ELECROW RASPBERRY Pl STARTER KIT

Elecrow
Raspberry Pi & Arduino
Starter Kit

1 of 114

ELECROW RASPBERRY Pl STARTER KIT

CATALOG

[aT o To [V 4 To] o OO PP POSRUPUPRPRR 3
[0V =T o]| 1 4T o U ST PPPRTPURRRN 3
LESSON 1 BIINK LED..eeeeiitttteeeititeeeeeittte e ettt e e e sttt e e sttt e e s sttt eeeensbaeeesesstaeeeeasssbeessanstsaeesanssaaessannsaeeseansbaaessnnssneessnnnseens 4
LESSON 2 BUTEON.ccuuttttteeiiiiiteeeiitee e ettt e e ettt e e ettt e e e ettt eee s aateeeeeastbaeessaanseeeeensbaeessassseaeeensbaaessansseeesennsbseesssnsseeeennnns 8
LESSON 32 Ball SWItCN.ceneiiiiee ittt ettt e e ettt e e et e e e e s saab e e e e eabbaeeesanabeeeeenasbaeessansseeeesnnssaeessannnes 14
LESSON 4 ACTIVE DUZZET ...ttt e ettt e e sttt e e e s et e e e e s ettt e e e enabbaeeesannbaeeesnnsbaeeesnnsnes 19
LESSON 5: PaSSIVE DUZZEN.......eiiiieiiiiiee ettt ettt e e e ettt e e ettt ee e s sttt e e e sasbbeeesansbteeeeaasbaeeesanssaeesenasraeeas 24
LESSON 6: RGB LED....cciiuutiieieiiiiee ettt e eiitee e e ettt e e ettt eeessaateeeeesatbaeeesanebteeeesasbbeeesansseeeeesasbaaeesanssaeeesnnsbneeessnnsaeessnnnes 35
LESSON 7: 1 Digit 7 SEEMENT diSPIaY....cciiieeiiiiiiiiiee et e e ettt e e e e e e e e e tar b e e e e eeaeeeeesssaaabaaaaeaaeaaaaaans 40
LESSON 8: 4 Digit 7 SEEMENT QiSPIaY...cciiiuiiiiiiiiiieiiiiie ettt et e e st e e e e e s 45
LESSON 9: Heart-shaped diSPIay.....ccoouuiiiiiiiiieiiiiie ettt ettt e ettt eeeairaee e s eaneeeeeans 51
LESSON 10: 9G SEIVO....uutiiieeiiiiieeeeeitteeeeeittteeesttteeessattteesaattaeessaatateesessbsaeessasaeeesanssseesssnasaeeesansssaeesssseeeeesnssseeessnnnes 56
LESSON 11: SEEP MOTON ...ttt ettt e e e e e e s bbb s s s e e e e e e e e s s s aabbasaeeeeeeeeessnns 61
LESSON 12: URIaSOniC FANGING.....ccciiiiiiiiiiiieee e e e eeeeectit ettt e e e e e e e e e ettaaaaeaeeeaeeeesssaaettssassesaaaaaaaaaaanessssssseeaaaeeesasanssnssees 66
LESSON 132 TOUCK J@MID. ittt ettt e e e e e e e e e e e atta bbb e e eeeaeeeeeesnsassssssaaeaaaeeessssssssssansaaaaaaaaaanas 72
LESSON 14: PCFB59L IMOTUIE....ccoueitiiieeeiiiiee ettt ettt et e e e ettt e e ettt e e s ettt e e e sasbbeeessnaaeeeessasbaaeesannsaeesennnraeens 77
LESSON 15 FlamiE SENSOIciiiiiiiieettteee et e e e ettt e e e e e e ettt et e e e e e e e s ab bbbt et eeeeeeeeeaaaaaanbbbb b aeeeeeeeeseanaassbssaaeeeeeeenns 82
LESSON 16: Photo resistance sensor (T SENSOT)......ciiviiiiiiiiiiee ettt et e e ettt e e s sbbee e e esaaeaeeeens 87
LESSON 17: THEImMIiS O SENSOI ...ttt ettt e et e e ettt e e e e e e e s ettt bbbttt e eeeeeeaeaaaasbbbbbeeeeeeeeseensnnnnnnenes 93
LESSON L18: POTENTIOMELE et e et e e et e et ettt ettt ettt s e e e e e e e e e eeeeeeeeeeeeeanneaennnnnnnas 98
LESSON 19: Water [€Vel MONITOTING.........uuiiiiiiiiiii ettt e e e e e e e ab b e e e e e e e e e e e e e saetabaaaeeaeeaaaaaeannnes 103
LESSON 20: JOYSTICK. .eeeeiuiiiiieeeiiiiee ettt ettt e e ettt e e et e e e sttt e e eabbaeeesaanteeeeeabbaeessannseeeesnnsbaaessanssaeesnnns 109
LESSON 21: IR REMOT. ...ttt ettt ettt ettt e e e e e e e e e bbbttt eeeee e e e s aaasbbb b bt e eeeeaesesaaaaabtbbbeeeeeeeeeaannnn 114
LESSON 22: IR REMOTE CONTIOI LED....cciiiiiiiiiiiiiiieeeteee ettt e ettt e e e e e e e ettt et e e e e e e e e s aaibbbeeeeeeeas 119
LESSON 23: DHT AL iiiiteeeeiiiiee oottt te e e ettt e e ettt e e s ettt ee e ettt eeeeeabbeeeeaanbaaeesasasaeeesansbaaeessnnnbeeesansbsaaessnsbeeessnsssaeesannsees 125
LESSON 24: LCD1602 WiIth TIC......eiiiieeiiiiiee ettt ettt e sttt e ettt e e sttt e e ettt e e e s saebteeeesatbaeeesannseeeesnnnsaeeesannseeas 130
LESSON 25: Temperature and humidity MONItOFING........coocviiiiiiiiiiiiiiiiee ettt e e 100

2 of 114

ELECROW RASPBERRY Pl STARTER KIT

INTRODUCTION

Thank you for purchasing Elecrow Starter kit for Raspberry Pi & Arduino!

In this lessons file, we’ll go through all the components that you received by purchasing our
product, we will explain, step by step, the functionality of each of the components and how to
use them.

This lesson file is a great start for the making world, making the first step in creating something
on your own by connecting hardware and programming them to function in different ways!

For each lesson, three will be example demo code that you can run available from our GitHub
account. We will keep the GitHub account updated so make sure to follow up!

We hope you will enjoy this lessons as much as we did while writing them.

3 of 114

DRIVER INSTALLATION & GIT CLONE

In order to to use the lessons first we’ll need to clone the repository from GitHub that includes all
the examples that we’ll need.

To do so, run the following commands:

git clone https://github.com/Elecrow-RD/Raspberry-Pi-Starter-Kit.git
cd Raspberry-Pi-Starter-Kit/Drivers

After cloning the repository and CD (going into the folder) Drivers, we’ll now continue in
installing the actual drivers.

There are couple of drivers we’ll need to install:

* adafruit_python_charLCD - Adafruit library to control the LCD screen

* adafruit_python_DHT - Adafruit library to control the DH11 sensor

* Adafruit_Python_LED_Backpack - Adafruit library to control the segment LED
* Luma.LED_Matrix - Library to control the matrix LED

We have all the drivers we need in the drivers/ folder in our Raspberry-Pi-Starter-Kit repository.
So let’s proceed installing them all. We are going to install each driver seperately so make sure to
follow the instructions very carefully.

Before you start make sure your current location on the terminal states “Drivers” as the drivers
folder you are currently at.

4 of 114

You will need to install each of those drivers by running the following command for each one:
Adafruit_Python_CharLCD:

cd Adafruit_Python_CharLCD
sudo python setup.py install

sudo python3 setup.py install
cd ..

Adafruit_Python_DHT:

cd Adafruit_Python_DHT
sudo python setup.py install

sudo python3 setup.py install
cd ..

Adafruit_Python_LED_Backpack:

cd Adafruit_Python_LED_Backpack
sudo python setup.py install

sudo python3 setup.py install
cd ..

Luma Matrix LED:

cd luma.led_matrix

sudo python setup.py install
sudo python3 setup.py install
cd ..

sof 114

Make sure there are no errors on the way and congratulations! you’ve successfully installed all
the required drivers.

Please follow the next steps to prepare for the IR LED driver installation.

IR LED driver installation

First, let’s install the lirc library, the main library that will help us send and receive IR codes using

our sensor later on in this lessons:

sudo apt-get install lirc

After successfully installing the lirc library, we need to install the python support for lirc so we
could write python code and being able to connect it with the lirc library all together.

sudo pip install python-lirc
sudo pip3 install python-lirc

Note: on the latest Raspbian pip3 install python-lirc will not work, we are working to solve it
ASAP. You’'ll need to use python2 for the IR script for now.

Inside CrowPi/Drivers/LIRC folder that we cloned, there are 3 files you need to copy the files to
the LIRC configuration directory, from the CrowPi folder run the following commands:

sudo cp Drivers/LIRC/* /etc/lirc

After you moved the configuration file, edit your boot config file

6 of 114

sudo nano /boot/config.txt

And where it says

Uncomment this to enable the lirc-rpi module
#dtoverlay=lirc-rpi

change it to this

Uncomment this to enable the lirc-rpi module
dtoverlay=gpio-ir,gpio_pin=20

previously it used to be dtoverlay=lirc-rpi but this one got deprecated in the newer version of
Raspbian.

Execute the following commands to copy the configuration files

sudo cp /etc/lirc/lirc_options.conf.dist /etc/lirc/lirc_options.conf
sudo cp /etc/lirc/lircd.conf.dist /etc/lirc/lircd.conf

edit /etc/lirc/lirc_options.conf by writing the command sudo nano /etc/lirc/lirc_options.conf and
modify the following lines to be exact as here:

driver = default
device = /dev/lircO

now reboot

sudo reboot

7 of 114

Once the reboot successfully finished, run apt-get install Lirc once again to fix the previous

errors if any

sudo apt-get install lirc

Last step, stop the LIRC library so we could use the IR driver with our python script

sudo /etc/init.d/lirc stop

Note: if you get runtime error that the command cannot be found, maybe you have a different
version of LIRC, try this command instead:

sudo /etc/init.d/lircd stop

Well done!

You are now officially read to start the python lessons properly when all the drivers and
everything is need is already installed and ready for use.

let’s get going!

LESSON 1: BLINK LED

8 of 114

@ &
e

@
@

Introduction

The Blink LED will be our first lesson, during this lesson we’ll learn what is LED and how it works, how to connect it
properly to the raspberry pi using GPIO ports and then we’ll use example script to run and test a code with our
hardware.

The Blink LED is a very simple example to start with, we will use 5mm LED of any colour and make it “blink” turn on

and off rapidly in timely manner.

Specification

Below you can see the LED specification, the long pin indicate the positive side while the short pin indicate the

negative side.

Long pin
l 10, 77
Short pin —}# o = y l_.{.__
S| 5 3
A—— of =

Note: it's important not to mistake accidentally the long pin with the short pin, that will cause the circuit not to work

properly.

9 of 114

Hardware required

Below is the list of the hardware required for us to accomplish the lesson, all the hardware is included in the kit.
Please make sure to take the right hardware and prepare it for the lesson. The resistor can be either 220 or 300

ohms, both will work.

Material diagram Material Name Number (amount)
LED 1
220/300Q resistor 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cables 1
Breadboard 1
Jumper wires Several

10 of 114

Breadboard Schematic

Below is the breadboard schematics, make sure to be familiar with it. it’s important to understand how the
breadboard works in order not to damage components that are included with this kit.

Every five pins are connected to each other.
(As shown on the picture)

00000 0o000™

o ——
1000000000,
000CA00000L
:1 0QO00000K
ACCESSO!‘IFS - 000G00RA0Y')
|-~ 000000000~ 0L

0 0OOOD DOODOD OODOO 0000O

0000000000C
I0CC0000000L

JO000000QGAL
QR0000000GK
0O00000000C

00

SO666 5 S\

00000

hole { ¥
[+ 1C 300 00(0000000000000
B 10 I 0 00000 0000000000000
] 000 0) C 000000000000 |
D 0000! kl 3C 00000000000c00000 |
O (s] 000! K JC 0000000000000
00000 DOO0O — ADD 0ODOD DDOOO Q0000 00000
P = e
power hole f ﬁ

The breadboard internal diagram The breadboard external diagram

Connection Diagram

As the diagram states, we will connect the negative pin of the LED to the resistor and the positive directly to the
Raspberry Pi GPIO.

as e s amennn
sassansnaa

Gllid] @

Connection

LED Raspberry Pi

11 of 114

Raspberry Pi

Long Pin (+) GPIO17

Short Pin (-) _GND

Code Overview, Code Overview, Compile and run

Our code is quite simple. We'll define GPIO 17 as the blinking LED pin and then setup the pin as GPIO.OUT, we will
go through a while loop (forever till the program quit using CTRL-C or CTRL-Z, We will turn the LED on by setting
GPIO.HIGH, wait 0.2 seconds (200 milliseconds) and turn it off by setting GPIO.LOW.

We will repeat the process forever.

Compile the script by going into the samples directory and running: python3 blink.py

#!'/usr/bin/python
—x- coding: utf-8 —x-—
http://elecrow.com/

import time
import RPi.GPIO as GPIO

define LED pin
led_pin = 17

set GPIO mode to GPIO.BCM
GPI0.setmode(GPIO.BCM)

set puin as input
GPIO.setup(led_pin, GPIO.OUT)

try:
while True:
turn on LED
GPIO.output(led_pin, GPIO0.HIGH)
Wait half a second
time.sleep(0.2)
turn off LED
GPIO.output(led_pin, GPIO.LOW)
Wait half a second
time.sleep(0.2)
except KeyboardInterrupt:
CTRL+C detected, cleaning and quitting the script
GPIO.cleanup()

Application effect

Running the program, will turn on an LED on for one second, then off for one second, repeatedly.

12 of 114

It's inside a while loop, the program will stop by pressing CTRL+C on the keyboard or CTRL+Z.

LESSON 2: BUTTON

Introduction

In this lesson we’ll learn how to use the button.
The button is very useful in many applications for example turn on light by press or even play some music.

In our specific example we’ll use the button to indicate if it was pressed or released.

Specification

Below is the button specification, as we can see, there are 2 pins, once the button is closed, it will close the circuit
and will cause the GPIO INPUT to indicate as “HIGH” once the button is open, the circuit is open and the GPIO INPUT
will indicate as “LOW”.

13 of 114

Hardware required

Below is the list of all the components that are required for this lesson.

Make sure to note that the resistor is 10K (kilo) ohm and not 10 ohm.

Material diagram Material Name Number (amount)
Button 1
10KQ resistor 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
Jumper wire Several

14 of 114

Connection Diagram

As we can see in the diagram, we connect the button to the 10K ohm resistor on the negative side as well as to the

GPIO port at GPIO17. The other pin of the button goes to 3V pin on the raspberry pi.

Please note: if you connect the button on the wrong direction the raspberry pi might indicate the opposite, GPIO
HIGH when the button is released and GPIO LOW when the button is pressed, therefore the script might not work as

expected.

e
=
= =rd
3 —
== o
2 A
. L - - L - - - .. - e w - - L - - -
MR N . sofles . vew sesse e . sisee swwas
L L B B B R B .. . L B R D B R B B B B D B L R B L B L R B B B B L B R B
P PR PSP I P PH P T B IF P I TP ISP AP P I PP IR P I PRI VI PRSI P IR E PR
LI D R R R B L B B R L B I R DL R R B B B R B R R B R B L B R L B L L B L B
" & 8 8 s @ e " s e — s & 9 8 @ @ 8 " " e e s e " @ 8 8 ® 8 S S e e s ® 8 5 8 " 8 s e B
L B B B BN A) L B B B B BN R D B R R R R B D B D B B R R R B R R R R B B R B R

Connection

Button Raspberry Pi

Pin 1 GPIO17

Pin 2 3v3

15 of 114

Code Overview, Code Overview, Compile and run

Let’s take a look through our code: we set the button pin as GPIO 17 then the mode as GPI0O.BCM, the button GPIO
will be GPIO.IN as we receive input from the button whenever it was pressed or not. Then we go while true (forever)
if GP1O.INPUT button is TRUE means the button is pressed, we print “button pressed” else, if it’s released, we print
“button released”.

Compile the script by going into the samples directory and running: python3 button.py
#!/usr/bin/python
—x— coding: utf-8 —x—
http://elecrow.com/

import RPi.GPIO as GPIO
import time

configure button pin
button_pin = 17

set board mode to GPIO.BCM
GPIO.setmode(GPIO.BCM)

setup button pin as input
GPIO.setup(button_pin, GPIO.IN, pull_up_down=GPI0.PUD_UP)

try:
while True:
check if button pressed
if(GPIO.input(button_pin)):
Button is pressed
print("Button Pressed")
else:
it's not pressed
print("Button Released")
time.sleep(0.1)
except KeyboardInterrupt:
GPIO.cleanup()
16 of 114

Application effect

Running the program, will print “button pressed” if the button is pressed and “button released” if the button is
released.

LESSON 3: BALL SWITCH

0’

Introduction

In this lesson we’ll learn about the ball switch, also called “tilt sensor” once the switch is tilt to one side, it could be
either open or closed. The ball will touch the side of the switch causing it to close a circuit, tilting it to the other side
will cause the circuit to be open (due to the ball not touching the side of it)

Specification

Below is the ball switch specification, as we can see inside the switch there small balls, once they touch the left side,
it will close the circuit between the two “sticks” (pins) allowing the current to flow.

95,941 3. 540. 05

20. 610. 05

17 of 114

Hardware required

Below is the hardware list for our lesson, please make sure you are using the 10K ohm resistor and not a 10 ohm

resistor for this example.

Material diagram

Material Name

Number (amount)

e Ball Switch 1
— 10KQ resistor 1
‘ Raspberry Pi Board 1
l T-Cubbler Plus 1

| y
Tt RS T S Rl Breadboard 1

i .ﬁmﬂw i

' ﬁ : Jumper wires Several
#

18 of 114

Connection Diagram

As can be seen on the diagram, we connect the negative pin to the GND in the raspberry pi as well as to the 10K ohm

resistor and to one pin of the ball switch.

Note: it doesn’t matter which pin of the ball switch you choose, the decision, might effect the script. For example,
GPIO HIGH might be GPIO LOW or GPIO LOW might be GPIO HIGH.

If you see that the script is not as what expected in this tutorial, try to change the pins of the ball switch.

Connection

As we mentioned, the ball switch doesn’t have a specific pins, try both and see the results.

19 of 114

Component Raspberry Pi

Pin 1 GPIO17

Pin 2 3v3

Code Overview, Code Overview, Compile and run

Let’s walk through our code: we setup the switch pin to GPIO17 as GPIO.IN because we receive input from the ball
switch whenever he close the circuit by tilting it or not. Then we go for while loop (forever) and print “BALL is HIGH”
if it's closing the circuit or “BALL is LOW” if not. You can tilt the ball switch around to see the data changing.

Compile the script by going into the samples directory and running: python3 ball_switch.py

#!/usr/bin/python
—- coding: utf-8 —%—
http://elecrow.com/

import RPi.GPIO as GPIO
import time

configure button pin
ball_switch_pin = 17

set board mode to GPIO.BCM
GPIO.setmode(GPIO.BCM)

setup ball pin input
GPIO.setup(ball_switch_pin, GPIO.IN)

try:
while True:
check ball state
if(GPIO.input(ball_switch_pin)):
Ball is high means it's closing the circuit by touching
print("Ball is HIGH")
else:
Ball is low means it's not closing the circuit
print("Ball is LOW")
time.sleep(0.1)
except KeyboardInterrupt:
GPIO.cleanup()

20 of 114

Application effect

The script will print “BALL is HIGH” if it’s closing the circuit or “BALL is LOW” if not. You can tilt the ball switch around

to see the data changing.

LESSON 4: ACTIVE BUZZER

Introduction

Active buzzer is a very useful module that can be used in many applications

For example: alarm clock, movement detection or as an alert to an UPS to let you know the battery is running low.

No matter what your project is about, buzzer probably can be very useful case.

In the tutorial below, we’ll learn how the buzzer works and how to control it using the raspberry pi GPIO, how to

wire it using the breadboard and the jumpers and use it with Python script sample attached in our GitHub page.

Make sure not to confused the active buzzer with the passive buzzer in the kit, the difference is that the active

buzzer have a sticker on top (a seal) the passive buzzer doesn’t have one.

21 of 114

Hardware required

Below is the list of hardware, make sure not to confuse the active buzzer and passive buzzer in the kit. Both of them

have a tutorial going through and explaining how they work but for now, we focus on the active buzzer only.

Material diagram Material Name Number (amount)
Active Buzzer 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
BRI Breadboard 1
Rl
' g : Jumper cables Several
& -

22 of 114

Connection Diagram

as we can see in the diagram, the connection is pretty simple. we connect the positive pin of the buzzer into GPIO17

on the raspberry pi and the negative pin to the ground.

GPIDZs @

=2
&2
=
(="
2
®

&
=
=
o
L
@

Tes s s EEs e
D I S A
------- R
R I
E A Y

sensse

.
.
.
.
-

e
“s e

.
.
.
.
-

T e
CRCIC Y
e
“ewew
'EEEE
e
CRCIaY
“ewen

“esss ssees sEeEw sEEeE EEwEEE SESEE TEEEE EeEEEw EeeseE ewwew

ST EEe EEEEE FEEEE TEEEE EEFEE TS FTEEET sTEEEE TeeEe TeEuw

Connection

Please note: the long pin of the buzzer is the positive pin while the short pin of the buzzer is the negative pin.

Active buzzer Raspberry Pi

Long Pin (+) GPIO17

Short Pin (-) GND

23 of 114

Code Overview, Compile and run

Let’s overview and test out buzzer code: the passive buzzer code is pretty simple. We don’t use loop in this code to
avoid the buzzing sound, we setup the buzzer as GPIO17 as GPIO.OUT because we will output a GPIO.HIGH or LOW
when we want to control the buzzer activity, then we set the GPIO as GPIO.HIGH for 0.5 seconds (prepare the noisy

buzzing sound) and after half a second we turn it off by GPIO.LOW command.

To wrap this all up, we use the command GPI0O.cleanup() to clean the GPIO17 pin In case we want to use it for

something else.

Compile the script by going into the samples directory and running: python3 active_buzzer.py

#!/usr/bin/python
—k—- coding: utf-8 —%—
http://elecrow.com/

import RPi.GPIO as GPIO
import time

buzzer_pin = 17

GPIO.setmode(GPIO.BCM)
GPIO.setup(buzzer_pin, GPIO0.OUT)

Make buzzer sound
GPIO0.output(buzzer_pin, GPIO.HIGH)
time.sleep(0.5)

Stop buzzer sound
GPIO.output(buzzer_pin, GPIO.LOW)

GPIO0.cleanup()

Application effect

24 of 114

Running the program will turn on the buzzer for 0.5 seconds and then turn it off.

LESSON 5: PASSIVE BUZZER

Introduction
In this lesson we’ll learn about the passive buzzer.

The passive buzzer is very similar, to the active buzzer. but unite the active buzzer, the passive buzzer is activated by
waves (the active buzzer is activated by current running through it)

In this lesson we’ll learn how to use the passive buzzer and run a script as examples to prove that it works.

Specification:

Working Voltage: 3V/5V
Resistance: 160hm

Resonance Frequency: 2KHZ

25 of 114

Hardware required

Below is the hardware we’ll need for this lesson.

make sure to prepare the hardware and most importantly don’t confused the passive buzzer with the active buzzer
in the kit.

Material diagram Material Name Number (amount)
Passive Buzzer 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
Jumper cables Several

26 of 114

Connection Diagram

As we can see in the diagram, the design is exactly the same as the previous example with the active buzzer.

if you just finished the active buzzer lesson, you can just switch the buzzer module without taking out the rest of the

pins.

@ SPISCLK

LU

LR

"e s s e weEeET TEEEET FTEEEET e EWEeEE EeEEee e T sesew

Connection

Make sure not to mistake the long pin (the positive side) with the short pin (the negative side)

Passive buzzer Raspberry Pi

Long Pin (+) _GPIO17

27 of 114

Passive buzzer Raspberry Pi

Short Pin (-) GND

Code Overview, Compile and run

The passive buzzer is a little more complicated than the active buzzer.
The code is quite long and every line is commented to explain exactly what’s happening but we’ll explain here briefly.
The passive buzzer uses frequency to control it so we need to give “pitch” noise to control the vibration, using the

passive buzzer in our example we will make a sample song using do re mi Do notes.

Compile the script by going into the samples directory and running: python3 passive_buzzer.py

import RPi.GPIO as GPIO #import the GPIO Llibrary
import time #import the time library

class Buzzer(object):
def __init__(self):
GPIO0.setmode (GPI0.BCM)
self.buzzer_pin = 17 #set to GPIO pin 17
GPIO.setup(self.buzzer_pin, GPIO0.OUT)

print{"buzzer ready")

de

-

buzz(self,pitch, duration): #create the function “buzz” and feed it the pitch and duration)

if(pitch==0):
time.sleep(duration)

return
period = 1.0 / pitch #in physics, the period (sec/cyc) is the inverse of the frequency (cyc/sec)
delay = period / 2 #calcuate the time for half of the wave

cycles = int(duration * pitch) #the number of waves to produce is the duration times the frequency

for i in range(cycles): #start a loop from @ to the variable “cycles” calculated above
GPIO.output(self.buzzer_pin, True) #set pin 18 to high
time.sleep(delay) #wait with pin 18 high
GPIO.output(self.buzzer_pin, False) #set pin 18 to low
time.sleep(delay) #wait with pin 18 low

def play(self):

Application effect

The passive buzzer will play do re mifa sol la si do (piano notes) from do to do and backwards.

LESSON 6: RGB LED

Introduction

Before in our previous lessons we used different types of LEDs (in our kit, we have 5mm LEDs in different colours)
the RGB LED is a little bit different.

The RGB stands for Red, Green and Blue. It allows us to control 3 colours and using those colours, generate lots of
colours!

We will learn how to activate each of the colours separately and later on being able to combine them together and
create different range of colours.

The RGB LED is very useful for any applications, if you need LED for example for indications purposes, there is no
need to use red LED for one scenario and blue for another one. We can use RGB LED and change the colours based
on our needs!

Specification

Emitting Light Color: Blue, Red, Green
Size(Approx): 5 x 35mm/ 0.2" x 1.37" (D * L)
Forward Voltage: 3.0-3.4V

29 of 114

Luminous Intensity: 12000-14000mcd

Pin definition

Q=

Hardware required

Below is the hardware we’ll need to complete this lesson.

Please note the 220/3300hm resistor, we will need 3 of them.

any, either 220 or 330 will work, we can also combine few 220 and few 330ohm resistors, there is no problem with
that.

Material diagram Material Name Number (amount)
e RGB LED 1
=
—ny— 220/330Q resistor 3
‘ Raspberry Pi Board 1
I T-Cubbler Plus 1
i
Breadboard 1

30 of 114

=
c
S
o
£
&
S
o
o
£
S
2

Material Name

Material diagram

Several

Jumper wires

Connection Diagram

As we can see in the diagram, we’ll need to connect each resistor to each pin of the RGB LED except the ground

g
—
—
=L
=
Ll
—
- -
Do
—
—
[
TIIII

Ne
Jilidl @
6i0ld) @
glidl @

il @
Slidl @
Vivolie
¥
PANNGAY
0SInIdS @
ISONIdS @

i@
dl e
Lindl e
LI €

NG

Yidl @
nse

N

A

LI]
e e e

I ST R O R I A B R T AR A R B R O I R

LA U O TR T B O B B TR AR A A S R O R I R I A

LA R B R

{L“. LI

pin.we’ll connect each pin (each colour) to different GPIO so we could control it separately.

31 of 114

Connection

Please make sure you connect the pins correctly or you might experience unexpected behaviour during the run time
of the script. If you see colours that you are not expected to see, try to replace the pins and see if it gets fixed.
remember, each colour controlled by different GPIO pin, if you accidentally place the wrong pin on the wrong colour,
this will cause the script to show different things from what we programmed it to show!

RGB LED Raspberry Pi

R GPIO17
G GPI1027
B GPI1022
GND GND

Code Overview, Compile and run

The code is quite long but it’s all commented out to explain what’s going on, we’ll go mainly through the main part
of the code. We define the object RGB that we’ve made a class earlier in the code, then we turn on the RGB LED

“red” for 0.3 seconds and turn it off. We do the same afterwards for the green and the blue LED.

Compile the script by going into the samples directory and running: python3 RGB.py

def main():
Initialize RGB Class
RGB_LED = RGB()

Blink Red
RGB_LED.turn_on("red")
time.sleep(0.3)
RGB_LED.turn_off("red")
time.sleep(0.3)

Blink Green
RGB_LED.turn_on("green")
time.sleep(0.3)
RGB_LED.turn_off('green")
time.sleep(0.3)

Blink Blue
RGB_LED.turn_on("blue")
time.sleep(0.3)
RGB_LED.turn_off("blue")

main()

Application effect

Running the script will turn on red LED, green LED and then blue LED with a space of 0.3 seconds between each turn

on and turn off.

LESSON 8: 1 DIGIT 7 SEGMENT DISPLAY

Introduction

In this lesson we’ll learn about the segment display. In our kit we have 2 types of segment display one is single (1
digit) segment display and one is 4 digit. both displays are the same the only difference is the amount of digits we
control. In our first lesson we will learn how to control one segment and show a number.

A segment can show a number between 0 and 9.

Pin Definition

G coMm A B
EEEEN

A

I:

1

33 of 114
| HEB
E C P

COM

As we can see, the segment LED is marked with letters in this pin definition, the real segment in the kit doesn’t have
any letters on it. Please refer to this definition while wiring the segment LED to make sure we wire it correctly.

Hardware required

Below is the hardware we’ll require for this lesson, 1 digit (don’t confused with 4 digit) segment display and 220 or

330 ohm resistors, we’ll need 8 of them.

Material diagram Material Name Number (amount)
@ 1 Digit 7 Segment display 1
—ny— 220/330Q) Resistors 8
‘ Raspberry Pi Board 1
I T-Cubbler Plus 1

E 40P GPIO Cable 1

Breadboard 1

b‘g& Jumper wires Several
7 X

34 of 114

Connection Diagram

As we can see the wiring diagram can be a little bit overwhelming.
Take it slowly, following the letters and the pin definition picture we’ve showed before to connect it properly. Please
note the small dot on the segment LED that tells you which direction the segment LED should be pointed at.

The dot should be pointed downstairs.

Direction

= =2 o=
= = 2
B B B
&3 g2 A
0 00

35 of 114

make sure to not forget to place all the resistors on the pins while connecting them to the GPIO ports.

All the pins except the GND (ground) pin should have resistor attached to it.

Connection

Follow the connection carefully to make sure not to wire accidentally some segment in the wrong way, doing so will
result in fault view of the numbers when we run the testing script at the end of the lesson.

Segment Raspberry Pi

A GPIO25
B GPI1020
C GPI1024
D GPIO21
E GPIO16
F GPIO18
G GPIO12
H GPIO23
GND GND

36 of 114

Code Overview, Compile and run

The code is quite long but don’t be afraid! This is due to the class code, the main code is actually very easy. What we
did is we setup each led on the segment led as a letter from A to H and then we turn them based on the colours that
they should be. In our example, we’ll loop from 0 to 9 and show the numbers that are currently in the loop so if the

loop is on the first round (0) it will show the number zero till the last number which will be 9.

Compile the script by going into the samples directory and running: python3 1digit_segment.py

import RPi.GPIO as GPIO ## Import GPIO library
import time ## Import "time' library. Allows us to use 'sleep'

Segment 1 Digit Numbers Illustration
H Is the dot on the right side of the segment

A

e
| |
B | | €
| D |
#
| |
E | | F
| I
P ommesseas (self.H)
G

class Segment():
def __init_ (self):
set the GPIO mode as GPIO.BCM

GPIO.setmode (GPI0.BCM)
set pin names for each of the segment pins

self.A = 25
self.B = 20
self.C = 24
self.D = 21
self.E = 16
self.F = 18
self.G = 12
self.H = 23

set the segment pins as GPIO0.O0UT
GPIO.setup(self.A, GPIO.OUT)
GPIO.setup(self.B, GPIO.OUT)
GPIO.setup(self.C, GPIO.OUT)

37 of 114

Application effect

Looping through numbers from 0 to 9 and showing the numbers on the segment LED with a space of 1 second

between each number we will be showing.

LESSON 9: 4 DIGIT 7 SEGMENT DISPLAY

A I
)

1
Vo

346185
R

Introduction

In the previous lesson we learned about a single 1 digit segment display, the 4 digit 7 segment display is no different.
In this lesson we’ll learn about the 4 digit segment, how to turn it on and control it using a simple python script. the

script will get the current time from the raspberry pi and display it on the segment LED.

Pin definition

Al a f AZ A3

The pin definition of the 4 digit segment is very similar to the 1 digit display.

Please make sure to note the letters on each pin and connect it correctly and accordingly.

38 of 114

Hardware required

We'll need a 220/3300hm resistor (8 of them, 1 for each pin) for this example.

Please note you can use either 220 or 330 or combine both of them, all options will work perfectly fine.

Material diagram

Material Name

Number (amount)

Segment Display 1
—ny— 220/330Q) Resistors 8
‘ Raspberry Pi Board 1
l T-Cubbler Plus 1
i |
Breadboard 1
Jumper wires Several

39 of 114

Connection Diagram

Please refer to the previous pin definition in order to make sure to connect the right pins to the right place.

40 of 114

We'll need to add resistor almost to every pin so make sure to connect them properly and put resistor where it

Id Aliaqdsey

_mFil‘-ulPll.
t-m.u-—---'lll_u-——n
...-m*-_.....-...

—

RasPi0 7seqg wiring

should be. The direction of the connection is with the dot at the bottom.

Connection

41 of 114

Please refer to the chart below on instructions how to connect the pins, we use GPIO.BCM and not GPIO.BOARD

scheme, also make sure to look were you don’t need to connect resistors (yellow rows) and where you do need to

Seg / digit 7Seg Pin Resistor BCM GPIO #
bot left 1 YES 7
bot centre 2 YES 8
decimal pt 3 YES 25
bot right 4 YES 23
centre centre < YES 18
digit 4 6 NO 24
top right 7 YES 4
digit 3 8 NO 17
digit 2 9 NO 27
top left 10 YES 10
top centre 11 YES 11
digit 1 12 NO 22

connect resistors (white rows)

Code Overview, Compile and run

42 of 114

In this example we’ll show the current time of our raspberry pi system on the 4 segment LED display. Please note,
you'll need to configure the right timezone through the “sudo raspi-config” settings else the time you’ll see might be

different from the actual time zone you are at right now.

Let’s walk through our code and try to understand it: we’ll show the hours on the first two columns of the segment

LED and the minutes on the second two columns.

We first start a while loop (forever) we get the current time from the time library then we go for each digit (we got
total of 4 digits) and loop through total of 7 numbers. And then we output HIGH for the right number that is

currently on the clock (based on the current time) and LOW for the time that is wrong (not the current time)
Compile the script by going into the samples directory and running: python3 4digit_segment.py

try:
while True:
n = time.ctime() [11:13]+time.ctime() [14:16]
s = str{(n).rjust(4)
for digit in range(4):
for loop in range(®@,7):
GPIO.output(segments[loop], num[s[digit]][loop])
if (int(time.ctime()[18:19])%2 == @) and (digit == 1):
GPIO.output(25, 1)
else!
GPIO.output(25, @)
GPIO.output(digits[digit], @)
time.sleep(0.001)
GPIO.output(digits([digit], 1)
finally:
GPI0.cleanup()

Application effect

Running the program will show us the current time on the segment clock.

LESSON 10: HEART-SHAPED DISPLAY

43 of 114

Introduction

In this lesson we’ll learn how to use the matrix display.

The matrix display is very similar to the segment LED just instead of only few LED’s to give us numbers the matrix
LED is many of many LED’s stand in a shape of matrix, this allows us to turn on entire rows, columns or individual
LED’s on the matrix.

In our example we’ll use the matrix LED to make an heart shaped animation.

Pin definition

PIN 16

]

Direction

00000 000N
000000 00)E
00000000

000000
000000

SLIQORCQ0
200000000
HQOOO0O Q0L

—

PIN 8

Please note the direction of the matrix LED: The black text should be in the front.

44 of 114

Hardware required

For this example just as the previous one we’ll need 8 220 or 330ohm resistors, combining 220 and 330 or using just
one type of them will work.

Please make sure to note the right connection of the resistors in order for this example to work correctly.

Material diagram Material Name Number (amount)
LED Matrix 1
220/330Q Resistors 8
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
Jumper wires Several

45 of 114

Connection Diagram

There are many pins that we need to connect and to some of them we need to attach resistors, please look carefully

and make sure to follow the diagram.

Connection

pinl GP1026
pin2 GPIO19
pin3 GPI013
pind GPIO6
pin5 GPIO5
pin6 EE-DATA
pin7 SPI-SCLK
pin8 SPI-MISO
pin9 GP1025
pinl0 SPI-CSO
pinll SPI-CSI
pinl2 EE-CLK

46 of 114

LED MATRIX Raspberry Pi

pin13 GPIO12
pinl4 GPIO16
pin15 GPI020
pinl6 GPI021

Code Overview, Compile and run

In this example we’ll active the matrix LED in heart shape, we create an array of LED’s and then decide which LED
will be on and which one will be off creating a heart shape by the numbers 1 and 0.

Then we go for each place in the array of numbers and send turn on the LED that states 1 (on) and leave the LED off
that states 0 (off)

Compile the script by going into the samples directory and running: python3 matrix_heart.py

Initialize an SPI connection using BCM-mode pins 21, 2@, and 16
max7219 = spi.SPI(clk=21, c¢s=20, mosi=16, miso=None)

Zero out all registers

for cmd in range(16):
packet = cmd << 8
max7219.put(packet,12)

Enable all columns via the scan limit register
max7219.put(int("101100000111",2),12)

Disable shutdown mode
max7219.put(int("110000000001",2),12)

Define the values for each column that gives us a heart shape
heart_shape = np.array([

[0, 0 0 0, 00, 0,01,
[ie, 1, 4,:@; 9, 4,4, @ 1,
[4, %, 4, i, T, 4, ¢, 4 1,
4, ¥, 3,3 4,d, 3 4 1,
e, 1, 1, %, 9,4, 14, @8 1,
[0, 0, 1,1, T, 4,'8; @ 1,
[e,0 0 1, 1, 0, 0, 0],
[e, 0, 0, 00,0, 0,01,
1)

Set each column according to our heart shape matrix

for col in range(8):
cmd = (col+l) << 8
values = 0
Without flipud, the heart would be upside-down since the LED matrix
defines 0,0 as the bottom left corner while numpy puts it at the top
#i# left.

for 1 in np.flipud(heart_shapel:,col]):
values <<= 1

Application effect

The matrix will turn on in a shape of heart, leaving certain LED’s on and certain LED’s off.

LESSON 11: 9G SERVO

Introduction

In this lesson we’ll learn about the 9G servo.
The 9G servo is a very useful module allows us to use a servo in certain degree, that allows us to attach certain
materials such as wire, cardboard or 3D printed parts in order to perform certain movements or actions in this

lesson we’ll learn how to move the servo around by giving it the degree we want it to move to.
Pin Definition

PWM=0range (J1I") -
Vcc=Red (+) —
Ground=Brown (-) —

The pin definition of the servo is very simple.

We have total of 3 wires: red, orange and brown (or black)
Red and brown indicate positive and negative while the orange is the data pin (PWN) that allows us to move the

servo itself.

48 of 114

Hardware required

The hardware is pretty straight forward, we don’t need any resistors or special components on this one.

We'll use the servo and connect it to the breadboard using the jumpers, follow the diagram to make sure to connect
the servo to the correct GPIO pin.

Material diagram Material Name Number (amount)

@ Servo Motor 1
.

T-Cubbler Plus 1

‘ Raspberry Pi Board 1

== e 1
; :

Breadboard 1

' g : Jumper wires Several
v =

49 of 114

Connection Diagram

Red wire for 5V positive black is for the negative, the orange wire which we’ll use for PWN commands will be

connected directly to GPIO18.

e s e s seEese sEEEE eEews

LR R

® ZI0idd

@ (NI

L D INEE!
JidS

(g
—
—l
=L
e
- -
s—
EE)
=)
—
=
—I

e
Je0idl @
6I0id] @
i0id] @

J0id] @
Slid) @
Vi@
N @
A12514S @
0SIIdS @
1S0HIdS @
it
RAIGRE
LNl @
L0id] @
e
b0id] @
nse

Wis @

e

Connection

a
e
S
@

2
o
(%)
]

o

(%)
—
o [a)
(2 =2
(U] W (U]
(0]
=]
s o =
= 2
2 5 2
= - =]
o 7] L
> x i m

50 of 114

Code Overview, Compile and run

What we are going to do with our 9G servo is quite simple. We will first initiate the class “sg90” that already have
everything pre-coded and prepared for us with the parameter “0” as the initial direction.

Then will turn it left by setting the direction to 100 and speed of 80 (out of 100) to turn it to the other direction to
the right, we will turn it to -100 (opposite of 100) with the same speed of 80.

It will continue going in forever loop till pressed CTRL+C or CTRL+Z to quit the software.

Compile the script by going into the samples directory and running: python3 servo.py

def main():
s = 5g90(0)

try:
while True:
print("Turn left ...")
s.setdirection(100, 80)
time.sleep(0.5)
print("Turn right ...")
s.setdirection(-100, 80)
time.sleep(0.5)
except KeyboardInterrupt:
s.cleanup()
if _ name__ == "_ main__":

main()

Application effect

The servo will turn left and right at specific speed of 80% out of it’s capacity forever till the user press CTRL+C or

CTRL+Z to terminate the script.

51 of 114

LESSON 12: STEP MOTOR

Introduction

In this lesson we’ll learn about the step motor, step motor similar to the servo is another kind of “motor” but unlike

the servo it can turn up to 360 degrees and keep turning around to both direction.

The step motor is controlled by a special “driver”, without this driver we are unable to control the step motor

directly from the raspberry pi.

The step motor is very very useful specially for precise required applications such as robotics, 3D printers and so on

... Wwhere we need a precise movements based on number of “steps”.

In our example we’ll learn how to control the step motor by giving it the amount of steps we want it to turn around.

Pin definition

Step indicator LEDs

Stepper Motor

Signal from micro -
controller (Arduino

digital pins)

52 of 114

Hardware required

For this example we’ll need 2 special components, the first one obviously will be the step motor but the second one
will be the ULN2003 step motor driver board. As we mentioned before, without this driver board we’ll be unable to

control the step motor directly.

Material diagram Material Name Number (amount)

Step Motor 1
ULN2003 Step motor driver board 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
‘ ﬁ : Jumper wires Several
-, -

53 of 114

Connection Diagram

Please note the diagram is not 100% correct. We'll need to connect the step motor to the driver first and then follow

the diagram to connect the driver to the raspberry pi or T-Cobbler plus.

Connection

We have total of 4 OUTPUT GPIO pins (IN1,2,3, and 4) that we’ll use to control the steps of the step motor.

Step motor Raspberry Pi

IN1 GPIO12
IN2 GPIO16
IN3 GPI1020
IN4 GPIO21
5V 5V
GND GND

54 of 114

Code Overview, Compile and run

Let’s take a look at our code, the main code will initialise the step motor object and then we’ll run a demo of
different type: first demo will be to turn 1 step, then 20 steps, then quarter turn by degree and close the motor.

As we can see, we have 2 type of function:

1. turnSteps which will turn the motor by amount of stops

2. turnDegrees which we can state degrees such as 90,180,360 and it will turn it around.

We can use both functions to archive the same result in different ways.

Compile the script by going into the samples directory and running: python3 stepper.py

121 def main():

122

123 print("moving started")
124 motor = Stepmotor()

125 print("One Step")

126 motor.turnSteps(1)

127 time.sleep(0.5)

128 print("20 Steps")

129 motor.turnSteps(20)

130 time.sleep(0.5)

131 print("quarter turn")
132 motor.turnDegrees(90)
133 print("moving stopped")
134 motor.close()

135
136 if _name_ == "_main__":
137 main()

55 of 114

Application effect

Running the program will cause the step motor to turn one step, then 20 steps, then quarter turn and at the end

stop. You can change the interval of the step motor to make it move slower or faster.

LESSON 13: ULTRASONIC RANGING

Introduction

In this lesson we’ll learn about the ultrasonic ranging sensor.

The ultrasonic is probably most favourable sensor in the market, it opens loads of opportunities to develop

applications in many different areas from Robotics to loT and even smart city!

The Ultrasonic ranging sensor is able to sense the range from point 0 (the sensor location) to the object standing in

front of it, it can sense up to 5 meters ahead.

In this lesson we’ll learn how to control the ultrasonic sensor and measure the distance of to the object in front of

our sensor.

56 of 114

Hardware required

The main component we’ll need is the HCSR04 ultrasonic sensor, it’s difficult not to recognise it as it looks like 2

robotic eyes.

The sensor have 2 different type of connections which we will explain on the next page, please pay attention to it.

Material diagram Material Name Number (amount)

m HCSR04 Ultrasonic sensor 1

T-Cubbler Plus 1

‘ Raspberry Pi Board 1

; :

] Breadboard 1

' ﬁ : Jumper wires Several
7 X

57 of 114

Connection Diagram

In the connection diagram we have the 2 basic pins one is the negative and the other is the positive (black and red
wires)

The other wires are the dat wires called TRIG and ECHO we’ll use them to send a pulse and to get back response so
we can determine the distance by the time it takes for the pulse to return back to the sensor.

Make sure to connect them properly, TRIG goes to GPI023 and ECHO goes to GPI024.

L I S s e e e seaEE wEeew Bee e
s e wes wow T e es sseEE sEEse s

L N

-
e
=] g
=]
(=
(==}
g8 2
S =
S
2 o2
oo

St

= =
1] —
Fow =
2 i
® @

Connection

Component Raspberry Pi

58 of 114

Component Raspberry Pi

VCC 5V
TRIG GPIO23
ECHO GPI1024
GND GND

Code Overview, Compile and run

The distance sensor code is very straight forward.

We will measure the pulse and how long it takes it to come back so we will know the distance from the sensor to the
objectin front of it.

We will print the distance in cm but later on you can change it to any unit you feel comfortable with.

Compile the script by going into the samples directory and running: python3 distance.py

#!/usr/bin/python

—x- coding: utf-8 —x-—

Author : www.modmypi.com

Link: https://www.modmypi.com/blog/hc-sr@4-ultrasonic-range-sensor-on-the-raspberry-pi

import RPi.GPIO as GPIO
import time

we set GPIO mode as GPIO.BCM
GPIO.setmode(GPI0.BCM)

we set the pins for the TRIG and ECHO
TRIG = 23
ECHO = 24

measuring distance

print("Distance Measurement In Progress")
GPIO0.setup(TRIG,GPIO0.0UT)
GPIO.setup(ECHO,GPIO0.IN)

GPIO.output(TRIG, False)
print("Waiting For Sensor To Settle")
time.sleep(2)

GPIO.output(TRIG, True)
time.sleep(0.00001)

GPIO.output(TRIG, False)

while GPIO.input(ECHO)==0:
pulse_start = time.time()

while GPIO.input(ECHO)==1:
pulse_end = time.time()

pulse_duration = pulse_end - pulse_start

distance = pulse_duration * 17150

Application effect

The distance sensor will measure the distance and afterwards print in the console the distance that it found in cm.

LESSON 14: TOUCH LAMP

Introduction

In this lesson we’ll learn about the touch sensor.
The touch sensor is very familiar to the button we used in the previous lessons just except a physical key press

there’s capacitive touch surface that we can touch and detect it.

Most of the products today use capacitive touch instead of actual button so using the touch sensor makes

completely sense for the next projects you are willing to work with.

The touch sensor by itself is a little bit boring so we’ll try to do something fun with it.
We'll connect our RGB LED together with the touch sensor and once a touch is detected we’ll turn on the RGB LED

and shine some bright light!

60 of 114

Hardware required

The main hardware parts we’'ll need for this lesson is the touch sensor and the RGB LED we used earlier in previous
lesson.

The touch sensor is very easy to distinguish, you'll see there is some kind of “finger print” painting on it, the finger
print stands for the finger that will touch the sensor to detect the touch.

We’'ll also need 3 220/3300hm resistors to go with the RGB LED (not for the touch sensor)

You can use either 220o0hm or 330o0hm or combine them both, all will work just fine.

Material diagram Material Name Number (amount)

Touch Sensor 1
RGB LED 1
220/330Q resistor 3
Raspberry Pi Board 1
T-Cubbler Plus 1

61 of 114

Material diagram Material Name Number (amount)

40P GPIO Cable 1
Breadboard 1
Jumper wires Several

Connection Diagram
In the connection diagram we can see that we are going to connect the RGB LED just as we did in previous lessons to

GPI017,27 and 22.

The touch sensor have 3 different pins, one is the positive (VCC) another is negative (GND) and GPIO pin that we will
configure as GPIO.IN to receive a finger touch over the sensor.

=E 82 =
= =
F = Z
BB B B
2 2 ©n
© 00

62 of 114

Connection

RGB LED Raspberry Pi

R GPIO17
G GPIO27
B GPIO22
GND GND
GND GND
VCC VCC
SIG GPIO18

Code Overview, Compile and run

In our example we’ll use both RGB LED and touch sensor, when pressing the touch sensor, we will randomly choose
one colour: red green or blue. Then we will turn the LED of the randomly chosen colour.

If we stop touching the touch sensor, the LED will turn off.

Compile the script by going into the samples directory and running: python3 touch.py

67 def main():

68 # Initialize RGB Class

69 RGB_LED = RGB()

70

Tl # define touch pin

72 touch_pin = 18

73

74 # set GPIO pin to INPUT

75 GPI0.setup(touch_pin, GPIO0.IN, pull_up_down=GPI0.PUD_UP)
76

77 colors = ["red","green","blue"]

78

79 TRy

80 # select random color to turn on

81 random_color = random.choice(colors)

82 while True:

83 # check if touch detected

84 if(GPIO. input(touch_pin)):

85 # select random color to turn on
86 RGB_LED.turn_on(random_color)

87 else:

88 RGB_LED.turn_off(random_color)

on antie el S LT e aei il R R o i) R B S i

Application effect

When touching the touch sensor, a colour will be chosen randomly by the script, either red, green or blue. Then the
LED will turn on. If the touch sensor is released, the LED will turn off.

LESSON 15: PCF8591 MODULE

Introduction

The PCF8591 module an 8-bit A/D Converter & D/A Converter PCF8591 with four analog inputs, one analog output
and a serial 12C-bus interface.

64 of 114

The PCF8591 module features 12C pin header on one side, and 12C connector on the opposite side. Hence, it's more
flexible to connect the board to your development system. The board also supports 12C cascading, allowing the use of

multi module connected to the 12C bus at the same time by connecting the pin header and connector.

Please note that we will use the PCF8591 module for many of our lessons from this point on.

We’'ll connect modules such as light, flamed thermistor to get their value that is changing based on the environment.

The first lesson regarding the PCF8591 is just to show how to use it and connect it properly, if you’d like to continue
with the next lessons feel free to leave the PCF8591 in place.

Hardware required

For this lesson we’ll need mostly the PCF8591 module.

No resistors or other parts are required. But as we stated earlier on, we’ll combine the PCF8591 module with other
components later on to get their data and changing values.

Material diagram Material Name Number (amount)

PCF8591

Raspberry Pi Board 1

65 of 114

rial diagram Material Name Number (amount)

T-Cubbler Plus 1

;E 40P GPIO Cable 1

Breadboard 1

»Q% Jumper wires Several
v =

Connection Diagram

The connection diagram is pretty straight forward, the PCF8591 have to sides left side and right side, we’ll use the
left side to connect it to our Raspberry Pi and the right side later on to connect with components and sensor.

The left side can be treated as output and the right side as input.

The connection is through the SDA and SCL pins, the rest are GND and VCC. Make sure to connect the VCC to the 5V
pin.

Connection

PCF8591 Raspberry Pi

VCC 5V
GND GND
SDA SDA1
SCL SCL1
Code Overview, Compile and run

The code is quite simple and we won’t be changing it for the next couple of lessons, the same code can apply when

using the components as well.

Using

the smbus library we connect to the port A0 address which we will be using in the next few lessons, then we

get the value and print it out, pretty straight forward. When no components are used the value won’t change much

but when the components will be attached the value will changed based on the component.

Comp

©C N U A WN R

NNNNNNNERERRR B 2 B B 2 2
DU AR WNR®O®NOURWNR®

ile the script by going into the samples directory and running: python3 pcf8591.py

#!/usr/bin/python

—x- coding:utf-8 —x—
www.elecrow.com
import smbus

import time

NOTE: the PCF8591 script can be used both with photoresistance example and flame sensor example
please follow up the instructions on the PCF8591 schematic to connect the right sensors in the right way.

address = 0x48

A0 = 0x40
Al = 0x41
A2 = 0x42
A3 = 0x43

bus = smbus.SMBus(1)

while True:
bus.write_byte(address,A0)
value = bus.read_byte(address)
print("Value: %s" % value)
time.sleep(0.1)

Application effect

Running the program will result in value change based on the PCF8591 itself. No component is attached yet.

LESSON 16: FLAME SENSOR

Introduction

The flame sensor can be used to detect fire or other wavelength at 760 nm ~ 1100 nm light.

In the fire-fighting robot game, the flame plays an important role in the probe, which can be used as the robot's eyes
to find fire source or football.

It can make use of fire-fighting robots, soccer robots.

The flame sensor's operating temperature is -25 degrees Celsius to 85 degrees Celsius.

This will be the first sensor we’ll be connecting to the PCF8591 module in order to get the data, the flame sensor

cannot be connect alone just like that, we'll use the PCF8591 help to figure it out.

68 of 114

Hardware required

The main component will be the PCF8591 and the flame sensor. While connecting the flame sensor we’ll also need
to use a 10K ohm resistor, please make sure it's 10K ohm and not 10 ohm.

The resistor will go directly to the flame sensor and then to the input pin of the PCF8591 module as will be shown in

the next page.

Material diagram Material Name Number (amount)
= = Flame sensor 1
10KQ resistor 1
PCF8591 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1

69 of 114

Material diagram Material Name Number (amount)

Jumper wires Several

Connection Diagram

The connection is simple, we’ll need to connect the short pin of the flame sensor (the negative pin) to the resistor
and to the GND pin as well as to AINTO pin on the PCF8591 module.

The long pin of flame sensor will go directly to 5V on the raspberry pi (there are 2 5V pins so you could use one for
the PCF8591 and the other one for the flame sensor)

If you forgot how to connect the PCF8591 module to the raspberry pi, refer to the previous lesson.

osrmss T GPI025 ©

© SPISCLK

PCF858

[E

AINT3 =
AINT2 m
AINTL m
AINT®
SCL AOUT =

Short pin

1ing [O Wwu.elecrow.com

Connection

70 of 114

Flame sensor Raspberry Pi

Short Pin 5V
Long Pin AINTO
vcc 5V
GND GND
SDA SDA1
SCL SCL1

Code Overview, Compile and run

We use the same script that we used earlier, by attaching the flame sensor, by introducing flame to it either by

lighter or candle the value will change. We can use that value to detect if there is currently flame or no flame at all.

Compile the script by going into the samples directory and running: python3 pcf8591.py

1 #!/usr/bin/python

2 # -x- coding:utf-8 —x-—

3 # www.elecrow.com

4 import smbus

5 import time

6

7

8 # NOTE: the PCF8591 script can be used both with photoresistance example and flame sensor example
9 # please follow up the instructions on the PCF8591 schematic to connect the right sensors in the right way.
10

11 address = 0x48

12

13 AQ = 0x40

14 Al = @x41

15 A2 = 0x42

16 A3 = 0x43

17

18 bus = smbus.SMBus(1)

19

20 while True:

21 bus.write_byte(address,A0)

22 value = bus.read_byte(address)
23 print("Value: %s" % value)

24 time.sleep(0.1)

25

26

71 of 114

Application effect

Running the program will show a value that changes based on the flame sensor, if flame is introduced the value will
be higher. If no flame the value will be lower.

LESSON 17: PHOTO RESISTANCE SENSOR

Introduction

As the resistance of the sensor varies depending on the amount of light it is exposed to, the output voltage changes

with the ligth intensity. It can be used to trigger other modules.

This will be our third component that we will connect to the PCF8591 module, should be easy as we connected the

first one earlier in our lessons.

72 of 114

Hardware required

The main hardware component will be the photo resistance sensor, it’s small so it’s a little hard to notice.

We'll need 10K ohm resistor as well to connect the photo resistance sensor to the PCF8591 module, make sure you
take the 10K Ohm and not the 10 Ohm resistor accidentally.

We'll use the same connection for the PCF8591 module as we used in our previous lessons.

Material diagram Material Name Number (amount)
Photo-resistance sensor 1
10KQ resistor 1
PCF8591 1
Raspberry Pi Board 1
T-Cubbler Plus 1

73 of 114

Material diagram Material Name Number (amount)

40P GPIO Cable 1
Breadboard 1
Jumper wires Several

Connection Diagram

The diagram is very similar to the previous we’ve made. Let’s take a look over the photo resistance pins, it doesn’t
have a short or long one.

We’ll need to connect one pin to the 10K ohm resistor and then to the GND as well as to the AINTO pin on the
PCF8591 module. The other pin, the positive side we choose goes directly to 5V.

The PCF8591 module connections stays exactly the same.

74 of 114

JilidI ©@
GINGRE)

Liiidl ©
M1
SoidY ©
VN1 ©
N ©
N18IdS ©@
OSINIdS ©
ISONIS ©
INO
AANGHE <
collid] @
LDl @

NI C
b0id] ©
I8

@

AINT3 =
AINT2 =
AINT1 =

J

AINTB

ACUT =

<{ PCF8591
UCC

wuu.elecrou.com

ing

Connection

Raspberry Pi

-
[}
[%2]
=
[
(7]
(]
o
c
©
-
o=
(72}
[
iy
[}
=3
o
=
o

Pin1

‘PinZ

Raspberry Pi

PCF8591

5V

GND

SDA1

SCL1

VvCC

GND

SDA

SCL

Code Overview, Compile and run

75 of 114

This time after attaching the light sensor to the PCF module the value will change based on the amount of light
currently in the room, try to switch of or on the light or introduce different source of light such as your mobile phone
flash light to see the value changing.

Compile the script by going into the samples directory and running: python3 pcf8591.py

1 #!/usr/bin/python

2 # -x- coding:utf-8 —x-—

3 # www.elecrow.com

4 import smbus

5 import time

6

7

8 # NOTE: the PCF8591 script can be used both with photoresistance example and flame sensor example
9 # please follow up the instructions on the PCF8591 schematic to connect the right sensors in the right way.
10

11 address = 0x48

12

13 AQ = 0x40

14 Al = @x41

15 A2 = 0x42

16 A3 = @0x43

17

18 bus = smbus.SMBus(1)

19
20 while True:
21 bus.write_byte(address,A0)
22 value = bus.read_byte(address)
23 print("Value: %s" % value)
24 time.sleep(0.1)
25
26

Application effect

Based on the light the value will be changing, the higher the value the higher amount of light, Lower amount of light

will result in lower value to be presented.

LESSON 18: THERMISTOR SENSOR

76 of 114

&

Introduction

The resistance of a thermistor increases when the ambient temperature decreases, so the RPI can detects the
voltage and thus to calculate the current temperature.The detection range of this sensor is between -40 to 125

degrees Celsius with an accuracy of +1.5°C.

Same as our previous lessons we’ll use the PCF8591 module to connect the thermistor to the raspberry pi and

calculate the temperature.

77 of 114

Hardware required

The main component in this lesson is the thermistor sensor, it looks like LED with a small black pin at the end of it.
We’ll also need the 10K ohm resistor from the previous lessons to connect to the thermistor and GND pin.

Please make sure not to confuse 10K ohm resistor with 10 ohm resistor.

And off course, our buddy the PCF8591 that we used and will use in this lesson to get the value from the thermistor

sensor.

Material diagram Material Name Number (amount)
» Thermistor sensor 1
10KQ resistor 1
PCF8591 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
' Q Jumper wires Several
-, .

78 of 114

Connection Diagram
As the diagram states, we’ll leave the PCF8591 as we did before. The thermistor doesn’t have specific pins so one pin

we connect to the GND through the 10K ohm resistor as well as to AINTO at the PCF8591 module.

The other pin we connect directly to 5V pin, there are 2 5V pins so there is no need in pushing them together at the
same spot.

GND ©

B
o

© SPIMISO
© SPISCLK

<‘> PCF8591 @)
uce AINT3 =
il = GND s
[]
e AINTO :
SSEL AOUT =
iing @) wuu.elecrou.com O |

Connection
Pin1 5V
Pin 2 AINTO
VCC 5V
GND GND
SDA SDA1
SCL SCL1

79 of 114

Code Overview, Compile and run

As in our previous examples, the PCF8591 module will change the value based on the thermistor sensor.

Compile the script by going into the samples directory and running: python3 pcf8591.py

1 #!/usr/bin/python
2 # -x- coding:utf-8 —x-—
3 # www.elecrow.com
4 import smbus
5 import time
6
7
8 # NOTE: the PCF8591 script can be used both with photoresistance example and flame sensor example
9 # please follow up the instructions on the PCF8591 schematic to connect the right sensors in the right way.
10
11 address = 0x48
12
13 AQ = 0x40
14 Al = @x41
15 A2 = 0x42
16 A3 = 0x43
17
18 bus = smbus.SMBus(1)
19
20 while True:
21 bus.write_byte(address,A0)
22 value = bus.read_byte(address)
23 print("Value: %s" % value)
24 time.sleep(0.1)
25
26

Application effect

Running the program will show different value based on the temperature of the thermistor sensor, the higher

temperature the higher the value.

80 of 114

LESSON 19: POTENTIOMETER

Introduction

In this example, we use a potentiometer, we read its value using one analog input of an RPI board and we change
the blink rate of the built-in LED accordingly. The resistor's analog value is read as a voltage because this is how the

analog inputs work.

For this lesson as the previous lessons we’ll use the PCF8591 module in order to read the values from the

potentiometer.

81 of 114

Hardware required

The main hardware we’ll be using is the potentiometer, unlike the previous examples for the potentiometer we
won’t be in need in using 10K ohm resistors due to the resistance of the potentiometer itself.

And offcourse, we'll need to use the PCF8591 module as well to read the value out of the potentiometer.

Material diagram Material Name Number (amount)
Potentiometer 1
PCF8591 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
h‘éﬁ Jumper wires Several
-, .

82 of 114

Connection Diagram

The diagram stays the same as previous lessons except we don’t connect the resistor right now as we have no use in
it for the potentiometer.

The potentiometer have 3 pins, GND, VCC and AINTO make sure to connect the correct pins to the right places.

o
(==}
=
(4=

ovrms A

© SPIMISO

O

AINT3 =

=

O

€D
e
G
1
00)
Ol
w
'__\

AINT2 =

i AINTl =

SoA AINTE
AOUT =

» SCL
‘O wuu.elecrow.com O

ting

Connection
Component Raspberry Pi
Up Pin 5V
Mid Pin AINTO

83 of 114

PCF8591 Raspberry Pi

VCC 5V
GND GND
SDA SDA1
SCL SCL1
Code Overview, Compile and run

This ti

me as we use the potentiometer it will require us to do some manual action,

But turning the potentiometer either right or left it will turn the value, higher or lower.
By doing so we can control multiple things such as brightness of LED’s etc ... try to turn it around and see the value
changing.
Compile the script by going into the samples directory and running: python3 pcf8591.py

1 #!/usr/bin/python

2 # -x- coding:utf-8 —x-—

3 # www.elecrow.com

4 import smbus

5 import time

6

7

8 # NOTE: the PCF8591 script can be used both with photoresistance example and flame sensor example

9 # please follow up the instructions on the PCF8591 schematic to connect the right sensors in the right way.

10

11 address = 0x48

12

13 AQ = 0x40

14 Al = @x41

15 A2 = 0x42

16 A3 = 0x43

17

18 bus = smbus.SMBus(1)

19

20 while True:

21 bus.write_byte(address,A0)

22 value = bus.read_byte(address)

23 print("Value: %s" % value)

24 time.sleep(0.1)

25

26

Application effect

84 of 114

By running the program it will show the value of the potentiometer, to change the value need to turn the

potentiometer physically left or right, this will change his value.

LESSON 20: WATER LEVEL MONITORING

Introduction

This is a water level measurement experiment, it is relatively simple to achieve, only need to read the value of the
analogport (AO or others), and then converted to a percentage.

We’'ll be using the PCF8591 module as well for the water level monitoring example.

Specification

Operating voltage: DC3-5V
Operating current: less than 20mA Sensor Type: Analog
Production process: FR4 double-sided HASL Humidity: 10% -90% non-condensing Detection Area: 40mmx16mm

Product Dimensions: 62mmx20mmx8mm

85 of 114

Hardware required

We'll need the water sensor as our main hardware component and connect it to the PCF8591 to get the value once
the water has made a contact.

Same as our previous examples, for the water sensor we have no use in 10K ohm resistors.

Material diagram Material Name Number (amount)

Water sensor 1
PCF8591 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
Jumper wires Several

86 of 114

Connection Diagram

The water sensor have 3 pins, we connect the negative to GND, the positive to 5V and the S pin, the one we use for
the GPIO to AINTO. Once the circuit is closed by watering touching the surface of the water sensor it will send signal

to the AINTO pin and we’ll be able to know the amount of water over the sensor.

© SPIMISO
© SPISCLK

s}l O SPIMOSI

Ol
®
'_)
@)

<‘> PCF
uce AINT3 m
AINTZ m W)

AINT1 = =
AINTO
AOUT = o

SCL
zing ’O wuu.elecrouw.com O

uuu.elecrou

Connection
Water sensor Raspberry Pi
Negative (-) GND
Positive (+) 5V

87 of 114

Water sensor Raspberry Pi

S AINTO
VCC 5V
GND GND
SDA SDA1
SCL SCL1

Code Overview, Compile and run

For this example as we use the water sensor, by introducing drops of water to the sensor the value will change. The
more water the higher values.

But please do note: the water sensor is not waterproof and wasn’t meant to be submarined under the water.

Compile the script by going into the samples directory and running: python3 pcf8591.py

1 #!/usr/bin/python

2 # -x- coding:utf-8 —x-—

3 # www.elecrow.com

4 import smbus

5 import time

6

7

8 # NOTE: the PCF8591 script can be used both with photoresistance example and flame sensor example
9 # please follow up the instructions on the PCF8591 schematic to connect the right sensors in the right way.
10

11 address = 0x48

12

13 AQ = 0x40

14 Al = @x41

15 A2 = 0x42

16 A3 = 0x43

17

18 bus = smbus.SMBus(1)

19

20 while True:

21 bus.write_byte(address,A0)

22 value = bus.read_byte(address)
23 print("Value: %s" % value)

24 time.sleep(0.1)

25

26

88 of 114

Application effect

By running the script the value will change based on the amount of water drops on the sensor, the higher amount of
water the higher the value will be.

LESSON 21: JOYSTICK

Introduction

This experiment is to learn how to use the joystick of the analog output and digital output.

The joystick experiment will be our last lesson using the PCF8591 module.

As we learned in our previous lessons, the PCF8591 module is very useful for many scenario.
The joystick example is a very good one, a very popular use case for robotics and applications that require

controlling or moving.

89 of 114

By finishing the PCF8591 lessons, we hope that you will be able to create any analog circuit for any project that you
wish for and continue making everything - easier!

Hardware required

For the lesson we’ll need the joystick module which is very easy to be recognised.

We'll also need the PCF8591 module, connected to the circuit same as the previous lessons.

We won’t need any resistors for this lesson as well.

Material diagram Material Name Number (amount)
Joystick Module 1
PCF8591 1
Raspberry Pi Board 1

q0 of 114

Material diagram

Material Name

Number (amount)

T-Cubbler Plus 1
;E 40P GPIO Cable 1
Breadboard 1
Jumper wires Several
/_ =

Connection Diagram

The Joystick have 5 pins, 2 of them are the GND and the VCC which goes to 5V pin. The rest are VRX, VRY and SW.

make sure to connect those pins to the right place on the PCF8591 module.

The SW goes to AINTO, VRY goes to AINT1 and VRX goes to AINT2.

C
L

r

o
3
]
—
(=5
=
q
=
g2
=
=
(]
o

© SPISCLK

(2]
[—]
z
[~
2
o

?UCC

GND
SDhA

2 SCL
iing ‘O

O

AINTS m

AINT2 @4
AINTL A
AOUT =

AINT@
wuu.elecrouw.com O

%)
(e
=
(00}
Ol
w
H

Connection

Joystick Raspberry Pi

GND GND
5V 5V
VRX AINT2
VRY AINT1
SW AINTO
VCC 5V
GND GND
SDA SDA1
SCL SCL1

Code Overview, Compile and run

This time note that unlike the previous examples we need to connect to 3 pins of the PCF8591 module instead of
one. We need to connect to 0,1 and 2. (one for each direction the joystick will move)

After doing so, it should work just fine with a new script we’ve created specially for the pcf8591 called
pcf8591_joystick.py

Compile the script by going into the samples directory and running: python3 pcf8591_joystick.py

1 #!/usr/bin/python
2 # -x- coding:utf-8 —x-—
3 # www.elecrow.com
4 import smbus
5 import time
6
7
8 # NOTE: the PCF8591 script can be used both with photoresistance example and flame sensor example
9 # please follow up the instructions on the PCF8591 schematic to connect the right sensors in the right way.
10
11 address = 0x48
12
13 AQ = 0x40
14 Al = @x41
15 A2 = 0x42
16 A3 = 0x43
17
18 bus = smbus.SMBus(1)
19
20 while True:
21 bus.write_byte(address,A0)
22 value = bus.read_byte(address)
23 nrint("Value* %<" & value)

Application effect

Running the script will show values changing based on the joystick direction, try to move it to different directions to
see the value changing.

LESSON 22: IR REMOTE

Introduction

Inthis lesson, we use the lirc library to read infrared signals returned by buttons of the remote control and translate
them to button values. When a button is pressed, the IR transmitter in the remote control will send out the
corresponding IR encoding signals. On the other side, when the IR receiver receives certain encoding signals, it will
decode them to identify which button is pressed.

Before going through this lesson make sure you followed the installation requirements we introduced at the
beginning of this document.

IR Pin definition

a3 of 114

out

Hardware required
For this lesson we’ll need to use the IR receiver which looks like a small LED with black pin on the end of it (don’t
confuse it with the flame sensor we used earlier, it has 2 pins) as well as the remote control to send the signals to

the IR receiver to accept.

Material diagram Material Name Number (amount)
8000000 IR Remote 1
!to:eeooei'
0.00000
F— IR Receiver 1
‘ Raspberry Pi Board 1
I T-Cubbler Plus 1
;E 40P GPIO Cable 1

a4 of 114

Material diagram Material Name Number (amount)

Breadboard 1

Jumper wires Several

Connection Diagram

In order for the remote control to send the signal, we just need the remote control itself.

But what if we want to accept the signal on the other side, on the raspberry pi? We'll need to plug the IR receiver to
the GPIO pins. |

The IR receiver has 3 pins, GND and VCC (VCC goes to 5V) and OUT pin which we will use on GPI021 to receive the
commands from the IR remote control.

95 of 114

(N O

=
0

© SPISCLK

Connection
IR Raspberry Pi
ouT GPIO21
GND GND
vcc 5V

Code Overview, Compile and run

Before we start, make sure that you’ve installed the lirc and python-lirc drivers at the beginning of our lessons.

Without the drivers, the lesson will not work properly and you won’t be able to use your IR LED.

96 of 114

The code is quite simple but a little difficult to understand as we use sockets, it’s not as clean as previous code we
used.

We receive data rom the IR LED and then we convert the data, after converting it we are able to tell which button

exactly was pressed on the IR remote. Then we print it using the command print(Out[0])

Compile the script by going into the samples directory and running: python2 IR.py

GPIO.setmode(11)

GPIO.setup(17, @)

GPI0.setup(18, @)

PORT = 42001

HOST = "localhost"

Socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Lirc = lirc.init("keys")

#lirc.set_blocking(False, Lirc) # Un-Comment to stop nextcode() from waiting for a signal (will return empty array whe

def handler(signal, frame):
Socket.close()
GPIO.cleanup()
exit(0)

signal.signal(signal.SIGTSTP, handler)

def sendCmd(cmd):
n = len(cmd)
a = array('c')
a.append(chr((n >> 24) & @xFF))
a.append(chr((n >> 16) & @xFF))
a.append(chr((n >> 8) & 0xFF))
a.append(chr(n & @xFF))
Socket.send(a.tostring() + cmd)

while True:

Out = lire.nextcode(
print(out[e])

Application effect

Running the program will allow us to read the IR code through the IR remote, press the IR remote buttons to see

them on the terminal screen after the python script captures them using the IR receiver.

LESSON 23: IR REMOTE CONTROL LED

Introduction

In the previous lesson we learned how to accept the commands from the IR remote control and receive them

through our python code on the raspberry pi.

But what’s the interesting thing in that?

During this lesson we’ll take the IR remote control project a little further and we will control the LED using the IR

remote control, we’ll learn how to configure specific button to have a specific function to turn our LED once pressed.

Hardware required

For the hardware we’ll need the IR remote and the IR receiver.

For the LED we’ll need a small LED (you can choose any colour you want) and 220 or 330ohm resistor in order not to
burn out the LED while plugging it in.

Make sure to use 220 or 330ohm resistor, not K resistor.

a8 of 114

Material diagram

Material Name

Number (amount)

8000000 IR Remote 1

10000000
0.00000

IR Receiver 1

LED 1

220/3300hm resistor 1

Raspberry Pi Board 1

T-Cubbler Plus 1

40P GPIO Cable 1

Breadboard 1

Jumper wires Several

Connection Diagram

We'll keep the connection from our previous lesson regarding the IR receiver but this time we connect the LED as

well.

The LED have 2 pins, long pin and short pin. The long pin is the positive that we connect directly to GPIO27 and the
short pin goes through the resistor to the GND connection on the raspberry pi.

99 of 114

€ 1201da
< INAITH]
© 911d1

© AiNid]
© (0xH
© 00Xl
© 0N
O 0AS
©0AS

N o
304l ©
Gl ©
Lioid] @

30141 @
Sl ©
ViVl @
N €
N1I8IdS ©
0SINIdS ©
ISOWIdS ©

IO
Lndl @
LI0dI €
L0id? ©

N ©

v0id] ©

ns e

VIS ©

IO

Connection

Raspberry Pi

LED

Long Pin (+)

Short Pin (-)

Raspberry Pi

IR

GPIO21

GND

5V

out

GND

VvCC

Code Overview, Compile and run

Tips: Refer to the operation demo (Step4 to Step7).

100 of 114

Application effect

Running the program, turns on an LED on for one second, then off for one second, repeatedly.

LESSON 24: DHT11

101 of 114

Introduction

This lesson will teach you how to use DHT11 module, which is simple and easy to use.

The DH11 module is a temperature and humidity combined module, it’s affordable and relatively accurate.

It is very useful in multiple 10T projects such as smart home or environment monitoring.
It can be used both indoor and outdoor.

102 of 114

Hardware required

The main component we will use is the DHT11, it can be easy recognisable as its blue top layer.

Material diagram Material Name Number (amount)

DHT11 Module 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
Jumper wires Several

103 of 114

Connection Diagram

The connection is straight forward, our DHT11 sensor have 3 pins: GND, VCC (5V) and data OUT.

Using the data out pin we’ll be able to get the values of the temperature and the humidity. The data pin goes
directly to GP104 pin while the VCC goes to 5V and GND goes to GND.

@
D
]
=]
(==
(]
=]
2
=
[~
c2
@

= >
= 2
(= o.
2 2
@ &

Connection
GND GND
DATA OUT GPIO4

VCC 5V

104 of 114

Code Overview, Compile and run

Within the DH11 script we will use the adafruit DHT library which will allow us to get the data from the sensor. We

will specific that we use sensor 11 as the DHT family have multiple sensors and the one we use is the DHT-11.

In one line of code (line 33) we are going to get both temperature and humidity and print them out if they are not
empty. If they return empty something might be wrong with your connections, make sure you connect the sensor to

the correct pins!

Compile the script by going into the samples directory and running: python3 dhll.py

import sys
import Adafruit_DHT

set type of the sensor
sensor = 11

set pin number

pin = 4

Try to grab a sensor reading. Use the read_retry method which will retry up
to 15 times to get a sensor reading (waiting 2 seconds between each retry).
humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)

Un-comment the line below to convert the temperature to Fahrenheit.
temperature = temperature x 9/5.0 + 32

Note that sometimes you won't get a reading and
the results will be null (because Linux can't
guarantee the timing of calls to read the sensor).
If this happens try again!
if humidity is not None and temperature is not None:
print('Temp={0:0.1f}* Humidity={1:0.1f}%"'.format(temperature, humidity))
else:
print('Failed to get reading. Try again!')

Application effect

The script will get the temperature and the humidity out of the DH11 sensor and will print them to the console.

105 of 114

LESSON 25: LCD1602 WITH IIC

e A A L TR RN T

VIO VO RS HW D [be o De Db DS ST A K

Introduction

This is an experiment on how to use LCD1602 with IIC, the next lesson will do a temperature and humidity
monitoring experiment.

In this lesson we’ll just show “hello world” text on our LCD screen to show a good example how we can use the LCD
to show certain text.

106 of 114

Hardware required

The main component we’ll be using is the LCD1602, we won’t be in need in any resistors here.

Material Name

LCD1602 with IIC

Number (amount)

Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
I R TR T R M Breadboard 1
R e
Jumper wires Several

107 of 114

Connection Diagram

The connections are quite simple, make sure you put the SDA and SCL pin in the correct locations or you won’t be
able to see any data on the LCD display.

We don’t need any resistors here so you can connect it directly to the raspberry pi without any problems.

GND @
GPIDZ5 @

@ SPISCLK

]

Connection
GND GND
VCC 5V
SDA SDA1
SCL SCL1

108 of 114

Code Overview, Compile and run

The code is very simple.

We will initialise the LCD using the Adafruit char lcd library, we will turn the backlight so we can see what we print
on the screen, we will clean the script just in case some text left from before and then we show a message of “hello

world” we wait 5 seconds and repeat it all again, you might see the screen flickering, that’s totally normal.

Compile the script by going into the samples directory and running: python3 lcd.py
#!/usr/bin/python
—x- coding: utf-8 —x—
import sys
import time
import Adafruit_CharLCD as LCD

Define LCD column and row size for 16x2 LCD.
lcd_columns = 16
lcd_rows =2

Initialize the LCD using the pins
lcd = LCD.Adafruit_CharLCDBackpack(address=0x21)

try:
while True:
Turn backlight on
lcd.set_backlight(@)
clean the LCD screen
lcd.clear()
lcd.message('Hello world')
time.sleep(5)

except KeyboardInterrupt:
Turn the screen off
led.clear()
lcd.set_backlight(1)

109 of 114

Application effect

The LCD will show “hello world” message, you can interrupt the script by pressing CTRL+C or CTRL+Z

LESSON 26: TEMPERATURE AND HUMIDITY MONITORING

VIO VO RS HW D [be o De Db DS ST A K

|_‘.":1 JAMERERamERRD BN N

g

oy
or
-
€
T
w» 5
S
(L

Introduction

This is a more complex experiment, it can show the monitoring of indoor temperature and humidity, and in the LCD
above display value.

As we showed “hello world” in our previous lesson we are going to take this lesson one step further and show real
time data from the DHT11 sensor, after completing this lesson you’ll be able to understand how to show any type of
message on the LCD monitor and so accomplish many other projects related to the same module.

110 of 114

Hardware required

To this example we’ve also added the DHT11 module, we’ll need both the DHT11 and the LCD module in order to
accomplish this lesson, make sure to prepare them both.

Material diagram Material Name Number (amount)
DHT11 Module 1
LCD1602 with IIC 1
Raspberry Pi Board 1
T-Cubbler Plus 1
40P GPIO Cable 1
Breadboard 1
Jumper wires Several

111 of 114

Connection Diagram

&3
S
—
L
=_
- -
J—
(- -
(= =
=
-
I
——

¥151dS @
SIS @—. |
ISOKIdS @

B)
unie |
L2049 @y 2
(10149 0_% &

N @

—

YIS

__Jmﬂq.

Connection

Raspberry Pi

DHT11

GND

GPIO4

5V

GND

DATA OUT

VCC

Raspberry Pi

LCD1602

GND

5V

SDA1

SCL1

GND

VvCC

SDA

SCL

112 of 114

Code Overview, Compile and run

Our DHT LCD example is very similar to the previous LCD example except this time we don’t just show “hello world”

message, we’ll get the current temperature and humidity values from our DH11 sensor and then we gonna display

then over the LCD screen.

The temperature going to be displayed in C, if you you want to display it in F, make sure to uncomment the line that

is on line number 28.

Compile the script by going into the samples directory and running: python3 lcd_dht.py

try:

while True:
Turn backlight on
led.set_backlight (@)
get temperature and humidity
humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)
clean the LCD screen
lcd.clear()
Un-comment the line below to convert the temperature to Fahrenheit.
temperature = temperature x 9/5.0 + 32
if humidity is not None and temperature is not None:
lcd.message('Temp={0:0.1f}x Humidity={1:0.1f}%"'.format(temperature, humidity))
else:
print('Failed to get reading, Retrying in 5 seconds!')
wait 5 seconds for the next try
time.sleep(5)

except KeyboardInterrupt:

Turn the screen off
led.clear()
led.set_backlight(1)

113 of 114

Application effect

Running the program will turn on the LCD and show the current room temperature and humidity from the DHT11

sensor.

114 of 114

	IR LED driver installation
	Introduction
	Specification
	Hardware required
	Breadboard Schematic
	Connection Diagram
	Connection
	Code Overview, Code Overview, Compile and run
	Application effect
	Introduction
	Specification
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Code Overview, Compile and run
	Application effect
	Introduction
	Specification
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Specification:
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Specification
	Pin definition
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Pin Definition
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Pin definition
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Pin definition
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Pin Definition
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Pin definition
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Specification
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	IR Pin definition
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect
	Introduction
	Hardware required
	Connection Diagram
	Connection
	Code Overview, Compile and run
	Application effect

