-P4-HMI-Al-Display-1024x600-IPS-To
uch-Screen/tree/master/example/V1.0/idf-code/Lessonl7-Wi-Fi_function

After downloading, open the Sta+AP mode code using VScode.

The framework of this code can be seen:

https://github.com/Elecrow-RD/CrowPanel-Advanced-10.1inch-ESP32-P4-HMI-AI-Display-1024x600-IPS-Touch-Screen/tree/master/example/V1.0/idf-code/Lesson17-Wi-Fi_function

~ ESP32_P4-SOFTAP_STA
>
> build

~ main

onfig.defaults

onfig.defaults

Let's be straightforward and say how to use it:
Click on softap_sta.c, then enter the main code.

EXPLORER
 ESP32_P4-SOFTAP_STA

>

> build

~ main

Because now we are treating the Advance-P4 as a router, we can use a mobile phone or
a laptop to connect to the WiFi that is set in the code.

Now this code can not only allow the Advance-P4 to connect to the WiFi you are using,
but also can act as a router itself, allowing other devices to connect.

You can fill in the name and password of the WiFi you need to connect in the code.

EXPLORER soft; g
[\ ESP32_P4-SOFTAP STA main > softap_sta.c > (5] EXAMPLE_ESP_WIFI_CHANMEL
> .vscode
> build
~ main
CMakelists.bxt
idf_component.ym|
£ Keonfig.projbuild WIFL AUTH OPEN
softap_sta.c
> managed_components
= dangd
CMakelLists.txt
= dependendieslock
B partitions.csv
README.md
dkconfig
dkconfig.defaults

EXPLORER soft
[~ ESP32_P4-SOFTAP_STA main > softap_sta.c > E) EXAMPLE_ESP_WIFI_CHANNEL
> .vscode
> build
~ main
CMakeLists.txt
idf_component.ym|
WIFI_AUTH_OPEN

= Keonfig.projbuild

> managed_components
= .dangd
CMakelists.txt
£ dependencies.lock
B partitions.csv
README.md
dkconfig
dkconfig.defaults
= sdkconfig.defaults.esp32pa

Then you can start preparing to compile your project.
Simply click the "One-click Upload"” button, and your code will be compiled and upload
all at once. After the upload is complete, open the serial port monitor.

+TAG_AP = "WiFi Sof
+TAG_STA = "HiFi

> OUTLINE s_retry_num = @;
> TIMELINE
EventGroupHandle_t s_wifi_eyefft_group;
D 21O B @17Ao

> PROJECT COMPONENTS
) ESESPIDFWSA2 YR UART O COMI4 $Fespl2ps 8B W &

After the upload is completed, you will be able to see the relevant information indicating
that the STA mode has successfully connected to the WiFi you are using.

--- Bx4PB4dbea: wifi sta receive at

Then you can also use your mobile phone or laptop to connect to the Wi-Fi of this router.

M23 = - anal*hl = e

2
5

e
WLAN

WLAN " @)

Network acceleration

A
u

ELECROW

Tap to share password

networks

>

elecrow888 a

9)

elecrow888_5G (56]
< elecrow_5G2 (5 a

Available networks Refresh

)

elecrow_yidong i

9)

yanfal (@i a

o)

RVBUST a

9)

elecrow]

R

elecrow_yidong-5G

After the connection is successful, you will see the IP address of mobile phone in the
serial port monitor.

--- Bx4804d6ea: wifi sta receive at

At this point, if you turn off your data connection on your phone and only connect to this
ELECROW in the AP mode you have set, you will be able to easily access the network.

The prerequisite is:

You need to access the SDK Configuration

Console Library
~ Driver Configurations

TWAI Configuration

~ Leaacv ADC Driver Confiquration

s a7 OUTPUT D

> OUTLINE

"component-config-esp-nttps-server™: true, "component-config-esp-https-ota™: true,
> TIMELINE "component-config-event-loop-library®: true, "component-config-ethernet®: true, "comy
> PROJECT COMPONENTS pmponent-config-esp-driver-temperature-sensor-configurations™: true, "component-co

> E) ESESPIDFvS42 TYUART O coMi4 @epdpa [B| W £ 8 00 B & B ®irho

Search for and open the configuration shown in the picture:

SDK Configuration editor X

CONFIG_LWIP_IPV4_NAPT Discard

Component config
LWIP

J Enable IP forwarding ©
J Enable NAT ®

 Enable NAT Port Mapping &

After you compile this code, you need to connect your phone to the router ELECROW in
order to easily browse the network.

In our project, these configurations have already been prepared. You can simply upload
the code.

EXPLORER fi SDK Configurat or h £ sdkconfig.defaults X

v ESP32_P4-SOFTAP_STA

CONFIG_LWIP_IP_FO
CONFIG_LWIP_IP!

Why are these two configurations enabled?

In ESP-IDF, enabling CONFIG _LWIP_IP_FORWARD=y and CONFIG_LWIP_IPV4_NAPT=y is
the core purpose to enable the Advance-P4 (the Wi-Fi module based on ESP32-C86) to
have the ability of cross-interface network data forwarding and network address
translation in the STA+AP coexistence mode, ultimately achieving the core requirement
of "external devices connected to the Advance-P4 AP hotspot can access the external
network through the STA link of Advance-P4".

The specific functions of these two configurations are as follows:

1. CONFIG_LWIP_IP_FORWARD=y: Enable IP layer data forwarding

LWIP is the lightweight TCP/IP protocol stack used by ESP32-C6. The core of this
configuration is to enable the IP forwarding function of the protocol stack - allowing the
network protocol stack of ESP32-C6 to allow data packets to be forwarded between
different network interfaces (i.e., the STA interface and the AP interface).

Without this configuration: The STA interface (connected to the user's WiFi) and the AP
interface (its own hotspot) are completely isolated. Data packets can only flow within
their respective interfaces, and devices connected to the AP cannot access the network
on the STA side;

After enabling: ESP32-C6 can forward the external network request data packets
received from the AP interface to the STA interface, and then access the external network
through the user's router; at the same time, it can also forward the data packets returned
from the external network from the STA interface back to the AP interface and give them
to the devices connected to the hotspot.

In simple terms, this configuration is the basis for achieving "cross-interface
communication’, equivalent to opening the "data packet channel between the STA and
AP interfaces” for ESP32-C6.

2. CONFIG_LWIP_IPV4_NAPT=y: Enables IPv4 Network Address Translation (NAT)

This configuration is based on IP forwarding and aims to solve the problem of "address
compaitibility between devices in different subnets”. The core is to implement Network
Address Port Translation:

Devices connected to the Advance-P4 hotspot receive a private IP assigned by the AP
(such as 192.168.4.x), while the STA interface of the Advance-P4 obtains a private IP from
the user router from another subnet; The external network can only recognize the IP of
the STA interface but cannot directly recognize the IP of the AP-side device;

After enabling NAPT: The ESP32-C6 will convert the IP + port of the AP-side device + port
into its own STA interface’s IP + random port and send the request to the external
network; When the external network returns data, it will convert the STA interface's IP +
port back to the AP-side device's IP + port, achieving data transmission back.

In simple terms, this configuration enables the AP-side device to "borrow" the IP of the
STA interface to access the external network, solving the problem of address mapping
between different subnets, and is the key for the AP-side device to access the internet
normally.

The final effect of combining the two configurations

After enabling these two configurations, the Advance-P4 gains the core capabilities of a
"smaill router”: devices such as mobile phones/computers connected to its AP hotspot
can communicate locally with the Advance-P4, and can also access the local area
network of the user's WiFi through the STA link of the Advance-P4, and even access the
external network (such as accessing the internet, connecting to servers); conversely, if
either of them is disabled, the AP-side device will be unable to access the internet
normally (only able to communicate locally).

SELECROW

MAKE YOUR MAKING EASIER

