

Contents
Lesson 1: Onboard LED Blinking Light..1

Lesson 2: Breathing Light...5

Lesson 3: Colorful Flowing Light... 7

Lesson 4: RGB Colorful Light.. 8

Lesson 5: Switch Light..10

Lesson 6: Voice-activated Light...12

Lesson 7: Human Body Sensor Light...14

Lesson 8: Smart Corridor Light... 16

Lesson 9: Laser Sight... 18

Lesson 10: Police Car Lights...21

Lesson 11: Anti-theft Alarm...23

Lesson 12: Music Box...25

Lesson: 13 Plant Doctor... 27

Lesson 14: Dimming Desk Light... 29

Lesson 15: Variable Speed Fan..31

Lesson 16: Servo control..33

Lesson 17: Mechanical Arm...35

Lesson 18: Access Card...38

Lesson 19: Electronic Clock...42

Lesson 20: Traffic Light...44

Lesson 21: Electronic Hourglass...46

Lesson 22: Billboard..49

Lesson 23: Mini Weather Station..51

Lesson 24: Flood Warning..54

Lesson 25: Alarm of Fire...56

Lesson 26: Electronic Wall Calendar... 59

Lesson 27: Simple Calculator..62

Lesson28: Dc Reduction Motor...69

Lesson 29: Bumper Cars..74

Lesson 30: Tracking car..77

Lesson 31: Obstacle Avoidance Car.. 80

Lesson 32: Remote Control Car..83

www.elecrow.com1

Raspberry Pi Pico Adavanced Kit

Lesson 1: Onboard LED Blinking Light

1.Introduction to Raspberry Pi Pico
1.1 Introduction

The Raspberry Pi Pico is a low-cost, high-performance microcontroller development board with a

flexible digital interface. In terms of hardware, the RP2040 microcontroller chip, which is officially

independently developed by Raspberry Pi, is equipped with an ARM Cortex M0 + dual-core processor,

with a running frequency of up to 133MHz, built-in 264KB SRAM and 2MB memory, and up to 26

multi-function GPIO pins onboard. In terms of software, you can choose the C/C++ SDK provided by the

Raspberry Pi, or use MicroPython for development, and there are complete development materials and

tutorials, which can be easily developed and embedded in the product.

1.2 Configuration of Pico

① Dual-core Arm Cortex-M0 + @ 133MHz;

② 2 UARTs, 2 SPI controllers and 2 I2C controllers;

③ The chip has built-in 264KB SRAM and 2MB onboard flash memory;

④ 16 PWM channels;

⑤ Support up to 16MB off-chip flash memory through dedicated QSPI bus;

⑥ USB 1.1 host and device support;

⑦ DMA controller;

⑧ 8 Raspberry Pi Programmable I/O (PIO) state machines for custom peripheral support;

⑨ 30 GPIO pins, 4 of which can be used as analog input;

⑩ Support USB mass storage boot mode of UF2 for drag-and-drop programming.

www.elecrow.com2

1.3 Pin Diagram

1.4 Size

www.elecrow.com3

2.Programming environment
2.1 Burn firmware

Enter the official website and follow the instructions to download and burn the firmware:

https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

Operation instructions: Press and hold the BOOTSEL button, insert the USB cable connected to

the Pico into the USB port of the computer, a new U disk folder will pop up on the computer, drag and

drop the “UF2” file just downloaded to the folder, the Raspberry Pi Pico will restart automatically. In this

way, the firmware burning is completed.

2.2 Install programming software
Enter the software official website “https://thonny.org/” to download the software, it is best to

download the latest version, otherwise the Raspberry Pi Pico may not be supported;

Operation instructions: Install Thonny, open Thonny software after installation, open “Tools ->

Settings -> Interpreter”, select MicroPython (Raspberry Pi Pico) interpreter, and select the serial port

number of Raspberry Pi Pico at the serial port (If the board has been connected to the computer, the

software will generally automatically detect the serial port number) and click OK, you can see that the

files in the Raspberry Pi Pico are displayed at the bottom left of the software; if the file tree on the left is

https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

www.elecrow.com4

not displayed, you can check the “view -> file”.

3.Run the program
3.1 Onboard LED Blinking light:

from machine import Pin
import utime
led = Pin(25, Pin.OUT)

if __name__ == '__main__':
while True:

led.value(1)

utime.sleep_ms(100)

led.value(0)

utime.sleep_ms(100)

Operation instructions:Write a program, save the program to my computer, click the button or

press the key F5 to start the program; click the button or press the key "Ctrl+F2" to stop the program.

3.2 Run programs offline

Create a new file, after writing the code, press the key “ctrl+s” to save the file on the Raspberry Pi
Pico and name it “main.py” (must add the suffix “.py”), When the Pico is powered up again, the main.py

program will run automatically.

www.elecrow.com5

Lesson 2: Breathing Light

1.Breadboard:
Breadboard is designed and manufactured for solderless experimentation of electronic circuits.

Since there are many small jacks on the board, various electronic components can be inserted or pulled

out at will, eliminating the need for soldering and saving the assembly time of the circuit, and the

components can be reused, so it is very suitable for the assembly and debugging of electronic circuits.

2.Light emitting diode:
Light emitting diode(short name:LED), is solid-state semiconductor devices that convert electricity

into visible light. The core part of LED is a chip composed of P-type semiconductor and N-type

semiconductor. When the current passes through the chip, the electrons in the N-type semiconductor and

the holes in the P-type semiconductor collide and compound in the luminous layer to produce photons,

and emit energy in the form of photons, namely visible light. Its long pin is positive, short pin is negative,

the current is unidirectional from positive to negative.

3.Project Introduction:
Through PWM pulse width modulation, the LED light is controlled to light up gradually, and then

gradually turn off, so as to form a breathing light effect in a cycle.

www.elecrow.com6

4.Circuit connection:
4.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, LED*1, Dupont line;

4.2 Port connection:
Raspberry Pi Pico LED

GP2 VCC (long pin)

GND GND (short pin)

5.Program analysis: Breathing Light
from machine import Pin, PWM

import utime
led = PWM(Pin(2))

led.freq(1000) # Set the frequency value

led_value = 0 #LED brightness initial value

led_speed = 5 # Change brightness in increments of 5

if __name__ == '__main__':
while True:

led_value += led_speed

led.duty_u16(int(led_value * 500)) # Set the duty cycle, between 0-65535

utime.sleep_ms(100)

if led_value >= 100:
led_value = 100

led_speed = -5

elif led_value <= 0:
led_value = 0

led_speed = 5

www.elecrow.com7

Lesson 3: Colorful Flowing Light

1.Project Introduction:
Through the GP port of the Pico, the 5 LED lights are controlled to light up in turn, and then turn off

in turn to form a Colorful flowing light.

2.Circuit connection:
2.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*2, LED*5, Dupont line;

2.2 Port connection:
Raspberry Pi Pico LED

GP0 Led1_VCC (+)

GP1 Led2_VCC (+)

GP2 Led3_VCC (+)

GP3 Led4_VCC (+)

GP4 Led5_VCC (+)

GND GND (-)

3.Program analysis: Colorful Flowing Light
from machine import Pin
import utime
leds = [Pin(i,Pin.OUT) for i in range(0,5)]

if __name__ == '__main__':
while True:

for n in range(0,5):

leds[n].value(1)

utime.sleep_ms(50)

for n in range(0,5):

leds[n].value(0)

utime.sleep_ms(50)

www.elecrow.com8

Lesson 4: RGB Colorful Light

1.RGB LED:
The R,G, and B in RGB LED stand for red, green, and blue respectively. In theory, you can use

some combination of these three colors to create any color; Through PWM voltage input can adjust the

intensity of the three primary colors (red/green/blue), so as to achieve full color mixing effect.

2.Project Introduction:
Control the three primary colors of the RGB LED to display different brightness randomly, so as to

realize the colorful light effect.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*2, RGB LED*1, Dupont line;

3.2Port connection:
Raspberry Pi Pico RGB LED

GND GND

GP2 R

GP3 G

GP4 B

4.Program analysis: RGB Colorful Light
from machine import Pin,PWM

import utime
import random
Led_R = PWM(Pin(2))

Led_G = PWM(Pin(3))

Led_B = PWM(Pin(4))

www.elecrow.com9

Define the frequency

Led_R.freq(2000)

Led_G.freq(2000)

Led_B.freq(2000)

if __name__ == "__main__":
while True:

range of random numbers

R=random.randint(0,65535)

G=random.randint(0,65535)

B=random.randint(0,65535)

print(R,G,B)

Led_R.duty_u16(R)

Led_G.duty_u16(G)

Led_B.duty_u16(B)

utime.sleep_ms(100)

www.elecrow.com10

Lesson 5: Switch Light

1.Button:
Button, also known as tact switch, is a kind of electronic components. Its internal structure is

connected and disconnected by the force change of metal shrapnel.When in use, press the switch, The

switch is closed and the circuit is turned on. When released, the switch bounces and the circuit is

disconnected.

2.Project Introduction:
The Raspberry Pi Pico detects the level change of the button to determine whether the button was

pressed. Press the button to turn on the LED light for the first time, and press the button to turn off the

LED light again, so as to realize the function of turning on and off the LED light.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*2, Button*1, LED*1, Dupont

line;

3.2 Port connection:
Raspberry Pi Pico Button

GND Pin1(anyone)

GP0 Pin2(another one)

Raspberry Pi Pico LED

GP1 VCC (+)

GND GND (-)

4.Program analysis: Switch Light
from machine import Pin
from utime import sleep_ms
button = Pin(0, Pin.IN, Pin.PULL_UP) #Internal pull-up

led = Pin(1, Pin.OUT)

www.elecrow.com11

State=0 #0 means that the light is currently off

if __name__ == '__main__':
while True:

print(button.value())

if button.value() == 0: #key press

if State==0:
led.value(1)

sleep_ms=100

while button.value() == 0:
State=1

else:
led.value(0)

sleep_ms=100

while button.value()== 0:
State=0

www.elecrow.com12

Lesson 6: Voice-activated Light

1.Sound sensor:
The sound sensor acts like a microphone , which is used to receive sound waves. The sensor has a

built-in condenser electret microphone that is sensitive to sound. Sound waves make the electret film in

the microphone vibrate, resulting in a change in capacitance and a small voltage corresponding to the

change. This voltage is then converted into 0-5V voltage, which is received by the data collector after A/D

conversion and transmitted to the microcontroller.

2.Project Introduction:
Detect the level change of the sound sensor through Raspberry Pi Pico (note: the potentiometer

can adjust its sensitivity), when the sound loudness is greater than the threshold, the sensor is triggered,

and then the RGB LED is controlled to light up, and then automatically turn off after waiting for 3 seconds.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*2, Sound sensor*1, RGB LED

*1, Dupont line;

3.2Port connection:

Raspberry Pi Pico Sound sensor

VSYS +5V

GND GND

GP0 OUT

Raspberry Pi Pico RGB LED

GND GND

GP2 R

GP3 G

GP4 B

www.elecrow.com13

4.Program analysis: Voice-activated Light
from machine import Pin,PWM

from utime import sleep_ms
sound = Pin(0, Pin.IN, Pin.PULL_DOWN) # Port internal pull-down

Led_R = PWM(Pin(2))

Led_G = PWM(Pin(3))

Led_B = PWM(Pin(4))

Led_R.freq(2000)

Led_G.freq(2000)

Led_B.freq(2000)

if __name__ == '__main__':
while True:

print(sound.value())

if sound.value() == 1:
Led_R.duty_u16(65535)

Led_G.duty_u16(65535)

Led_B.duty_u16(65535)

sleep_ms(2000)

else:
Led_R.duty_u16(0)

Led_G.duty_u16(0)

Led_B.duty_u16(0)

www.elecrow.com14

Lesson 7: Human Body Sensor Light

1.PIR sensor:
PIR sensor, also known as pyroelectric infrared sensor, is a sensor that uses infrared light for data

processing.Since the human body has a constant body temperature, generally around 37 degrees, it

emits infrared rays with a specific wavelength of about 10um.The infrared light emitted by the human

body is enhanced by the Philippine filter and then concentrated on the infrared induction source.

2.Project Introduction:
Detect whether someone was present in the sensor detection area through the Raspberry Pi Pico. If

a person is detected, the light will be turned on, and the light will be automatically turned off after a period

of time.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, PIR sensor*1, RGB LED*1,

Dupont line;

3.2 Port connection:
Raspberry Pi Pico PIR Sensor

3V3 +

GND -

GP0 OUT

Raspberry Pi Pico RGB LED

GND GND

GP2 R

GP3 G

GP4 B

www.elecrow.com15

4.Program analysis: Human Body Sensor Light
from machine import Pin,PWM

from utime import sleep
PIR = Pin(0, Pin.IN, Pin.PULL_DOWN)

Led_R = PWM(Pin(2))

Led_G = PWM(Pin(3))

Led_B = PWM(Pin(4))

Led_R.freq(2000)

Led_G.freq(2000)

Led_B.freq(2000)

if __name__ == '__main__':
while True:

print(PIR.value())

if PIR.value() == 1:
Led_R.duty_u16(65535)

Led_G.duty_u16(65535)

Led_B.duty_u16(65535)

sleep(3)

else:
Led_R.duty_u16(0)

Led_G.duty_u16(0)

Led_B.duty_u16(0)

www.elecrow.com16

Lesson 8: Smart Corridor Light

1.Light sensor:
The Light sensor is a sensor that uses a Light element to convert a light signal into an electrical

signal. Its sensitive wavelength is near the wavelength of visible light, including infrared wavelengths and

ultraviolet wavelengths. The light sensor is not only limited to the detection of light, it can also be used as

a detection element to form other sensors to detect many non-electrical quantities, as long as these

non-electrical quantities are converted into changes in optical signals.

2.Project Introduction:
According to the analog value fed back by the photosensitive sensor, it is judged whether it is day or

night. When it is night, the PIR sensor is used to detect whether someone passes by, and if a human

body is detected, the light is turned on, otherwise the light is turned off to achieve the effect of

energy-saving lamps.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*2, Light sensor*1, PIR

Sensor*1, RGB LED*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico Light sensor

3V3 +

GND -

GP26(ADC0) S

Raspberry Pi Pico PIR Sensor

3V3 +

GND -

GP1 OUT

www.elecrow.com17

Raspberry Pi Pico RGB LED

GND GND (-)

GP2 R

GP3 G

GP4 B

4.Program analysis: Smart Corridor Light
from machine import Pin,PWM，ADC

light_sensor_pin = 0 # ADC0 multiplexing pin is GP26

PIR_pin = 1

Led_R_pin = 2

Led_G_Pin = 3

Led_B_pin = 4

def setup():
global light_sensor_ADC
global PIR
global Led_R
global Led_G
global Led_B
light_sensor_ADC = ADC(light_sensor_pin)

PIR = Pin(PIR_pin, Pin.IN, Pin.PULL_DOWN)

Led_R = PWM(Pin(Led_R_pin))

Led_G = PWM(Pin(Led_G_Pin))

Led_B = PWM(Pin(Led_B_pin))

Led_R.freq(2000)

Led_G.freq(2000)

Led_B.freq(2000)

def loop():
while True:

print ('light_sensor Value: ', light_sensor_ADC.read_u16())

Print ('PIR Value: ',PIR.value())

if PIR.value() == 1 and light_sensor_ADC.read_u16() > 35000:

Led_R.duty_u16(65535)

Led_G.duty_u16(65535)

Led_B.duty_u16(65535)

else:
Led_R.duty_u16(0)

Led_G.duty_u16(0)

Led_B.duty_u16(0)

if __name__ == '__main__':
setup()

loop()

www.elecrow.com18

Lesson 9: Laser Sight

1.Red laser emitter:
A red laser emitter is a device capable of emitting laser light, which has the characteristics of high

directivity, high monochromaticity and high brightness. It consists of a 650nm red laser diode head and a

resistor. When powered up, it emits laser pulses.

2.Project Introduction:
Start the program, RGB LED initially displays green, use the red laser emitter to aim at the Light

sensor and start timing, when it locks on the target (Light sensor), the RGB flashes red and blue, and

stops timing.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Red laser emitter*1, Light

sensor*1, RGB LED*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico Light sensor

3V3 VCC (+)

GND GND (-)

GP26(ADC0) S

Raspberry Pi Pico RGB LED

GND GND

GP11 R

GP12 G

GP13 B

www.elecrow.com19

Raspberry Pi Pico Red laser emitter

GND GND (-)

3V3 VCC (+)

GP15 S

4.Program analysis: Laser Sight
from machine import Pin,ADC,PWM

from time import sleep
photo = 0 # ADC0 multiplexing pin is GP26

LaserPin = 15 #Red laser transmitter

Led_R = PWM(Pin(11))

Led_G = PWM(Pin(12))

Led_B = PWM(Pin(13))

Led_R.freq(2000)

Led_G.freq(2000)

Led_B.freq(2000)

def setup():
global Laser
global photo_ADC
photo_ADC = ADC(photo)

Laser = Pin(LaserPin,machine.Pin.OUT)

Laser.value(0)

def loop():
aim_time = 0

while True:
Laser.value(1)

Led_R.duty_u16(0)

Led_G.duty_u16(65535)

Led_B.duty_u16(0)

print("time：",aim_time)

sleep(0.1)

aim_time += 0.1

if photo_ADC.read_u16() < 15000: # Hit by a red laser, the light flashes

print("Aimed:",aim_time)

aim_time = 0

for i in range(10):

Led_R.duty_u16(65535) # red light

Led_G.duty_u16(0)

Led_B.duty_u16(0)

sleep(0.1)

Led_R.duty_u16(0) # blue light

www.elecrow.com20

Led_G.duty_u16(0)

Led_B.duty_u16(65535)

sleep(0.1)

sleep(2)
if __name__ == '__main__':

setup()

loop()

www.elecrow.com21

Lesson 10: Police Car Lights

1.Passive buzzer:
The passive buzzer uses the phenomenon of electromagnetic induction to attract or repel the

electromagnet and the permanent magnet formed after the voice coil is connected to the alternating

current to push the diaphragm to sound.When DC power is connected, the diaphragm can only be

pushed continuously without sound, and sound can only be generated when it is connected or

disconnected.

2.Project Introduction:
Through the buzzer and RGB LED lights alternately beeping and flashing to achieve the effect of

police car lights.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Buzzer*1, RGB LED*1,

Dupont line;

3.2 Port connection:
Raspberry Pi Pico Buzzer

GP12 VCC (+)

GND GND (-)

Raspberry Pi Pico RGB LED

GND GND

GP4 R

GP3 G

GP2 B

www.elecrow.com22

4.Program analysis: Police Car Lights
import utime
from machine import Pin,PWM

Led_R = PWM(Pin(4))

Led_G = PWM(Pin(3))

Led_B = PWM(Pin(2))

buzzer = PWM(Pin(12))

Led_R.freq(2000)

Led_G.freq(2000)

Led_B.freq(2000)

buzzer.duty_u16(1000)

if __name__ == '__main__':
while True:

buzzer.freq(750)

Led_R.duty_u16(0)

Led_G.duty_u16(0)

Led_B.duty_u16(65535)

utime.sleep_ms(230)

buzzer.freq(1550)

Led_R.duty_u16(65535)

Led_G.duty_u16(0)

Led_B.duty_u16(0)

utime.sleep_ms(100)

www.elecrow.com23

Lesson 11: Anti-theft Alarm

1.Vibration sensor:
A vibration sensor, also called a vibration switch, is a commonly used alarm detection sensor.The

switch is in the open-circuit OFF state when it is at rest. When it is touched by an external force and

reaches the corresponding vibration, the conductive pin will generate instantaneous conduction and

become an instantaneous ON state. When the external force disappears, the open-circuit OFF state will

be restored.

2.Project Introduction:
The level signal of the vibration sensor is detected by the Raspberry Pi Pico, and when vibration is

detected, the buzzer is controlled to sound to achieve the effect of an anti-theft alarm.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Vibration sensor*1,

Buzzer*1, Dupont line;

3.2 port connection:
Raspberry Pi Pico Buzzer

GP14 VCC (+)

GND GND (-)

Raspberry Pi Pico Vibration sensor

GND GND (-)

VCC VCC (+)

GP0 S

www.elecrow.com24

4.Program analysis: Anti-theft Alarm
from machine import Pin,PWM

import utime
vibrate = Pin(0, Pin.IN, Pin.PULL_UP)

buzzer = PWM(Pin(14))

def playtone(frequency): # Buzzer play function

buzzer.duty_u16(1000)

buzzer.freq(frequency)

def bequiet(): # stop play function

buzzer.duty_u16(0)

if __name__ == '__main__':
while True:

If vibrate.value() == 0:
for i in range(10) :

playtone(555)

utime.sleep_ms(50)

bequiet()

utime.sleep_ms(50)

bequiet()

www.elecrow.com25

Lesson 12: Music Box

1.Reed switch:
Reed Switch is a special magnetically sensitive switch. Inside the reed switch, there are two

magnetizable reeds overlapped at the ends, sealed in a glass tube, and the distance between the two

reeds is only about a few microns. The glass tube is filled with high-purity inert gas. During operation, the

two reeds are not in contact, and the external magnetic field causes different polarities near the end

positions of the two reeds, and as a result, the two reeds with different polarities will attract and close

each other.

2.Project Introduction:
Place the small magnet close to the reed switch, and then trigger the buzzer to play music by

detecting the level signal change of the reed switch to achieve the effect of a music box.

3.circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Buzzer*1, Reed Switch*1,

magnet*1, Dupont line;

3.2 Circuit connection:
Raspberry Pi Pico Buzzer

GP14 +

GND -

Raspberry Pi Pico Reed Switch

GND GND (-)

VCC VCC (+)

GP0 S

www.elecrow.com26

4.Program analysis: Music Box
from machine import Pin,PWM

import utime

Reed_switch = Pin(0, Pin.IN, Pin.PULL_UP)

buzzer = PWM(Pin(14))

Tone_CL = [0, 131, 147, 165, 175, 196, 211, 248] # low C note frequency

Tone_CM = [0, 262, 294, 330, 350, 393, 441, 495] # middle C note frequency

Tone_CH = [0, 525, 589, 661, 700, 786, 882, 990] # high C note frequency

sheet music

song_1 = [Tone_CM[3], Tone_CM[5], Tone_CM[6], Tone_CM[3],

Tone_CM[2], Tone_CM[3], Tone_CM[5], Tone_CM[6],

Tone_CH[1], Tone_CM[6], Tone_CM[5], Tone_CM[1],

Tone_CM[3], Tone_CM[2], Tone_CM[2], Tone_CM[3],

Tone_CM[5], Tone_CM[2], Tone_CM[3], Tone_CM[3],

Tone_CL[6], Tone_CL[6], Tone_CL[6], Tone_CM[1],

Tone_CM[2], Tone_CM[3], Tone_CM[2], Tone_CL[7],

Tone_CL[6], Tone_CM[1], Tone_CL[5]]

The beat of the song

beat_1 = [1, 1, 3, 1, 1, 3, 1, 1,

1, 1, 1, 1, 1, 1, 3, 1,

1, 3, 1, 1, 1, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 3]

Buzzer play function

def playtone(frequency):
buzzer.duty_u16(1000)

buzzer.freq(frequency)

Stop play function

def bequiet():
buzzer.duty_u16(0)

if __name__ == '__main__':
while True:

if Reed_switch.value() == 0:
for i in range(1, len(song_1)): # play song

playtone(song_1[i]) # Set the frequency of the song notes

sleep(beat_1[i] * 0.5) # Delay a note by one beat * 0.5 seconds

sleep(1)

bequiet()

www.elecrow.com27

Lesson: 13 Plant Doctor

1.Soil Moisture Sensor:
The soil moisture sensor can be inserted into the soil to measure the relative soil moisture content,

which is commonly used in soil moisture monitoring, agricultural irrigation and forestry protection. This

capacitive soil moisture sensor is different from most resistive sensors on the market, avoiding the

problem that resistive sensors are easily corroded and greatly extending its working life.

2.Project Introduction:
Real-time detection of soil humidity. Under normal soil humidity, the green light lights up and the

buzzer does not sound; when the soil humidity is too low, the red light lights up and the buzzer sounds.

3.Circuit connection:
3.1 Material preparation：Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Soil Moisture Sensor*1,

Buzzer*1, RGB LED*1, Dupont Line;

3.2 Port connection：

Raspberry Pi Pico Soil Moisture Sensor

3V3 VCC

GND GND

GP26 AUOT

Raspberry Pi Pico Buzzer

GND -

GP14 +

Raspberry Pi Pico RGB LED

GP11 R

GP12 G

GP13 B

GND GND

www.elecrow.com28

4.Program analysis: Plant Doctor
from machine import Pin,ADC,PWM

from time import sleep
import math

Soil_moisture_pin = 0 # ADC0 multiplexing pin is GP26

buzzer = PWM(Pin(14))

Led_R = PWM(Pin(11))

Led_G = PWM(Pin(12))

Led_B = PWM(Pin(13))

Led_R.freq(2000)

Led_G.freq(2000)

Led_B.freq(2000)

def setup():
global Moisture

Moisture = ADC(Soil_moisture_pin)

def playtone(frequency):
buzzer.duty_u16(1000)

buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

Information about the Soil Moisture Sensor

def Print(x):
if x > 20000: # soil water shortage

playtone(330)

Led_R.duty_u16(65535)

Led_G.duty_u16(0)

Led_B.duty_u16(0)

If 15000 < x and x < 20000: # proper soil moisture

bequiet()

Led_R.duty_u16(0)

Led_G.duty_u16(65535)

Led_B.duty_u16(0)

def loop():
while True:

Moist = Moisture.read_u16()

print ('temperature = ', Moist)

Print(Moist)

sleep(0.2)

if __name__ == '__main__':
setup()

loop()

www.elecrow.com29

Lesson 14: Dimming Desk Light

1.Potentiometer:
A potentiometer is a resistive element with three terminals whose resistance can be adjusted

according to a certain changing law. A potentiometer usually consists of a resistive body and a movable

brush. When the brush moves along the resistor body, the resistance value or voltage that has a certain

relationship with the displacement is obtained at the output end.

Potentiometers can be used as both three-terminal components and two-terminal components. The

latter can be regarded as a variable resistor, because its function in the circuit is to obtain an output

voltage that has a certain relationship with the input voltage (applied voltage), so it is called a

potentiometer.

2.Project Introduction:
Rotate the potentiometer to control the brightness of the lamp to achieve the effect of dimming the

desk lamp.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Potentiometer*1, LED*1,

Dupont line;

3.2 Port connection：

Raspberry Pi Pico Potentiometer

VSYS VCC

GND GND

GP26 OUT

Raspberry Pi Pico LED

GND GND (-)

GP15 VCC (+)

www.elecrow.com30

4.Program analysis: Dimming Desk Light
from machine import Pin,ADC,PWM

from time import sleep

Led_pin = 15

Potentiometer_pin = 0 # ADC0 multiplexing pin is GP26

def setup():
global LED
global Pot_ADC
LED = PWM(Pin(Led_pin))

LED.freq(2000) #Set the LED operating frequency to 2KHz

Pot_ADC = ADC(Potentiometer_pin)

def loop():
while True:

print ('Potentiometer Value:', Pot_ADC.read_u16())

Value = Pot_ADC.read_u16()

LED.duty_u16(Value)

sleep(0.2)

if __name__ == '__main__':
setup()

loop()

javascript:;
javascript:;
javascript:;

www.elecrow.com31

Lesson 15: Variable Speed Fan

1. Motor Drive Module:
The motor drive module is mainly controlled by the L9110S chip. The L9110S is a two-channel

push-pull power amplifier ASIC designed for controlling and driving motors. The two output ends of the

drive module can directly drive the forward and reverse motion of the motor. It has a large current drive

capability. Each channel can pass a continuous current of 800mA, and the peak current capability can

reach 1.5A. L9110S is widely used in toy car motor drive, pulse solenoid valve drive, stepper motor drive

and switching power tubes and other circuits.

2.Project Introduction:
Rotate the potentiometer to control the motor driver to output different voltages to achieve the effect

of speed regulation fan.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Potentiometer*1, L9110S

motor drive module*1, Motor*1, Fan blade*1, Dupont line.

3.2 Port connection:
Raspberry Pi Pico Potentiometer

3V3 VCC

GND GND

GP26 OUT

www.elecrow.com32

Raspberry Pi Pico motor drive module

GND GND

3V3 VCC

GP15 A-1A

GND A-1B

Motor drive module Motor

MOTOR A GND (-)

A VCC (+)

4.Program analysis: Variable Speed Fan
from machine import Pin,ADC,PWM

from time import sleep

A_1A_pin = 15 # Motor drive module

Pot_pin = 0 # ADC0 multiplexing pin is GP26

def setup():
global A_1A
global pot_ADC

A_1A = PWM(Pin(A_1A_pin))

A_1A.freq(1000) #Set the driver operating frequency to 1K

pot_ADC = ADC(Pot_pin)

def loop():
while True:

print ('Potentiometer Value:', pot_ADC.read_u16())

Value = pot_ADC.read_u16()

A_1A.duty_u16(Value) # control fan speed

sleep(0.2)

if __name__ == '__main__':
setup()

loop()

www.elecrow.com33

Lesson 16: Servo control

1.Servo:
The 9g small servo is a position (angle) servo driver, suitable for those control systems that require

the angle to change continuously and can be maintained. Common in model aircraft, aircraft models,

remote control robots and mechanical parts. In use, the accessories of the servo usually include a

bracket that can fix the servo to the base and a rudder plate that can be sleeved on the drive shaft.

Through the holes on the rudder plate, other objects can be connected to form a transmission model.

2.Project Introduction:
Control the servo to rotate back and forth through the Pico.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Servo*1, Dupont line;

3.2 port connection:
Raspberry Pi Pico Servo

GP0 S(yellow)

3V3 VCC (red)

GND GND(brown)

4.Library file installation:
When using the servo, need to upload the "servo.py" library file first.The operation steps are as

follows:

Step1: Connect the Pico to Thonny with a USB cable;

Step2: Find the "servo.py" library in the file window;
Step3: Right-click and select "Upload to / " to start uploading the library file;
Step4: "servo.py" appears at bottom left, indicating that the upload is successful, and you can start

running the program.

www.elecrow.com34

5.Program analysis: Servo control
import utime
from servo import Servo

s1 = Servo(0) # Servo pin is connected to GP0

def servo_Map(x, in_min, in_max, out_min, out_max):
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def servo_Angle(angle):
if angle < 0:

angle = 0

if angle > 180:
angle = 180

s1.goto(round(servo_Map(angle,0,180,0,1024))) # Convert range value to angle value

if __name__ == '__main__':
while True:

print("Turn left ...")

for i in range(0,180,10):

servo_Angle(i)

utime.sleep(0.05)

print("Turn right ...")

for i in range(180,0,-10):

servo_Angle(i)

utime.sleep(0.05)

www.elecrow.com35

Lesson 17: Mechanical Arm

1.PS2 Joystick:
The PS2 joystick module is also called a dual-axis button rocker. It is mainly composed of two

potentiometers and a button switch. The two potentiometers output the corresponding voltage values on

the X and Y axes respectively with the twist angle of the rocker. Pressing the joystick in the Z-axis

direction can trigger the touch button. Under the action of the supporting mechanical structure, in the

initial state of the rocker without external force twisting, the two potentiometers are in the middle of the

range.

Joysticks are generally widely used in drones, video games, remote control cars, PTZs and other

devices in model aircraft. Many devices with screens also often use joysticks as input controls for menu

selection.

2.Project Introduction:
By turning the PS2 joystick left (right), the servo is controlled to rotate clockwise (counterclockwise) ,

simulate the rotation effect of the mechanical arm.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB data cable*1, Breadboard*2, PS2 Joystick*1,

Servo*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico PS2 Joystick

GND GND

VSYS +5V

GP26(ADC0) VRX

GP27(ADC1) VRY

GP28 SW

www.elecrow.com36

Raspberry Pi Pico Servo

GP0 S(yellow)

3V3 VCC(red)

GND GND(brown)

4.Library file installation:
Upload the “servo.py” library file to the Raspberry Pi Pico. For the specific operation steps, please

refer to Lesson 16.

5.Program analysis: Mechanical Arm
from machine import Pin,ADC
from time import sleep
from servo import Servo

s1 = Servo(0)

VRX = ADC(0) # ADC0 multiplexing pin is GP26

VRY = ADC(1) # ADC1 multiplexing pin is GP27

SW = Pin(28, Pin.IN, Pin.PULL_UP)

def Map(x, in_min, in_max, out_min, out_max):
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def servo_Angle(angle):
s1.goto(round(Map(angle,0,180,0,1024))) # Convert range value to angle value

def direction():
global i
i = 0

adc_X = round(Map(VRX.read_u16(),0,65535,0,255))

adc_Y = round(Map(VRY.read_u16(),0,65535,0,255))

Switch = SW.value()

if adc_X <= 30:

i = 1 # Define up direction

elif adc_X >= 255:

i = 2 # Define down direction

elif adc_Y >= 255:

i = 3 # Define left direction

elif adc_Y <= 30:

i = 4 # Define right direction

elif Switch == 0: # and adc_Y ==128:

i = 5 # Define Button pressed

elif adc_X - 125 < 15 and adc_X - 125 > -15 and adc_Y -125 < 15 and adc_Y -125 > -15 and
adc_SW == 255:

i = 0 # Define home location

www.elecrow.com37

def loop():
num = 90

while True:
direction() # Call the direction judgment function

servo_Angle(num)

sleep(0.01)

if i == 1:
num = 0

if i == 2:
num = 180

if i == 3:
num = num - 1

if num < 0:

num = 0

if i == 4:
num = num + 1

if num > 180:

num = 180

if i==5:
num = 90

if __name__ == '__main__':
loop() # call the loop function

www.elecrow.com38

Lesson 18: Access Card

1.MFRC522 RFID module:
RFID (Radio Frequency Identification), also known as radio frequency identification, is a

communication technology that can identify specific targets and read and write related data through radio

signals without the need to establish mechanical or optical contact between the identification system and

specific targets.

MFRC522 is a high-integration card reader chip used in 13.56MHz contactless communication. It is

a low-voltage, low-cost, small-volume contactless card reader chip. This module uses MFRC522 original

chip to design the card reading circuit, which is easy to use and low in cost. It is suitable for equipment

development, card reader development or users who need to design/produce radio frequency card

terminals.

2.Project Introduction:
The data (password) is bound to the RFID card through the "Data Write" program, and then the

"Data Read" program is used to verify whether the data in the RFID card matches, and then the rotation

of the steering gear is controlled to simulate the effect of the access control card opening the door.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*2, RFID module*1, RFID

tag*2, Servo*1, Dupont line;

3.2 Port connection:

www.elecrow.com39

Raspberry Pi Pico MFRC522 RFID module

GND GND

3V3 3.3V

GP5 SDA

GP6 SCK

GP7 MOSI

GP4 MISO

-- IRQ

GPIO22 RST

Raspberry Pi Pico Servo

GP0 S(yellow)

3V3 VCC(red)

GND GND(brown)

4.Library file installation:
Upload the “servo.py” and “mfrc522.py” library files to the Raspberry Pi Pico. For the specific

operation steps, please refer to Lesson 16.

5.Program analysis:
① Date Write

import mfrc522
from machine import Pin

sck = 6

mosi = 7

miso = 4

cs = 5 #SDA pin

rst = 22

def do_write():
rdr = mfrc522.MFRC522(sck=sck, mosi=mosi, miso=miso, rst=rst, cs=cs)

print("")

print("Place card before reader to write address 0x08")

print("")

try:
while True:

(stat, tag_type) = rdr.request(rdr.REQIDL)

if stat == rdr.OK:
(stat, raw_uid) = rdr.anticoll()

if stat == rdr.OK:
print("New card detected")

print(" - tag type: 0x%02x" % tag_type)

print(" - uid : 0x%02x%02x%02x%02x" % (raw_uid[0], raw_uid[1],

raw_uid[2], raw_uid[3]))

www.elecrow.com40

print("")

if rdr.select_tag(raw_uid) == rdr.OK:
key = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]

if rdr.auth(rdr.AUTHENT1A, 8, key, raw_uid) == rdr.OK:
stat = rdr.write(8, b"\ x00 \x01 \x02 \x03 \x04 \x05 \x06 \x07 \x08

\x09 \x0a \x0b \x0c \x0d \x0e \x0f")

rdr.stop_crypto1()

if stat == rdr.OK:
print("Data written to card")

else:
print("Failed to write data to card")

else:
print("Authentication error")

else:
print("Failed to select tag")

except KeyboardInterrupt:
print("Bye")

if __name__ == '__main__':
do_write() # write [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

② Date Read
import mfrc522
from machine import Pin
from servo import Servo
import utime

s1 = Servo(0)

sck = 6

mosi = 7

miso = 4

cs = 5 #SDA pin

rst = 22

def servo_Angle(angle):
if angle < 0:

angle = 0

if angle > 180:
angle = 180

s1.goto(round(angle * 1024 / 180))

def do_read():
rdr = mfrc522.MFRC522(sck=sck, mosi=mosi, miso=miso, rst=rst, cs=cs)

print("")

www.elecrow.com41

print("Place card before reader to read from address 0x08")

print("")

try:
while True:

num = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] //Access code

(stat, tag_type) = rdr.request(rdr.REQIDL)

if stat == rdr.OK:
(stat, raw_uid) = rdr.anticoll()

if stat == rdr.OK:
print("New card detected")

print(" - tag type: 0x%02x" % tag_type)

print(" - uid : 0x%02x%02x%02x%02x" % (raw_uid[0], raw_uid[1],

raw_uid[2], raw_uid[3]))

print("")

if rdr.select_tag(raw_uid) == rdr.OK:
key = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]

if rdr.auth(rdr.AUTHENT1A, 8, key, raw_uid) == rdr.OK:
if rdr.read(8) == num:

for i in range(0,180,10):

servo_Angle(i)

utime.sleep(0.05)

utime.sleep(1)

for i in range(180,0,-10):

servo_Angle(i)

utime.sleep(0.05)

else:
servo_Angle(0)

rdr.stop_crypto1()

else:
print("Authentication error")

else:
print("Failed to select tag")

except KeyboardInterrupt:
print("Bye")

if __name__ == '__main__':
do_read() # Read success, return [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

www.elecrow.com42

Lesson 19: Electronic Clock

1.TM1637 4-Bits Digital Tube:
TM1637 is a special circuit for LED drive control with keyboard scan interface, which integrates MCU

digital interface, data latch, LED high voltage drive, keyboard scan and other circuits.The TM1637

module has four pins. Compared with 10 pins using a four-digit digital tube, using the TM1637 module

can greatly save the number of pins.

2.Project Introduction:
The hour and minute data of the clock are displayed through the TM1637 4-Bits digital tube, and the

clock point is controlled to flash circularly to make an electronic clock.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, usb cable*1, Breadboard*2, TM1637 4-Bits digital

Tube*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico TM1637 4-Bits Digital Tube

VSYS VCC

GND GND

GP1 DIO

GP0 CLK

4.Library file installation:
Upload the "tm1637.py" library file to the Raspberry Pi Pico. For the specific operation steps, please

refer to Lesson 16.

www.elecrow.com43

5.Program analysis: Electronic Clock
import tm1637
from machine import Pin
from utime import sleep
tm = tm1637.TM1637(clk=Pin(0), dio=Pin(1))

Sec = 55 //second

Min = 58 //minute

Hour = 23 //Hour

if __name__ == '__main__':
while True:

tm.numbers(Hour,Min,colon=True)
sleep(0.5)

tm.numbers(Hour,Min,colon=False)
sleep(0.5)

Sec = Sec + 1

if Sec == 60:
Min = Min + 1

Sec = 0

if Min == 60:
Hour = Hour + 1

Min = 0

if Hour == 24:
Hour = 0

www.elecrow.com44

Lesson 20: Traffic Light

1.Traffic Light Module:
The traffic light module is to encapsulate the LED lights of three colors of red, yellow and green into

one module, and share the cathode (GND) for control.

2.Project Introduction:
Control the red light to turn on, the red light goes off after the 4-Bits digital tube counts down for 30

seconds; then the yellow light flashes 5 times with a time interval of 0.3 seconds; finally the green light

turns on for 10 seconds and then turns off, reciprocating, simulating the effect of traffic lights.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Traffic Light Module*1,

TM1637 4-Bits Digital Tube, Dupont Line;

3.2 Port connection：

Raspberry Pi Pico Traffic Light Module

GND GND

GP0 R

GP1 Y

GP2 B

Raspberry Pi Pico TM1637 4-Bits Digital Tube

3V3 VCC

GND GND

GP4 DIO

GP5 CLK

4.Library file installation:
Upload the "tm1637.py" library file to the R aspberry Pi Pico. For the specific operation steps,

www.elecrow.com45

please refer to Lesson 16.

5.Program analysis: Traffic Light
from machine import Pin
from time import sleep
import tm1637

tm = tm1637.TM1637(clk=Pin(4), dio=Pin(5))

Led_R = Pin(0, Pin.OUT)

Led_Y = Pin(1, Pin.OUT)

Led_G = Pin(2, Pin.OUT)

if __name__ == '__main__':
while True:

num = 30

Led_R.value(1)

for i in range(30):

num=num-1

tm.number(num)

sleep(1)

Led_R.value(0)

for i in range(5):

Led_Y.value(1)

sleep(0.3)

Led_Y.value(0)

sleep(0.3)

Led_G.value(1)

sleep(10)

Led_G.value(0)

www.elecrow.com46

Lesson 21: Electronic Hourglass

1.Encoder:
The encoder can rotate and measure the number of pulses output when it rotates in the forward or

reverse direction. Unlike the potentiometer, the rotation count is unlimited. With the buttons on the rotary

encoder, it can be reset to the initial state. Which is to count from 0.

2.Project Introduction:
Turn the encoder to set the time, and it will be displayed on the TM1637 4-Bits digital tube in real

time. Press the button and the electronic hourglass starts working.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB Cable*1, Breadboard*1, Encoder*1, TM1637 4-Bits

Digital Tube*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico TM1637 4-Bits Digital Tube

3V3 VCC

GND GND

GP4 DIO

GP5 CLK

Raspberry Pi Pico Encoder

3V3 +

GND GND

GP2 SW

GP1 DT

GP0 CLK

www.elecrow.com47

4.Library file installation:
Upload the "tm1637.py" library file to the Raspberry Pi Pico. For the specific operation steps, please

refer to Lesson 16.

5.Program analysis: Electronic Hourglass
from machine import Pin
from time import sleep
import tm1637

tm = tm1637.TM1637(clk=Pin(4), dio=Pin(5))

RoA_Pin = 0 # CLK

RoB_Pin = 1 # DT

Btn_Pin = 2 # SW

globalCounter = 0 # counter value

flag = 0 # Whether the rotation flag occurs

Last_RoB_Status = 0 # DT state

Current_RoB_Status = 0 # CLK state

def setup():
global clk_RoA
global dt_RoB
global sw_BtN

clk_RoA = Pin(RoA_Pin,Pin.IN)

dt_RoB = Pin(RoB_Pin,Pin.IN)

sw_BtN = Pin(Btn_Pin,Pin.IN, Pin.PULL_UP)

Initialize the interrupt function, when the SW pin is 0, the interrupt is enabled

sw_BtN.irq(trigger=Pin.IRQ_FALLING,handler=btnISR)

Rotation code direction bit judgment function

def rotaryDeal():
global flag
global Last_RoB_Status
global Current_RoB_Status
global globalCounter

Last_RoB_Status = dt_RoB.value()

Judging the level change of the CLK pin to distinguish the direction

while(not clk_RoA.value()):
Current_RoB_Status = dt_RoB.value()

flag = 1 # Rotation mark occurs

if flag == 1: # The flag bit is 1 and a rotation has occurred

flag = 0 # Reset flag bit

www.elecrow.com48

if (Last_RoB_Status == 0) and (Current_RoB_Status == 1):

globalCounter = globalCounter + 1 # counterclockwise, positive

if (Last_RoB_Status == 1) and (Current_RoB_Status == 0):

globalCounter = globalCounter - 1 # Clockwise, negative

Interrupt function, when the SW pin is 0, the interrupt is enabled

def btnISR(chn):
global globalCounter
globalCounter = 0

print ('globalCounter = %d' %globalCounter)

while True:
Define a counter that changes every 1 second

tm.number(globalCounter)

globalCounter = globalCounter - 1

sleep(1)

if globalCounter == 0:
break

def loop():
global globalCounter
tmp = 0

while True:
rotaryDeal()

if etmp != globalCounter:
print ('globalCounter = %d' % globalCounter)

tmp = globalCounter

tm.number(globalCounter)

if __name__ == '__main__':
setup()

loop()

www.elecrow.com49

Lesson 22: Billboard

1.LCD1602:
LCD1602, or 1602 character-type liquid crystal display, is a kind of dot matrix module to show letters,

numbers, and characters and so on. It's composed of 5x7 dot matrix positions; each position can display

one character. The model 1602 means it displays 2 lines of 16 characters. The principle of LCD1602

liquid crystal display is to use the physical properties of liquid crystal to control its display area through

voltage, and then display characters. (Note: The potentiometer on the back can adjust the clarity of the

display)

2.Project Introduction:
The first line of LCD1602 scrolls from right to left to display the string of "Hello Pico", simulating the

effect of billboard scrolling.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB able*1, Breadboard*1, LCD1602*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico LCD1602

GP0 SDA

GP1 SCL

VSYS VCC (+)

GND GND (-)

4.Library file installation:
Upload the “lcd_api.py” and “i2c_lcd.py” library file to the Raspberry Pi Pico. For the specific

operation steps, please refer to Lesson 16.

www.elecrow.com50

5.Program analysis: Billboard
from machine import I2C, Pin
from i2c_lcd import I2cLcd
from utime import sleep

DEFAULT_I2C_ADDR = 0x3F # LCD 1602 I2C address

i2c = I2C(0,sda=Pin(0),scl=Pin(1),freq=400000)

lcd = I2cLcd(i2c, DEFAULT_I2C_ADDR, 2, 26) # Initialize(device address, cursor settings)

text = ' Hello Pico' # Show scrolling information

if __name__ == '__main__':
while True:

tmp = text # Get the display information

for i in range(0, len(text)):

lcd.move_to(len(text),1) # Position cursor

lcd.putstr(tmp) # Display one by one

tmp = tmp[1:]

sleep(0.8)

lcd.clear() # Clear display

www.elecrow.com51

Lesson 23: Mini Weather Station

1.DHT11 Temperature & Humidity Sensor:
DHT11 Temperature & Humidity sensor is a temperature and humidity composite sensor with

calibrated digital signal output, it includes a resistive humidity sensing element and an NTC temperature

measuring element, and is connected with a high-performance 8-bit microcontroller.

Its application-specific digital module acquisition technology and temperature and humidity sensing

technology ensure that the product has extremely high reliability and excellent long-term stability.

2.Project Introduction:
The ambient temperature value and humidity value are monitored in real time through the DHT11

Temperature & Humidity sensor, and displayed on the LCD1602 module synchronously. When the

temperature is too high or the humidity is too low, it will trigger the LED light to turn on and off to remind.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, DHT11 Temperature &

Humidity sensor*1, LCD1602*1, LED(R)*1, LED(G)*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico DHT11 Temperature & Humidity sensor

VSYS +

GND -

GP2 out

Raspberry Pi Pico LCD1602

GP0 SDA

GP1 SCL

VSYS VCC (+)

GND GND (-)

www.elecrow.com52

Raspberry Pi Pico LED(R)

GND - (short)

GP4 + (long)

Raspberry Pi Pico LED(G)

GND - (short)

GP5 + (long)

4.Library file installation:
Upload the “lcd_api.py”, “i2c_lcd.py” and “dht.py” library file to the Raspberry Pi Pico. For the

specific operation steps, please refer to Lesson 16.

5.Program analysis: Mini Weather Station
from machine import I2C, Pin
from i2c_lcd import I2cLcd
from utime import sleep
from dht import DHT11, InvalidChecksum

DEFAULT_I2C_ADDR = 0x3F # LCD 1602 I2C address

led_red = Pin(4,Pin.OUT)

led_green = Pin(5,Pin.OUT)

pin = Pin(2, Pin.OUT, Pin.PULL_DOWN)

dht11 = DHT11(pin)

def setup():
global lcd
i2c = I2C(0,sda=Pin(0),scl=Pin(1),freq=400000)

lcd = I2cLcd(i2c, DEFAULT_I2C_ADDR, 2, 16) # Initialize(device address, cursor settings)

def loop():
try:

while True:
lcd.move_to(0,0)

lcd.putstr("Temp: {}".format(dht11.temperature))

lcd.move_to(0,1)

lcd.putstr("Humi: {}".format(dht11.humidity))

if dht11.temperature > 35 or dht11.humidity < 10:
led_red.value(1)

led_green.value(0)

sleep(0.5)

led_red.value(0)

sleep(0.5)

else:

www.elecrow.com53

led_red.value(0)

led_green.value(1)

sleep(1)

lcd.clear()

except InvalidChecksum:
print("Checksum from the sensor was invalid")

if __name__ == '__main__':
setup()

loop()

www.elecrow.com54

Lesson 24: Flood Warning

1.Raindrop sensor:
Raindrop sensor is a kind of sensing device, which is mainly used to detect whether it rains and the

amount of rain, and is widely used in automobile automatic wiper system, intelligent lighting system and

intelligent sunroof system. It consists of two parts, one is a sensor panel for detecting rainwater, and the

other is a control module that converts the detected signal into an electrical signal.

2.Project Introduction:
It simulates the flood control alarm system, judges whether there is a flood disaster through the

amount of rain detected by the sensor panel of the raindrop sensor, and then controls the buzzer to emit

a siren sound and displays the alarm information on the LCD1602 LCD screen.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, Raindrop sensor*1,

LCD1602*1, Buzzer*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico Raindrop sensor

GND GND

VSYS VCC

-- DO

GP26(ADC0) AO

www.elecrow.com55

Raspberry Pi Pico LCD1602

GP0 SDA

GP1 SCL

VSYS VCC (+)

GND GND (-)

Raspberry Pi Pico Buzzer

GND GND

GP12 VCC (+)

4.Library file installation:
Upload the “i2c_lcd.py” and “i2c_api.py” library file to the Raspberry Pi Pico. For the specific

operation steps, please refer to Lesson 16.

5.Program analysis: Flood Warning
from machine import Pin,ADC,PWM,I2C

from i2c_lcd import I2cLcd
from time import sleep
DEFAULT_I2C_ADDR = 0x3F # LCD 1602 I2C address

Raindrop_AO = ADC(0) # ADC0 multiplexing pin is GP26

Buzzer = 12

buzzer = PWM(Pin(Buzzer))

def setup():
global lcd
i2c = I2C(0,sda=Pin(0),scl=Pin(1),freq=400000)

lcd = I2cLcd(i2c, DEFAULT_I2C_ADDR, 2, 16)

def loop():
while True:

text = 'Warning!\nFlood warning!' # show alert information

adc_Raindrop =Raindrop_AO.read_u16()

if adc_Raindrop < 30000:

lcd.putstr(text)

buzzer.duty_u16(1000)

buzzer.freq(294)

sleep(0.5)

lcd.clear()

buzzer.freq(495)

sleep(0.5)

else:
buzzer.duty_u16(0)

if __name__ == '__main__':
setup()

loop()

www.elecrow.com56

Lesson 25: Alarm of Fire

1.Flame sensor:
Flame sensor is generally divided into far-infrared flame sensor and ultraviolet flame sensor, and its

working principle is to detect the heat radiation of fire source of specific wavelength. The far-infrared

flame sensor can detect infrared light with a wavelength in the range of 700 nanometers to 1000

nanometers, and the detection angle is 60. When the infrared light wavelength is around 880 nanometers,

its sensitivity reaches the maximum. The far-infrared flame probe converts the change of the intensity of

the external infrared light into the change of the current, which is reflected as the change of the value in

the range of 0~65535 through the A/D converter.

2.Project Introduction:
Simulate a fire alarm system, judge whether a fire occurs by judging whether the induction probe of

the flame sensor detects the fire source, control the RGB lights to flash red and blue, and display the

alarm information on the LCD1602 liquid crystal screen.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*2, Flame sensor*1,

LCD1602*1, RGB LED*1, Dupont line;

3.2 Port connection:
Raspberry Pi Pico Flame sensor

GND GND

VSYS VCC

-- DO

GP26(ADC0) AO

www.elecrow.com57

Raspberry Pi Pico LCD1602

GP0 SDA

GP1 SCL

VSYS VCC (+)

GND GND (-)

Raspberry Pi Pico RGB LED

GND GND

GP4 R

GP3 G

GP2 B

4.Library file installation:
Upload the “i2c_lcd.py” and “i2c_api.py” library file to the Raspberry Pi Pico. For the specific

operation steps, please refer to Lesson 16.

5.Program analysis: Alarm of Fire
from machine import Pin,ADC,PWM,I2C

from i2c_lcd import I2cLcd
from time import sleep

DEFAULT_I2C_ADDR = 0x3F # LCD 1602 I2C address

Flame_AO = ADC(0) # ADC0 multiplexing pin is GP26

Led_R = PWM(Pin(4))

Led_G = PWM(Pin(3))

Led_B = PWM(Pin(2))

Led_R.freq(2000) # Set the frequency to 2KHz

Led_G.freq(2000)

Led_B.freq(2000)

i2c = I2C(0,sda=Pin(0),scl=Pin(1),freq=400000)

lcd = I2cLcd(i2c, DEFAULT_I2C_ADDR, 2, 16)

If __name__ == ‘__main__’:
while True:

text = 'Warning!\nBe On Fire!' # show alert information

Flame_value = Flame_AO.read_u16() # Get the analog value of the flame sensor

if Flame_value < 30000:
lcd.putstr(text)

Led_R.duty_u16(65535)

Led_G.duty_u16(0)

Led_B.duty_u16(0)

sleep(0.5)

www.elecrow.com58

lcd.clear()

Led_R.duty_u16(0)

Led_G.duty_u16(0)

Led_B.duty_u16(65535)

sleep(0.5)

else:
Led_R.duty_u16(0)

Led_G.duty_u16(65535)

Led_B.duty_u16(0)

www.elecrow.com59

Lesson 26: Electronic Wall Calendar

1.SSD1306 OLED:
OLED (Organic Light Emitting Diode) is a self-luminous display screen without backlight and liquid

crystal, with excellent color saturation, contrast and response speed. Because the material is lighter and

thinner, transparent and flexible, OLED can realize a variety of designs and is widely used in mobile

phones, digital cameras, notebook computers, car audio and TVs.

2.Project Introduction:
Real-time display of current date, time and ambient temperature on the OLED.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, SSD1306 OLED*1, DHT11

Temperature & Humidity sensor*1, Dupont line;

3.2 port connection:
Raspberry Pi Pico SSD1306 OLED

GP0 SDA

GP1 SCL

VSYS VCC

GND GND

Raspberry Pi Pico DHT11 Temperature & Humidity sensor

VSYS +

GND -

GP2 out

4.Library file installation:
Upload the “ssd1306.py” and “dht.py” library file to the Raspberry Pi Pico. For the specific

operation steps, please refer to Lesson 16.

www.elecrow.com60

5.Program analysis: Electronic Wall Calendar
from machine import Pin, I2C
from ssd1306 import SSD1306_I2C
from dht import DHT11, InvalidChecksum
import time

list = [2022, 06, 29, 10, 01, 25]

mon_max = [1,3,5,7,8,10,12]

mon_min = [4,6,9,11]

i2c=I2C(0,sda=Pin(0), scl=Pin(1), freq=400000)

oled = SSD1306_I2C(128, 64, i2c)

DHT_pin = Pin(2, Pin.OUT, Pin.PULL_DOWN)

dht11= DHT11(DHT_pin)

def set_time():
global text1
if list[5] > 9:

if list[4] > 9:
text1 = 'Time:%d:%d:%d'%(list[3],list[4],list[5])

else:
text1 = 'Time:%d:0%d:%d'%(list[3],list[4],list[5])

else:
if list[4] > 9:

text1 = 'Time:%d:%d:0%d'%(list[3],list[4],list[5])

else:
text1 = 'Time:%d:0%d:0%d'%(list[3],list[4],list[5])

def set_date():
global text2
if list[2] > 9:

if list[1] > 9:
text2 = 'Date:%d.%d.%d'%(list[0],list[1],list[2])

else:
text2 = 'Date:%d.0%d.%d'%(list[0],list[1],list[2])

else:
if list[1] > 9:

text2 = 'Date:%d.%d.0%d'%(list[0],list[1],list[2])

else:
text2 = 'Date:%d.0%d.0%d'%(list[0],list[1],list[2])

def date_change():
list[2] = 1

www.elecrow.com61

list[1] += 1

if list[1] > 12:
list[1] = 1

list[0] += 1

def time_change():
list[5] += 1

if list[5] > 59:
list[5] = 0

list[4] += 1

if list[4] > 59:
list[4] = 0

list[3] += 1

if list[3] > 23:

list[3] = 0

list[2] += 1

if list[1] in mon_max:

if list[2] > 31:
date_change()

elif list[1] in mon_min:

if list[2] > 30:
date_change()

elif list[1] == 2:
if (list[0] % 4 == 0 and list[0] % 100 != 0) or list[0] % 400 == 0:

if list[2] > 29:
date_change()

elif list[2] > 28:
date_change()

if __name__ == '__main__':
while True:

set_date()

oled.text(text2, 0, 0)

set_time()

oled.text(text1, 0, 10)

oled.text("Temp: {}".format(dht11.temperature),0,20)

oled.show()

time_change()

time.sleep(1)

oled.fill(0)

www.elecrow.com62

Lesson 27: Simple Calculator

1.4*4 Matrix Membrane Keyboard:
The 4*4 matrix membrane keyboard consists of four parts: panel, upper circuit, isolation layer and

lower circuit. When the panel is not pressed down, the upper and lower contacts are disconnected, and

the isolation layer plays an isolation role on the upper and lower lines; When the panel is pressed, the

contact of the upper circuit deforms downward, and remerges with the lower circuit to make the circuit

turn on, and the level signal changes; When the finger is released, the upper circuit contact bounces

back, the circuit is disconnected, and the level signal is in its initial state.

2.Project Introduction:
Detect the key feedback information of the 4*4 matrix membrane keyboard through the Raspberry

Pi Pico, set the A, B, C, D keys as addition, subtraction, multiplication and division functions respectively,

perform arithmetic operations, and print the operation process and results on the OLED display to realize

the function of a simple calculator.

3.Circuit connection:
3.1 Material preparation: Raspberry Pi Pico*1, USB cable*1, Breadboard*1, 4*4 matrix membrane

keyboard*1, SSD1306 OLED*1, Dupont line;

3.2 Port connection:

www.elecrow.com63

Raspberry Pi Pico 4*4 matrix membrane keyboard

GP13 L1

GP12 L2

GP11 L3

GP10 L4

GP9 C1

GP8 C2

GP7 C3

GP6 C4

Raspberry Pi Pico SSD1306 OLED

GP20 SDA

GP21 SCL

VSYS VCC

GND GND

4.Library file installation:
Upload the “ssd1306.py” library file to the Raspberry Pi Pico. For the specific operation steps,

please refer to Lesson 16.

5.Program analysis: Simple Calculator
from machine import Pin,Timer,I2C
import utime
from ssd1306 import SSD1306_I2C
import framebuf

debug=True

i2c = I2C(0, scl=Pin(21), sda=Pin(20), freq=40000)

oled = SSD1306_I2C(128, 64, i2c)

www.elecrow.com64

keyName = [['1','2','3','+'],

['4','5','6','-'],

['7','8','9','*'],

['c','0','=','/']]

keypadRowPins = [13,12,11,10]

keypadColPins = [9,8,7,6]

row = []

col = []

keypadState = [];

for i in keypadRowPins:

row.append(Pin(i,Pin.IN,Pin.PULL_UP))

keypadState.append([0,0,0,0])

for i in keypadColPins:

col.append(Pin(i,Pin.OUT))

def solve(oprt, oprdA, oprdB):
if(oprt == "+"):

return oprdA + oprdB

elif(oprt == "-"):
return oprdA - oprdB

elif(oprt == "*"):
return oprdA * oprdB

elif(oprt == "/"):
return round(oprdA / oprdB , 6)

def calc(lst):
operand = []

operator = []

for i in lst:

if(debug):
print(i)

if(i=='+'):
while (len(operator)!=0 and (operator[-1] == '*' or operator[-1] == '/' or operator[-1] ==

'-' or operator[-1] == '+')):
b = operand.pop(-1)

a = operand.pop(-1)

c = operator.pop(-1)

operand.append(solve(c,a,b))

operator.append(i)

elif(i=='-'):
while (len(operator)!=0 and (operator[-1] == '*' or operator[-1] == '/' or operator[-1] ==

'-' or operator[-1] == '+')):
b = operand.pop(-1)

www.elecrow.com65

a = operand.pop(-1)

c = operator.pop(-1)

operand.append(solve(c,a,b))

operator.append(i)

elif(i=='*'):
while (len(operator)!=0 and (operator[-1] == '*' or operator[-1] == '/')):

b = operand.pop(-1)

a = operand.pop(-1)

c = operator.pop(-1)

operand.append(solve(c,a,b))

operator.append(i)

elif(i=='/'):
while (len(operator)!=0 and (operator[-1] == '*' or operator[-1] == '/')):

b = operand.pop(-1)

a = operand.pop(-1)

c = operator.pop(-1)

operand.append(solve(c,a,b))

operator.append(i)

elif(i=='('):
operator.append(i)

elif(i==')'):
while(operator[-1] !='('):

b = operand.pop(-1)

a = operand.pop(-1)

c = operator.pop(-1)

operand.append(solve(c,a,b))

operator.pop(-1)

else:
operand.append(i)

while(len(operator) != 0):
b = operand.pop(-1)

a = operand.pop(-1)

c = operator.pop(-1)

operand.append(solve(c,a,b))

return operand[0]

def keypadRead():
global row
j_ifPressed = -1

i_ifPressed = -1

for i in range(0,len(col)):

col[i].low()

utime.sleep(0.005) #settling time

for j in range(0,len(row)):

www.elecrow.com66

pressed = not row[j].value()
if(pressed and (keypadState[j][i] != pressed)): #state changed to high

keypadState[j][i] = pressed

elif(not pressed and (keypadState[j][i] != pressed)): # state changed to low

keypadState[j][i] = pressed

j_ifPressed = j

i_ifPressed = i

col[i].high()

if(j_ifPressed != -1 and i_ifPressed != -1):

return keyName[j_ifPressed][i_ifPressed]

else:
return -1

def printOled(lst):
oledPos = {

"x" : 0,

"y" : 0

}

oled.fill(0)

string = ''

for i in lst:

string += str(i)

l = 0

while(l<len(string)):
oled.text(string[l:l+16],oledPos["x"], oledPos["y"])

oledPos["y"] =oledPos["y"] + 10

l = l+16

oled.show()

shiftFlag = False
signFlag = False
inputList = ['']

oled.show()

oled.fill(0)

oled.show()

oled.text("Elecrow",30,9,1)

oled.text("Simple",35,28,1)

oled.text("calculator",18,38,1)

oled.show()

if __name__ == '__main__':
while True:

key = keypadRead()

www.elecrow.com67

if(key != -1):
if((key <= '9' and key >='0') or key == '.'):

inputList[-1] = inputList[-1] + key

elif(key == '+' or key == '-' or key == '*' or key == '/'):
if(inputList != ['']):

if(inputList[-1] == '' and (inputList[-2] == '+' or inputList[-2] == '-' or
inputList[-2] == '*' or inputList[-2] == '/')):

inputList[-2] = key

elif(inputList[-1]==''):
inputList[-1]=key

inputList.append('')

else:
inputList[-1] = float(inputList[-1])

inputList.append(key)

inputList.append('')

elif(key == 's'):
shiftFlag = not shiftFlag

elif(key == 'a'):
if(shiftFlag):

if(inputList[-1] != ''):
inputList[-1] = float(inputList[-1])

inputList.append(')')

inputList.append('')

else:
inputList[-1] = ')'

inputList.append('')

shiftFlag = False
else:

signFlag = not signFlag
if(inputList[-1] == ''):

inputList[-1] = '-'

else:
if(inputList[-1][0] == '-'):

inputList[-1] = inputList[-1][1:]

else:
inputList[-1] = '-' + inputList[-1]

elif(key == 'b'):
if(shiftFlag):

if(inputList[-1] == ''):
inputList[-1] = '('

else:
inputList.append('(')

inputList.append('')

shiftFlag = False

www.elecrow.com68

else:
if(inputList[-1] == ''):

inputList[-1] = 3.14

else:
inputList.append(3.14)

inputList.append('')

elif(key == 'c'):
if(shiftFlag):

inputList = ['']

shiftFlag = False
else:

if(inputList == ["error"]):
inputList = ['']

if(inputList != ['']):
if(inputList[-1] == ''):

inputList.pop()

inputList[-1] = str(inputList[-1])[:-1]

else:
inputList[-1] = str(inputList[-1])[:-1]

elif(key == '='):
if(inputList[-1] == ''):

inputList.pop(-1)

elif(inputList[-1] != ')'):
inputList[-1] = float(inputList[-1])

try:
ans = calc(inputList)

inputList = [str(ans)]

except:
ans = ''

inputList = []

inputList.append("error")

printOled(inputList)

print(inputList)

www.elecrow.com69

Lesson28: Dc Reduction Motor

1.Dc reduction motor:
DC reduction motor, that is, gear reduction motor, which adds a gear reduction structure on the

basis of ordinary DC motor to provide lower speed and larger torque. In addition, different reduction ratios

can provide different speeds and torques.

2.Project Introduction:
Assemble the trolley according to the following steps, and control the trolley to move forward,

backward, left, and right through the program.

3.Assembly steps:

3.1 Tear off the protective film on the surface of all acrylic devices;

3.2 Connect the red and black wires to the two ports of the motor according to the connection method

shown in the figure below; (It can be fixed by welding, or directly through the holes on the port to screw

and fix)

3.3 As shown in the figure below, fix the motor on the acrylic panel car body with acrylic fasteners. (The

installation position of the red and black wires determines the direction of rotation of the motor.)

www.elecrow.com70

3.4 In the same way, fix another motor in the symmetrical position of the acrylic board;

3.5 As shown in the figure below, connect the red and black wires of the two motors to the L9110s motor

drive module ports respectively, and insert 8 DuPont lines to the 8 pin headers on the other side;

3.6 Fix the L9110s motor drive module;

3.7 Fix the double-pass copper column on the acrylic board;

3.8 Fix the universal wheel;

www.elecrow.com71

3.9 Fix the battery box;

3.10 Fix the button;

3.11 Connect the button to the battery box（One end is connected to the positive electrode of the battery

(red wire), and the other end is connected to the VSYS of the Pico.）

3.12 Install the wheels;

www.elecrow.com72

3.13 Connect the Raspberry Pi Pico and the breadboard;

3.14 Peel off the bottom film and stick the breadboard;

3.15 Insert the dupont line to the breadboard. (For details, please refer to: 4. Circuit Connection)

4.Circuit connection:
4.1 Material preparation: Car chassis Kit*1, Raspberry Pi Pico*1, USB cable*1, Breadboard*1, L9110S

motor drive module*1, Dc reduction motor*2, AA battery*4 (purchased by yourself), battery box*1, Dupont

line;

4.2 Port connection:

www.elecrow.com73

Raspberry Pi Pico L9110S motor drive module

GP12 B-1A

GP13 B-1B

GND GND

VSYS VCC

GP10 A-1A

GP11 A-1B

5.Program analysis: Dc Reduction Motor
from machine import Pin
from utime import sleep
MotorPinA_1A = 10

MotorPinA_1B = 11

MotorPinB_1A = 12

MotorPinB_1B = 13

def setup():
global motorA1
global motorA2
global motorB1
global motorB2
motorA1 = Pin(MotorPinA_1A,Pin.OUT)

motorA2 = Pin(MotorPinA_1B,Pin.OUT)

motorB1 = Pin(MotorPinB_1A,Pin.OUT)

motorB2 = Pin(MotorPinB_1B,Pin.OUT)

def motor(A1,A2,B1,B2):
motorA1.value(A1)

motorA2.value(A2)

motorB1.value(B1)

motorB2.value(B2)

def loop():
while True:

motor(1,0,1,0)

sleep(2)

motor(0,1,0,1)

sleep(2)

motor(0,1,1,0)

sleep(2)

motor(1,0,0,1)

sleep(2)

motor(0,0,0,0)

sleep(1)

if __name__ == '__main__':
setup()

loop()

www.elecrow.com74

Lesson 29: Bumper Cars

1.Collision sensor:
The collision sensor, also known as the collision switch, is equivalent to a key switch, relying on the

internal mechanical structure to complete the conduction and disconnection of the circuit. When the outer

detection arm of the collision sensor is impacted or pressed down by force, the inner reed is toggled, and

the circuit is turned on.

2.Project Introduction:
By judging whether the collision sensors on the left and right sides of the front end of the car collide,

the car is controlled to perform the corresponding steering action.

①When the collision sensor on the left collides, the trolley performs backward and right turn

actions;

②When the collision sensor on the right collides, the trolley performs backward and left turn

actions;

③When the collision sensors on the left and right sides collide at the same time, the car performs

backward and U-turn actions;

④When the collision sensors on the left and right sides do not collide, the car keeps moving

forward.

3.Assembly steps:
3.1 Place the collision sensor on the right front of the front of the car, and fix the collision sensor on the

car with screws and nuts;

3.2 In the same way, fix the other Collision sensor on the other side of the front of the car.

4.Circuit connection:
4.1 Material preparation: Smart car (motor already assembled)*1, Collision sensor*2, Dupont line;
4.2 Port connection:

Raspberry Pi Pico Collision sensor(left)

VSYS VCC

GP17 OUT

GND GND

www.elecrow.com75

Raspberry Pi Pico Collision sensor(right)

VSYS VCC

GP18 OUT

GND GND

5.Program analysis: Bumper Cars
from machine import Pin,ADC,PWM

from utime import sleep

CollisionPin_L = 17 # Collision sensor(left)

CollisionPin_R = 18 # Collision sensor(right)

MotorPinA_1A = 10

MotorPinA_1B = 11

MotorPinB_1A = 12

MotorPinB_1B = 13

def setup():
global motorA1
global motorA2
global motorB1
global motorB2
global Collision_L
global Collision_R
motorA1 = PWM(Pin(MotorPinA_1A))

motorA2 = PWM(Pin(MotorPinA_1B))

motorB1 = PWM(Pin(MotorPinB_1A))

motorB2 = PWM(Pin(MotorPinB_1B))

Collision_L = Pin(CollisionPin_L,Pin.IN,Pin.PULL_UP)

Collision_R = Pin(CollisionPin_R,Pin.IN,Pin.PULL_UP)

def motor(A1,A2,B1,B2):
motorA1.duty_u16(A1)

motorA2.duty_u16(A2)

motorB1.duty_u16(B1)

motorB2.duty_u16(B2)

def loop():
while True:

Sum = Collision_L.value() * 2 + Collision_R.value()

print(Sum)

speed = 50000

sleep(0.01)

if Sum == 0: # No collision on the left and right

motor(0,speed,0,speed) # forward

www.elecrow.com76

if Sum == 1: # Collision on the right

motor(speed,0,speed,0) # backward

sleep(2)

motor(speed,0,0,speed) # Turn left

sleep(2)

if Sum == 2: # Collision on the left

motor(speed,0,speed,0) # backward

sleep(2)

motor(0,speed,speed,0) # Turn right

sleep(2)

if Sum == 3: # Collision on the left and right, U-turn

motor(speed,0,speed,0) # backward

sleep(2)

motor(speed,0,0,speed) # Turn left

sleep(2)

if __name__ == '__main__':
setup()

loop()

www.elecrow.com77

Lesson30: Tracking car

1.IR tracking sensor:
The IR tracking sensor is essentially an IR reflective sensor. The module has one black and one

blue diode for transmitting and receiving, the blue diode is used to transmit infrared rays, and the black

diode is used to receive the reflected infrared rays. If the infrared ray encounters a white or brighter

object, it will be reflected back, and if it encounters a black or darker object, the infrared ray will be

absorbed and hardly reflected back. The current position of the sensor can be judged by the change of

the electrical signal.

2.Project Introduction:
By judging whether the two IR tracking sensors at the front of the smart car detect the black line, the

car is then controlled to perform the corresponding steering action.

① When the infrared tracking sensors on the left and right sides detect the black line, the car moves

forward.

② When the infrared tracking sensor on the left leaves the black line, the car turns right;

③ When the infrared tracking sensor on the right leaves the black line, the car turns left;

④ When the infrared tracking sensors on the left and right sides do not detect the black line, the car

stops.

3.Assembly steps:
3.1 Fix two IR tracking sensors to the hexagonal copper pillars of M2.5*30 respectively;

3.2 Use screws to fix two IR tracking sensors under the front of the car.

www.elecrow.com78

4.Circuit connection:
4.1 Material preparation: Smart car (motor already assembled)*1, Tracking map*1, IR tracking sensor*2,

Dupont line;

4.2 Port connection:

Raspberry Pi Pico IR tracking sensor(left)

VSYS V+

GP17 S

GND G

Raspberry Pi Pico IR tracking sensor(right)

VSYS V+

GP18 S

GND G

5.Program analysis: Patrol Line Vehicle
from machine import Pin,ADC,PWM

from utime import sleep

TrackingPin_L = 17 # IR tracking sensor(left)

TrackingPin_R = 18 # IR tracking sensor(right)

MotorPinA_1A = 10

MotorPinA_1B = 11

MotorPinB_1A = 12

MotorPinB_1B = 13

def setup():
global motorA1
global motorA2
global motorB1
global motorB2
global Track_L
global Track_R
motorA1 = PWM(Pin(MotorPinA_1A))

motorA2 = PWM(Pin(MotorPinA_1B))

motorB1 = PWM(Pin(MotorPinB_1A))

motorB2 = PWM(Pin(MotorPinB_1B))

Track_L = Pin(TrackingPin_L,Pin.IN,Pin.PULL_UP)

Track_R = Pin(TrackingPin_R,Pin.IN,Pin.PULL_UP)

def motor(A1,A2,B1,B2):
motorA1.duty_u16(A1)

motorA2.duty_u16(A2)

motorB1.duty_u16(B1)

www.elecrow.com79

motorB2.duty_u16(B2)

def loop():
while True:

Track = Track_L.value() * 2 + Track_R.value()

print(Track)

speed = 50000

sleep(0.01)

if Track == 0: # No black lines detected on the left and right

motor(0,0,0,0) # Stop

if Track == 1: # Only the black line is detected on the right side

motor(0,speed,speed,0) # Turn right

if Track == 2: # Only the black line is detected on the left side

motor(speed,0,0,speed) # Turn left

if Track == 3: # Black lines are detected on both the left and right

motor(0,speed,0,speed) # Go forward

if __name__ == '__main__':
setup()

loop()

www.elecrow.com80

Lesson 31: Obstacle Avoidance Car

1.Ultrasonic ranging sensor:
Ultrasonic ranging sensor is sensor that convert ultrasonic signals into electrical signals. The

ultrasonic ranging sensor has two pins, one is TRIG (transmitting end) and the other is ECHO (receiving

end). It applies the principle of ultrasonic echo ranging and uses accurate time difference measurement

technology to detect the distance between the sensor and the target.

2.Project Introduction:
Real-time detection of the distance measurement value of the ultrasonic ranging sensor, when the

distance value is less than the preset value, the car will be controlled to turn left to avoid obstacles, so as

to achieve the effect of the obstacle avoidance car.

3.Assembly steps:
3.1 Paste the breadboard (small) to the front of the car, and insert the ultrasonic ranging sensor into the

breadboard with the two probes facing forward;

3.2 Use Dupont wire to connect the circuit as detailed in the table below.

4.Circuit connection:
4.1 Material preparation: Smart car (motor already assembled)*1, Ultrasonic ranging sensor)*1, Dupont
line;

4.2 Port connection:

www.elecrow.com81

Raspberry Pi Pico Ultrasonic ranging sensor

GP1 Echo

GP0 Trig

VSYS VCC

GND GND

5.Program analysis: Obstacle Avoidance Car
from machine import Pin,PWM

import utime

MotorPinA_1A = 10

MotorPinA_1B = 11

MotorPinB_1A = 12

MotorPinB_1B = 13

motorA1 = PWM(Pin(MotorPinA_1A))

motorA2 = PWM(Pin(MotorPinA_1B))

motorB1 = PWM(Pin(MotorPinB_1A))

motorB2 = PWM(Pin(MotorPinB_1B))

speed = 50000

trig= Pin(0, Pin.OUT)

echo = Pin(1, Pin.IN)

def motor(A1,A2,B1,B2):
motorA1.duty_u16(A1)

motorA2.duty_u16(A2)

motorB1.duty_u16(B1)

motorB2.duty_u16(B2)

def getDistance(trig, echo):
trig.low() # Generate 10us square wave

utime.sleep_us(2)

trig.high()

utime.sleep_us(10)

trig.low()

while echo.value() == 0:
start = utime.ticks_us()

while echo.value() == 1:
end = utime.ticks_us()

d = (end - start) * 0.0343 / 2

return d

def loop():

www.elecrow.com82

while True:
distance = getDistance(trig, echo) # Get ultrasonic calculation distance

print("distance：{:.2f} cm".format(distance))

utime.sleep(0.1)

if distance < 30:
motor(speed,0,0,speed) # Turn left

utime.sleep(0.3)

else:
motor(0,speed,0,speed) # Go forward

if __name__ == "__main__":
loop()

www.elecrow.com83

Lesson32: Remote Control Car

1.IR remote control & IR receiver module:
The IR remote control is used to generate the remote control code pulse, drive the Infrared emission

tube to output the infrared remote control signal, and the IR receiver module completes the amplification,

detection, shaping and demodulation of the remote control code pulse for the remote control signal.

Infrared remote control is a wireless, non-contact control technology, with strong anti-interference

ability, reliable information transmission, low power consumption, low cost, easy implementation, etc.It is

widely used by many electronic devices, especially household appliances, and is increasingly applied to

computer systems.

2.Project Introduction:
Send a movement command signal to the IR receiver module through the IR remote control, and

control the car to perform actions such as forward, backward, left turn and right turn.

3.Assembly steps:
Remove the ultrasonic ranging sensor, insert the IR receiver module into the breadboard, and use

the dupont lines to connect the IR receiver module to the Raspberry Pi Pico for communication.

4.Circuit connection:
4.1 Material preparation: Smart car (motor already assembled)*1, IR receiver module*1, IR remote

control*1, Dupont line;

4.2 Port connection:

Raspberry Pi Pico IR receiver module

GP2 S

VSYS VCC（+）

GND GND（-）

www.elecrow.com84

5.Program analysis: Remote Control Car
from machine import Pin,PWM

import utime

PIN = Pin(2,Pin.IN,Pin.PULL_UP)

MotorPinA_1A = 10

MotorPinA_1B = 11

MotorPinB_1A = 12

MotorPinB_1B = 13

motorA1 = PWM(Pin(MotorPinA_1A))

motorA2 = PWM(Pin(MotorPinA_1B))

motorB1 = PWM(Pin(MotorPinB_1A))

motorB2 = PWM(Pin(MotorPinB_1B))

speed = 50000

def motor(A1,A2,B1,B2):
motorA1.duty_u16(A1)

motorA2.duty_u16(A2)

motorB1.duty_u16(B1)

motorB2.duty_u16(B2)

N = 0

def exec_cmd(key_val):
if(key_val == 0x18):

print("Button ^")

motor(0,speed,0,speed) # Go forward

elif(key_val == 0x08):
print("Button <")

motor(speed,0,0,speed) # Turn left

elif(key_val == 0x5a):
print("Button >")

motor(0,speed,speed,0) # Turn right

elif(key_val == 0x52):
print("Button V")

motor(speed,0,speed,0) # Go back

else:
motor(0,0,0,0) # Stop

print("STOP")

if __name__ == '__main__':
while True:

if PIN.value() == 0:
count = 0

www.elecrow.com85

while PIN.value() == 0 and count < 200:

count += 1

utime.sleep_us(60)

count = 0

while PIN.value() == 1 and count < 80:

count += 1

utime.sleep_us(60)

idx = 0

cnt = 0

data = [0,0,0,0]

for i in range(0,32):

count = 0

while PIN.value() == 0 and count < 15:

count += 1

utime.sleep_us(60)

count = 0

while PIN.value() == 1 and count < 40:

count += 1

utime.sleep_us(60)

if count > 8:
data[idx] |= 1<<cnt

if cnt == 7:
cnt = 0

idx += 1

else:
cnt += 1

if data[0]+data[1] == 0xFF and data[2]+data[3] == 0xFF:

print("Retrieve key: 0x%02x" %data[2])

N=data[2]

if PIN.value() == 1:
motor(0,0,0,0) # Stop

else:
exec_cmd(N)

All rights reserved, the right infringement must investigate!

	1.3 Pin Diagram
	1.4 Size

