
www.elecrow.com2020 ELECROW All Rights Reserved.C

Crowtail Adavanced Kit
for Arduino

User Guide
V2.0 2020.02

ContentContent

2020 ELECROW All Rights Reserved.C

Instruction
Modules List
Crowtail
 ● Crowtail – Base shield
 ● Crowtail – Module
Lessons
 ● Lesson 1 – LED control
 ● Lesson 2 – Vibration detector
 ● Lesson 3 – Raining reminder
 ● Lesson 4 – Intelligent corridor light
 ● Lesson 5 – Breathing light
 ● Lesson 6 – Calculating light intensity
 ● Lesson 7 – Get current time
 ● Lesson 8 – LCD display
 ● Lesson 9 – Electric watch
 ● Lesson 10 – Temperature&Humidity detecting system
 ● Lesson 11 – PWM control
 ● Lesson 12 – Servo control
 ● Lesson 13 – Matrix display
 ● Lesson 14 – Get atmospheric pressure
 ● Lesson 15 – Digital compass
 ● Lesson 16 – IR control system
 ● Lesson 17 – ESP8266 TCP server
 ● Lesson 18 – Weather reminder
 ● Lesson 19 – Remote control system
 ● Lesson 20 – Polite automatic door
 ● Lesson 21 – Weather station

01
02
03
03
04
05
05
07
08
10
12
14
16
17
20
21
23
26
27
29
31
33
35
37
39
41
43

InstructionInstruction

Welcome to the Crowtail-Advanced kit for Arduino user guide. Do you already have some
knowledge of electronics and some programming skills. How do you continue to strengthen
your thinking, hands-on skills, programming and innovation capabilities? This kit will lead
you to a new stage! This kit contains 21 fun and creative tutorials, from simple to difficult,
leading you to gradually explore and discover modules and the fun of programming and to
constantly train your thinking and programming skills throughout the process to enhance
your ability to innovate and confidence. Through this kit, you will learn about digital signals,
analog signals, digital-to-analog conversion, automatic control systems, remote control
systems, display systems, WIFI, and more. You will find that programming can create more
fun, and continuously improve your ability, and finally let you create your own outstanding
works, and think and solve problems more comprehensively, meticulously, and confidently!

The Crowtail-Advanced kit for Arduino includes 22 electronic modules, each module has its
own feature and functions. Each module has been carefully selected from more than one
hundred Crowtail modules to provide deeper learning and creative guidance for those who
want a deeper understanding of hardware modules and programming knowledge. In the
process, it continuously stimulates the thinking ability and creativity of learners.

For the programming part, we will use the Arduino software to program. Arduino is an
easy-to-use open source electronic prototyping platform. It is one of the most popular open
source hardware in the world, including hardware (various models of Arduino board) and
software (Arduino IDE). This is the best choice for people who want to learn programming
and hardware knowledge! In short, you will explore what is the core of programming and
creation, and help you to have a more comprehensive thinking in the future to create your
own excellent works.

01

02

Modules ListModules List

● Crowtail - Base Shield x1

● Crowtail - Button x1

● Crowtail - LED(Red) x1

● Crowtail - LED(Green) x1

● Crowtail - Vibration Sensor x1

● Crowtail - RTC x1

● Crowtail - Temperature& Humidiy Sensor x1

● Crowtail - IR Receiver x1

● Crowtail - MOSFET x1

● Crowtail - Water Sensor x1

● Crowtail - LED Matrix x1

● Crowtail - 9G Servo x1

● Crowtail - Serial Wifi x1

● Crowtail - Rotary Angle Sensor x1

● Crowtail - 3-Axis Digital Compass x1

● Crowtail - PIR Sensor x1

● Crowtail - I2C LCD x1

● Crowtail - BMP180 Barometer x1

● Crowtail - Luminance Sensor x1

● DC motor x1

● Infrared Remote Control x1

● Battery case x1

03

Crowtail

Crowtail – Base Shield

Welcome to the world of Crowtail! Crowtail is a modulated, ready-to-use toolset, it takes a building
block approach to assemble electronics. It simplifies and condenses the learning process significantly.
In our Crowtail warehouse, there are over 150 Crowtail modules and Crowtail shields!
The Crowtail products are basic-functional modules that consist of a Base Shield and various modules
with standardized connectors, each Crowtail module has its specific functions, such as light sensing
and temperature sensing. It will satisfy all you need for your project!
Crowtail is a series of products that we made to solve the messy jumper wires when connecting
electronic circuits. It consists of a Base Shield and some basic Crowtail modules, which helps you
creating small, simple, and easy-to-assemble circuits.In other words, when you use Crowtail, your
electronic project will not be a messy wiring, instead it will be a simple and easy way to manage
electronic project!

The Crowtail-Base Shield is a standard IO expansion board for the Arduino. It regulates the IOs of
Arduino to the standard Crowtail interface, which can be sorted into 4 kinds: Analog (A), Digital (D),
UART (U) and IIC(I):

 11 Digital I/O ports (D2~D12) that have a mark “D”. These ports can be used to read and
control digital Crowtail modules (Crowtail modules that have a mark “D”), such as the Button and
LEDs. Some of the digital I/O ports can also be used as PWM (pulse width modulation) outputs;

 6 Analog ports (A0~A5) that have a mark of “A”. Besides the functional of digital, these A
ports can read the analog signal, such as a potentiometer or light sensor;

 3 UART ports that have a mark of “U”. These interfaces can be used for UART communication
such as the WIFI module or Bluetooth module;

 2 IIC ports that have a mark of “I”. These interfaces are for the IIC Communication, users can
utilize 2 IIC modules at the same time;

1

2

3

4

1

2

3

4

04

Crowtail – Modules
We make more than 100 kinds of electronic modules into Crowtail modules. They include a variety of
sensors, displays, inputs and outputs modules, communication types include I2C, UART, digital or
analog, which aim to provide more options to fully meet your electronic projects. All needs! All
modules can be used by simply connecting them to the Crowtail-Base shield using a Crowtail cable,
which is a huge improvement over the previously troublesome jumper connections.

Besides, there is also a 2x5 female connector of 5V and GND for customer usages. Users can
connect any electronic modules to the Base Shield with jumper wires easily.

Compared with the traditional way of carrying out electronic projects, Crowtail has a huge performance
benefit. All Crowtail has the standard 4 pin connectors. Your creative idea can be realize easier and
faster just by plug and play. In addition, you don’t need to debug the electronic circuits!

Connect Crowtail-Base shield with your Arduino.

Connect Crowtail-Base shield with your Crowduino.

05

The LED is the best choice to help you learn I/O
pins. What you need to do is connecting the LED
module to the Base Shield D ports, then download
the program to the Arduino. Besides the very
basic usage, you can make the LED blink with the
frequency you want, thus the brightness with
PWM. Actually, LED is the most popular used for
human interface. In this kit, we prepared two
colors of the LED, including red and green, so you
can create your own LED circuit!

This momentary button outputs logic HIGH signal
when pressed and logic LOW signal when released.
The logic high and logic low levels of the output can
be detected by the Arduino controller, and then you
can program your Arduino to do what you want after
detecting the two different signals.
For this lesson, we will use button and LED module
to make a button control.

Lesson 1 – LED Control
Lessons

Introduction

Crowduino UNO-SD/Arduino UNO x1
Crowtail – LED(Red) x1
Crowtail – Button x1

Crowtail – Cable x2
USB Cable x1

Required Parts

STEP1: Plug the Crowtail- Base Shield onto the
Arduino or Crowduino Board.

Hardware Connection

STEP2: Connect Crowtail-Button to Crowtail-Base
Shield D4 port and Crowtail-LED to D2 port. The
complete connection is as follows:

Open the P01_LED_Control with Arduino IDE
and upload it.

06

If you press the button, the LED will light on, and it will light off when you release the button. If it
doesn’t, make sure the LED and button are properly connected to the corresponding Crowtail-Base
Shield interface.

What will you see

1. Declare the variables for LED and button and assign values to them.
2. Define whether the module is output or input.
3. Read the value of the button.
4. If the button value read is HIGH(pressed), turn on the LED.
5. If the button value read is LOW(not pressed), turn off the LED.

Code overview

Code usage

A variable is a placeholder for a value that may change in your code.
Variables must be introduced or "declared" before using variables.
Here, we declare two variables that define which ports of the base shield
the module should connect to and a variable called ‘buttonState’ of type
int(integer) and assign it a value of 0 to record the status of the button.
Don't forget that variable names are case-sensitive!

Integer Variables

Input or Output

Before using one of the digital pins, you need to tell Arduino
whether it is an input (INPUT) or an output (OUTPUT).
We use a built-in "function" called pinMode() to make the pin
corresponding to the led a digital output.

Digital Input

We use the digitalRead() function to read the value on a digital pin.
Check to see if an input pin is reading HIGH(5V) or LOW(0V).
Returns TRUE(1) or FALSE(0) depending on the reading.

If/else Statements

The if / else statement allows your code to make corresponding choices
for different results, running a set of code when the logical statement in
parentheses is true, and another set of code when the logical statement
is false. For example, if the button is pressed, the LED will light on
and when the button is released, the LED will light off.

This is another logical operator. The "equal" symbol (==) can be confusing.
The two equal signs are equal to ask: “The two values are equal
to each other? “On the other hand, if you want to compare two values,
don't forget to add a second equal sign, because if it's just a "=",
it's an assignment method.

Is equal to

When you're using a pin as an OUTPUT, you can command it to be
HIGH (output 5 volts) or LOW (output 0 volts). When you set it to HIGH,
for digital output modules, it means work. When you set it to LOW,
for digital output modules, it means don't work. For example, the led will
light on(work) when it is set to HIGH and it will light off(don't work)
when it is set to LOW.

Digital Output

07

Lesson 2 – Vibration detector

Introduction

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Vibration Sensor x1
Crowtail – LED x1

Crowtail – Base shield x1
Crowtail – Cable x2
USB Cable x1

Required Parts

STEP1: Plug the Crowtail-Base Shield
onto the Arduino or Crowduino Board.

Hardware Connection

STEP2: Connect Crowtail-Vibration
sensor to Crowtail-Base Shield D4 port
and Crowtail-LED to D2 port. The
complete connection is as follows:

Open the P02_Vibration_Detector with
Arduino IDE and upload it.

The Crowtail-Vibration Sensor is a high sensitivity non-directional
vibration sensor. When the module is stable, the circuit is turned
on and the output is low. When the movement or vibration occurs,
the circuit will be briefly disconnected and output high. At the
same time, you can also adjust the sensitivity according to your
own needs. It is widely used to report the theft alarm, intelligent
car, earthquake alarm, motorcycle alarm, etc.
In this lesson, we will use vibration sensor and LED to make a
vibration detector that you can use to detect earthquakes and
theft.

Put the Vibration sensor on the table or hold it in your hand and shake it. You will see the LED light
on as you shake. When you stop shaking, the LED will turn off.

What will you see

1. Declare the variables for vibration sensor and LED and assign values to them.

Code overview

08

2. Define whether the module is output or input.
3. Read the value of the vibration sensor.
4. If the value of the vibration sensor is LOW(shaked), turn on the LED.
5. If the value of the vibration sensor is HIGH(not shaked), turn off the LED.

Input or Output: pinMode(vibrationPin,INPUT); pinMode(ledPin,OUTPUT);
Before using one of the digital pins, you need to tell Arduino whether it is an input (INPUT) or an
output (OUTPUT). We use a built-in "function" called pinMode() to make the pin corresponding to the
led a digital output and the vibration sensor module as a input.

If/else Statements: if(logic statement) {code to be run if the logic statement is true}
else {code to be run if the logic statement is false }

The if / else statement allows your code to make corresponding choices for different results, running
a set of code when the logical statement in parentheses is true, and another set of code when the
logical statement is false. For here, if the vibration sensor is vibrating, the LED will light on and when
the vibration sensor is not vibrating, the LED will light off.

Digital Output: digitalWrite(ledPin, HIGH); digitalWrite(ledPin, LOW);

When you're using a pin as an OUTPUT, you can command it to be HIGH (output 5 volts) or LOW
(output 0 volts).

A variable is a placeholder for a value that may change in your code. Variables must be introduced or
"declared" before using variables. Here, we declare two variables that define which ports of the base
shield the module should connect to and a variable called “vibrationState” of type int(integer) and
assign it a value of 0 to record the status of the vibration sensor. Don't forget that variable names are
case-sensitive!

Integer Variables: int ledPin = 2; int vibrationPin = 4; int vibrationState=0;

Code usage

Lesson 3 – Raining reminder

Introduction
The water sensor detects water by having a series of exposed traces connected to ground and
interlaced between the grounded traces are the sensor traces. The sensor traces have a weak
pull-up resistor of 1 MΩ. The resistor will pull the sensor trace value high until a drop of water shorts
the sensor trace to the grounded trace. With the digital I/O pins of Crowduino/Arduino, you can
detect the amount of water induced contact between the grounded and sensor traces.

09

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – LED(Red) x1

Crowtail – Water Sensor x1
Crowtail – Cable x2
USB Cable x1

Required Parts

STEP1: Plug the Crowtail-Base Shield
onto the Arduino or Crowduino Board.

Hardware Connection

STEP2: Connect Crowtail-LED to
Crowtail-Base shield’s D4 and
Crowtail-Water sensor to D5 port.
The complete connection is as
follows:

Open the P03_Raining_Reminder
with Arduino IDE and upload it.

Do you have the experience of getting clothes wet by the rain? You
won't experience such a disaster again. In this course, we will use
water sensor and make a rain reminder, so that it can immediately
remind you to collect clothes when it starts to rain!

When you put the water drop on the sensor traces of the water sensor, the led will light on. When you
dry the water, the led will light off.

What will you see

1. Declare the variables for water sensor and LED and assign values to them.
2. Define whether the module is output or input.
3. Read the value of the water sensor.
4. If the value of the water sensor is LOW(water detected), led light on.
5. If the value of the water sensor is HIGH(no water detected), led light off.

Code overview

First, we declare two variables named ledPin and waterPin and assign them 4 and 5 respectively.

Integer Variables: int ledPin = 4; int waterPin = 5; int waterState = 0;

Code usage

10

Lesson 4 – Intelligent corridor light

Introduction

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – PIR Motion Sensor x1

Crowtail – LED(Green) x1
Crowtail – Cable x2
USB Cable x1

Required Parts

Crowtail - PIR Motion Sensor(Passive Infrared Sensor)
can detect infrared signals caused by motion. If the PIR
sensor notices the infrared energy, the motion detector is
triggered and the sensor outputs HIGH on its SIG pin. The
detecting range can be adjusted by a potentiometer
soldered on its circuit board, the max detecting range of it
up to 6 meters.
How about use PIR motion sensor and LED to make a
smart corridor light?

This means we can now use D4 and D5 ports for LEDs and water sensors.Then, declare a variable
named waterState to store the read water sensor value.

In the setup() function, we initialize the water sensor as an input to detect if there is water on the
water sensor and initialize the led to output to show you the result of the water sensor.

Input or Output: pinMode(ledPin, OUTPUT); pinMode(waterPin, INPUT);

Here, we use the if/else statement to execute the program that needs to be executed when the water
is detected or the water is not detected. If the water is detected, turn led on, otherwise, turn led off.

If/else Statements: if(logic statement) {code to be run if the logic statement is true} else
{code to be run if the logic statement is false }

Different from touch sensor and button, when water is detected, the state of the water sensor is
LOW, and the state of water not detected is HIGH. It means that led will light on when water sensor
value is LOW to remind us it is raining and light off when water sensor value is HIGH.

Is equal to: buttonState == HIGH

11

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

STEP2: Connect Crowtail-LED to
Crowtail-Base shield’s D4 and Crowtail-PIR
motion sensor to D5 port. The complete
connection is as follows:
Open the P04_Intelligent_corridor_light with
Arduino IDE and upload it.

When you wave or walk within the range of the PIR motion sensor, the LED will turn on for 5 seconds.
If there is no movement of the object within the sensing range of the PIR motion sensor, the LED will
not light up.

What will you see

1. Macro definitions of PIR motion sensor pin and LED pin.
2. Define whether the module is output or input.
3. Create functions to turn LED on and turn LED off separately.
4. Create a boolean type object motion detection function that returns true when the object
moves, otherwise return false.
5. Determine the value returned by the object motion detection function in the loop() function to call
turnOnLED() and turnOffLED functions to turn the LED on or off.
6. Repeat loop() function.

Code overview

The prototype of the macro definition constant is #define [MacroName] [MacroValue]. What is the
difference between a macro definition constant and a variable? First, Macro-defined constants
cannot be changed while the program is running. Variables can be changed. Second, the variable
can be used inside the function defined by it, but the life cycle end when the function ends. The
macro defines the constant until the entire program runs, the life cycle ends.

Macro definition: #define LED 4 #define PIR_MOTION_SENSOR 5

Objects created with boolean types (including variables and methods) have only two values: true and

Boolean type: boolean isPeopleDetected(){}

Code usage

12

STEP1: Plug the Crowtail-Base Shield
onto the Arduino or Crowduino Board.

Hardware Connection

STEP2: Connect Crowtail-LED to Crowtail-Base
shield’s D3 and Crowtail-Rotary angle sensor to
A0 port. The complete connection is as follows:

Open the P05_Breathing_Light with Arduino
IDE and upload it.

false. By judging the returned value, we can easily execute the corresponding code according to the
difference of values.

Modular programming allows us to better manage and call our code, such as a module code problem,
we only need to modify the code inside the module, without modifying the code of the entire program.
In addition, modularizing the code allows us to implement functions with simpler logic.

Modular programming: void turnOnLED(){} void turnOffLED(){} boolean
isPeopleDetected(){}

Lesson 5 – Breathing light

Introduction

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – Rotary Angle Sensor x1

Crowtail – LED(Green) x1
Crowtail – Cable x2
USB Cable x1

Required Parts

This rotary angle sensor may also be known as potentiometer twig
that produces analog output between 0 and VCC (5V DC with
Crowduino) on its SIG pin. The angular range is 300 degrees with a
linear change in value. The resistance value is 10k ohms, perfect for
Arduino use. Some applications like smart light control, volume
control, only you can not think of things, no impossible things! For
this lesson, we will use rotary angle sensor and led to make a
breathing light, you can control the brightness of led like human
breathing!

13

When turning the knob on the rotary angle sensor, the brightness of the led will change. When you
turn to the limit in one direction, if the led is off, then if you turn to the limit in the other direction, the
brightness of the led is the maximum.

What will you see

1. Declare the pin of led and rotary angle sensor. Declare some constants to be used.
2. Initialize the serial monitor and initialize the rotary angle sensor to input and led to output.
3. Use getDegree() function to get the degrees of rotary angle sensor.
4. Print the degrees of rotary angle sensor and map the degrees as led brightness.

Code overview

Remap numbers from one range to another. That is, if the value is "fromLow", the mapped value will
be "toLow". If the value is "fromHigh", then the mapped value will be "toHigh". When "value" is from
other values from fromLow to fromHigh, it is also mapped to between toLow and toHigh in equal
proportions. So here we map the value of pmeterValue (between 0 and 1023) to gapValue (between
0 and 255). For example, if the value of pmeter is 200, after using the map() function, it will become
50 and be assigned to the variable: gapValue.

Arduino math function map():int gapValue = map(value, fromLow, fromHigh, toLow,
toHigh)

For analog pin, we use the analogWrite() function to write the value on an analog pin. Similar to
digitalWrite() function, it takes two parameters, but the second parameter is no longer only two high
and low states, it can be any number you want to write, and each value you write will give it the
corresponding state. But in fact, there is a premise, that is, the hardware must be able to divide so
many levels of effect. For example, most of the led are 256.

Analog Output: analogWrite(LED,brightness);

Serial print has two printing methods, one is Serial.print(), the other is Serial.println(). The difference
between them is that after “print” method prints the content, the information that needs to be printed
can continue to be displayed in this line, and println method will open a new line after printing the
content, that is, the information that needs to be printed can’t continue to be displayed in this line.
Serial.print() is used to print the string or variable that you want to output, If you want to output a
string, you need to wrap the string with " ". If you want to output the variable, just write the variable
name in parentheses.

Serial print: Serial.println("The angle between the mark and the starting position:");
Serial.println(degrees);

Code usage

14

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – Luminance Sensor x1

Crowtail – Cable x1
USB Cable x1

Required Parts

STEP1: Plug the Crowtail-Base Shield
onto the Arduino or Crowduino Board.

Hardware Connection

STEP2: Connect Crowtail-Luminance Sensor to
Crowtail-Base shield’s A0 port. The complete
connection is as follows:

Open the P06_Calculating_Light_Intensity
with Arduino IDE and upload it.

Lesson 6 – Calculating light intensity

Introduction
Crowtail - Luminance Sensor using APDS-9002 as lumens Sensor,
provide the linear transform lumen intensity for the output voltage
levels. And APDS-9002 spectrum and human eye is extremely close
to. It is very suitable for the field of AI applications.
In this lesson, we will use Crowtail-Luminance Sensor to obtain the
light intensity and print it in serial monitor.

We use the analogRead() function to read the value on an analog pin. analogRead() takes one
parameter, the analog pin you want to use, A0 in this case, and returns a number between 0 (0 volts)
and 1023 (5 volts), which is then assigned to the variable sensor_value.

Analog Input: int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);

Unlike void function (), an integer function will return a number after running, and this number is an
integer number. In short, this integer function() will return an integer number each time it is run.

Integer function: int getDegree(){}

15

Open the serial monitor, you will see the monitor is printing the voltage and luminance. When you
block the luminance sensor with your hand, you will see that the voltage and luminance detected by
the luminance sensor is significantly reduced.

What will you see

1. Create two arrays for use in the FmultiMap() function.
2. Initialize the serial monitor in the setup() function and set its baud rate to 9600.
3. Use the readAPDS9002Vout() function to get the voltage read by the luminance sensor.
4. Use the FmultiMap() function to get the real measurement point and more accurate data from the
sensor.
5. Use the readLuminance() function to get the luminance of the luminance sensor.
6. In the loop() function, print the voltage and luminance of the luminance sensor and then repeat.

Code overview

Its prototype is: Array name[].Arrays are a form of programming that organizes a set of elements of
the same type in an unordered form for ease of processing. Here we create two arrays and they will
be used in FmultiMap() function. float means that the array we created is floating point, not integer.
Pay attention to VoutArray[], it will act _in array in FmultiMap() function, so it should have increasing
values.

Array: float VoutArray[] = {} float LuxArray[] = {}

Unlike void function (), a float function will return a number after running, and this number is a floating
point number. In short, this float function () will return a floating point number each time it is run.
“analogpin” is the parameter of the function, it will be passed to the function, "uint8_t" is an unsigned
character that declares that each element in the array occupies 8 bits of storage.

Float function(): float readAPDS9002Vout(uint8_t analogpin){}

The prototype of the function is: float FmultiMap (float val, float * _in, float * _out, uint8_t
size).FmultiMap () is a function can be applied to the detection of sensors that do not change
linearly. Since I only need floating point numbers, the function returns a floating point number.
The parameters are the int val which comes from the analogRead() function, an array of input
values and an array of corresponding output values and a parameter to indicate the size of the
array's used. NOTE: the input array must be a monotone increasing array of values. You can see
more uses of this function here “https://playground.arduino.cc/Main/MultiMap/”.

FmultiMap function(): float FmultiMap(){}

Code usage

16

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – RTC x1

Crowtail – Cable x1
USB Cable x1

Required Parts

Open the downloaded folder “Crowtail-
Advanced kit for Arduino demo code”,
navigate to the folder lib-> RTC, and add
RTC to the Arduino library. Open the
P7_Get_Current_Time with Arduino IDE and
upload it.

STEP2: Connect Crowtail-RTC to Crowtail-Base
shield’s I port. The complete connection is as
follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Lesson 7 – Get current time

Introduction
This tiny RTC module is based on the clock chip DS1307
which communicates with microcontrollers with I2C
protocol. The clock/calendar provides seconds, minutes,
hours, day, date, month and year information. The end of
the month date is automatically adjusted for months with
fewer than 31 days, including corrections for leap year.
Besides, this module is really low power consumption, it
can serve you more than a month with a CR1220 battery.
If you want to make your own electronic watch, you need
to generate the correct time, so in this lesson, let's take a
look at how to use RTC to get the time.

Open the serial monitor of the Arduino IDE and you will see that the monitor is printing out your local
time.

What will you see

1. Import I2C library and RTC standard library.

Code overview

17

Lesson 8 – LCD display

Introduction

Crowtail-I2C LCD includes LCD1602 and MCP23008 modules. Unlike ordinary LCDs, which require

2. Initialize the serial port to set the baud rate to 9600, initialize the Wire library and the real time clock.
3. Determine if the RTC is running and initialize the time in the chip with the current date and time.
4. Get current date and time information saved by RTC.
5. Print the preliminary year, month, day, hour, minute and second information in the decimal output.

Arduino communicates with the real-time clock through the I2C bus. In order to use this bus, the
compiler must be notified to join the library. In addition, we also need to import the RTC library to get
the time.

Import library: #include <Wire.h> #include "RTClib.h"

“now()” is another function of RTC_DS1307. It returns a DateTime instance and saves the current
date and time information. After running this statement, we can know the current month through
now.month() and get the current minutes through now.minute(). And then years, days, hours and
seconds.

RTC_DS1307's now() function: DateTime now = RTC.now();

Serial.print() is used to print the string or variable that you want to output, it receives two parameters,
the first is the transmitted value, the second is the format of the transfer, DEC is the decimal, and
OCT is the octal, and HEX is the hexadecimal. If you want to output a string, you need to wrap the
string with " ". If you want to output the variable, just write the variable name in parentheses.

Serial print: Serial.print(now.year(), DEC); Serial.print('/');

The meaning of this statement is to create an instance, RTC_DS1307 is a class in RTClib.h, RTC is to
create an instance of RTC_DS1307 class, this instance includes some related functions and variables.

Instance: RTC_DS1307 RTC;

Initialize the serial monitor and set the baud rate to 9600 to initialize the I2C bus and real-time clock.

Initialization: Serial.begin(9600); Wire.begin(); RTC.begin();

Initialize the RTC chip with the current date and time.

Initialize the RTC chip: RTC.adjust(DateTime(__DATE__, __TIME__))

Code usage

18

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – I2C LCD x1

Crowtail – Cable x1
USB Cable x1

Required Parts

STEP2: Connect Crowtail-I2C LCD to Crowtail-Base shield’s I port. The complete connection is as
follows:

Open the downloaded folder “Crowtail-Advanced kit for Arduino demo code”, navigate to the folder
lib-> LiquidCrystal, and add LiquidCrystal to the Arduino library. Open the P08_LCD_Display with
Arduino IDE and upload it.

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

many pins, the Crowtail-I2C LCD only needs 4 pins to
control everything. It's very popular where display is
needed.
Here, we will use Crowtail-I2C LCD to display our first
greeting.

You will first see the LCD light up and display the greeting "hello world" on the first line. After a
second, the second line of the LCD will display "good bye" and finally the LCD will go out.

What will you see

19

1. Import the I2C and LCD library.
2. Create an LCD instance object.
3. Set up the LCD’s number of rows and columns.
4. Print message on the LCD.
5. Clear LCD display and turn off the backlight of LCD.

Code overview

Import the library into your program so that you can work with modules using the functions built into
the library. Usually, we use #include <library name> or #include "library name" to import the library.
Wire.h is a library of I2C modules, before we use I2C modules, it is necessary for us to import this
library. LiquidCrystal.h is a library of LCD, it can provide many useful and convenient functions for us
to use LCD.

Import library: #include <Wire.h> #include "LiquidCrystal.h"

After introducing the LiquidCrystal.h library, we can create an instance using the function inside. The
name of this instance is lcd, which is connected to 0 (I2C address). Surely, if you want, you can
change the name of the instance, such as LiquidCrystal I2C_LCD(0). But after changing the name of
the instance object, don't forget to change the instance object below.

Create an instance: LiquidCrystal lcd(0);

“lcd.begin()” function is built-in LiquidCrystal.h library, its prototype is lcd.begin(rows,columns). Here,
we set up the LCD’s number of rows is 16 and number of columns is 2.

LCD set up: lcd.begin(16,2)

“lcd.print()” function is built-in LiquidCrystal.h library, the content in parentheses is what you need to
print. The content in parentheses can be a variable or a string.

LCD print: lcd.print("hello, world!");

“lcd.setCursor()” function is built-in LiquidCrystal.h library, its prototype is lcd.setCursor(rows,col-
umns). We use this function to set which row and column to display the message.

LCD setCursor: lcd.setCursor(0, 1);

“lcd.clear()” function and lcd.setBacklight() function are built-in LiquidCrystal.h library, lcd.clear() is to
clear the display on the LCD and lcd.setBacklight() is to turn on/off the backlight of the LCD.

LCD clear and LCD backlight: lcd.clear(); lcd.setBacklight(LOW);

Code usage

20

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – I2C LCD x1

Crowtail – RTC x1
Crowtail – Cable x2
USB Cable x1

Required Parts

STEP2: Connect Crowtail-I2C
LCD and Crowtail-RTC to
Crowtail-Base shield’s I port.
The complete connection is
as follows:

Open the P09_Electric_Watch
with Arduino IDE and upload
it.

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Lesson 9 – Electric watch

Introduction
Have you ever thought about making an electronic watch for yourself? This must be very cool! Today,
we will use the electronic modules RTC and LCD learned above to make an electronic watch. Bring
this watch to make yourself the coolest person on the street!

You will see the current year, month, and day information displayed on the first line of the LCD, the
current hour, minute, and second information displayed on the second line, and the time displayed
on the LCD is constantly updated over time.

What will you see

1. Import the I2C, RTC and LCD library.
2. Create an RTC instance and lcd instance.
3. Initialize the serial monitor, I2C and RTC.
4. Determine if the RTC is running and initialize the time in the chip with the current date and time.
5. Initialize the lcd and get the current time from RTC module. Then print the current time information
on the LCD.

Code overview

21

Lesson 10 – Temperature&Humidity detecting system

Introduction
This module can help you detect the temperature and humidity
of the environment of your house. The module contains a
DHT11 temperature & humidity sensor that is a complex sensor
with a calibrated digital signal out. It uses digital module
acquisition technology and the temperature&humidity sensor
technology. The sens or consists of a resistance type moisture
element and an NTC temperature measuring element. Because
of single wire serial interface, it is easy to use the module.
This lesson, we will use Crowtail-Temperature&humidity sensor
and Crowtail-I2C LCD to make a temperature and humidity
detecting system, which aim to help you get the environment’s
temperature and humidity around you.

Import the necessary of using RTC and LCD. Both RTC and LCD are I2C modules, so we need to
import the I2C Wire.h library. RTClib.h and LiquidCrystal.h are the libraries of RTC module and LCD
module, they both provide many convenient and useful functions to use.

Import library: #include <Wire.h> #include "RTClib.h" #include "LiquidCrystal.h"

After import the RTC and LCD library, we can use the function in the library to create instances for us
to use RTC and LCD. Here we create an RTC instance and lcd instance.

Create instance: RTC_DS1307 RTC; LiquidCrystal lcd(0);

Initialize the RTC chip with the current date and time.

Initialize the RTC chip: RTC.adjust(DateTime(__DATE__, __TIME__));

“now()” is another function of RTC_DS1307. It returns a DateTime instance and saves the current date
and time information. After running this statement, we can know the current month through now.month()
and get the current through now.minute(). The number of minutes, and so on, year, day, hour, second.

RTC_DS1307's now() function: DateTime now = RTC.now();

“lcd.print()” function is built-in LiquidCrystal.h library, the content in parentheses is what you need to
print. The content in parentheses can be a variable or a string.

LCD print: lcd.print();

Code usage

22

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – I2C LCD x1

Crowtail – Temperature&Humidity Sensor x1
Crowtail – Cable x2
USB Cable x1

Required Parts

Open the downloaded folder “Crowtail-Advanced kit for Arduino demo code”, navigate to the folder
lib-> DHT, and add DHT to the Arduino library. Open the P10_Temperature&Humidity_Detecting_
System with Arduino IDE and upload it.

STEP2: Connect Crowtail-I2C LCD and Crowtail-Temperature&Humidity Sensor to Crowtail-Base
shield’s I port and D5 port. The complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

You will see that the first column of the LCD displays the humidity information of the current environment,
and the second column displays the temperature information of the current environment. When you blow
on the Temperature & Humidity Sensor, you will see Temperature and humidity will also change on LCD.

What will you see

1. Import the LCD and Temperature&Humidity Sensor library.
2. Macro definitions of Temperature&Humidity Sensor pin and DHT11.
3. Create a DHT instance and lcd instance.
4. Initialize the serial monitor, Temperature&Humidity Sensor and lcd.
5. Read the humidity and temperature information from Temperature&Humidity Sensor.
6. Print humidity and temperature information on LCD.

Code overview

DHT library: #include "DHT.h".

Code usage

23

Crowtail-MOSFET enables you to control high voltage items (such as 50VDC) and low voltages
(such as 5V) on a microcontroller. A MOSFET is also a switch. There are two screw terminals on the
board. One for input power and the other for the device you want to control. Crowtail-MOSFET
transfers power from one end to the other when closed. However, if there is no external power
source, your device can still get power from the microcontroller through the Crowtail interface.
Similar to relays, MOSFET is often used in automatic control systems. It uses a small power source
to control a large power source so that our electricity can be controlled more safely and conveniently.
In this lesson, we will use MOSFET and motor to make a PWM controlled fan, so that we can control
the speed of the fan as we want!

DHT.h is a library based on temperature and humidity sensors. It contains multiple dht temperature
and humidity sensors, such as dht11, dht22 and other sensors, so we will use the built-in function to
read the temperature and humidity values.

The macro defines a DHT type. Because DHT.h contains libraries for multiple DHT sensors, we need
to tell the program which type of DHT sensor we need to use when we create an instance object for
DHT.

DHT type: #define DHTTYPE DHT11.

The role of is isnan() to determine whether the number in the brackets is a number. Isnan() is a short
of “is not a number”, if the number in the parentheses is not a number, it returns TRUE, otherwise, it
returns FALSE.

Isnan(): if (isnan(t) || isnan(h)) {}

The prototype for creating a DHT instance object is DHT name (uin8_t pin, uin8_t type, uin8_t count).
The “pin” represents the pin of the DHT sensor connected to the Arduino. The “type” represents the
type of the DHT sensor. Our Crowtail–Temperature & Humidity Sensor uses DHT11. The “count” is
an optional parameter.

Lesson 11 – PWM control

Introduction

Create DHT instance: DHT dht(DHTPIN, DHTTYPE);

The prototype for creating a DHT instance object is DHT name (uin8_t pin, uin8_t type, uin8_t count).
The “pin” represents the pin of the DHT sensor connected to the Arduino. The “type” represents the
type of the DHT sensor. Our Crowtail–Temperature & Humidity Sensor uses DHT11. The “count” is
an optional parameter.

Read humidity and temperature: float h = dht.readHumidity();
float t = dht.readTemperature();

24

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – MOSFET x1
Crowtail – Cable x1

Battery Case x1
DC Motor x1
USB Cable x1

Required Parts

Open the P11_PWM_Control with Arduino IDE and upload it.

STEP2: Connect Crowtail-MOSFET to Crowtail-Base shield’s D5 port. Connect battery case and DC
motor to Crowtail-MOSFET. The complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Pulse-width modulation (PWM) is a modulation technique used to encode a message into a pulsing
signal. Although this modulation technique can be used to encode information for transmission, its
main use is to allow the control of the power supplied to electrical devices, especially to inertial loads
such as motors.

When talking about how long a PWM signal is
on, this is referred to as duty cycle. Duty cycle
is measured in percentage. The percentage of
duty cycle specifically describes the percentage
of time a digital signal is on over an interval or
period of time. The variation in the duty cycle
tells the motor how fast it should turn.

What is PWM

25

You will see the motor start at a low speed
and then it will slowly increase the speed
until it reaches its maximum speed. When
the motor reaches its maximum speed, the
speed of the motor will start to slowly
decrease and reach its minimum speed.

What will you see

1. Declare the pin the MOSFET is connected to.
2. Define MOSFET as an output module.
3. Slowly increase the speed of the motor.
4. Slowly decrease the speed of the motor.

Code overview

Declare two variables named mosfetPin and delayTime, which means that we can use MOSFET
through D5 port and the value of delayTime is 50.

Integer Variables: int mosfetPin = 5; int delayTime = 50;

The Arduino for loop provides a mechanism to repeat a section of code depending on the value of a
variable. So you set the initial value of the variable, the condition to exit the loop (testing the variable),
and the action on the variable each time around the loop. Initialiser section: The initial value of the
control variable. Condition Section: The condition to stop the loop. Iterator Section: The loop variable
action (increment or decrement).

For() statement: for (<initialiser code> ; <condition test expression> ; <iterator
expression>){code to be run if condition test expression is true }

The prototype of the analogWrite () function is analogWrite(pin,value). We know the analogWrite()
function is to write the value on an analog pin. Actually, writing the analog value is controlled by PWM,
so we can directly use analogWrite () to write the PWM wave. Similar to digitalWrite() function, it takes
two parameter, But the second parameter is no longer only two high and low states, it can be any
number you want to write, and each value you write will give it the corresponding state. Note that value
has 256 levels, from 0-255.

Analog output: analogWrite(mosfetPin, i);

Code usage

26

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1

Crowtail – 9G Servo x1
USB Cable x1

Required Parts

STEP2: Connect Crowtail-9G Servo to
Crowtail-Base shield’s D5 port. The complete
connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

You will see that the servo is rotated 180 degrees from 0 degrees and then rotated back to 0 degrees
from 180 degrees.

What will you see

1. Import the servo library.
2. Create a servo object to control servo.
3. Declare a variable to store the servo position.
4. Attach the servo on D5 port.
5. Servo goes from 0 degrees to 180 degrees.
6. Servo goes from 180 degrees to 0 degrees.

Code overview

Open the downloaded folder “Crowtail-
Advanced kit for Arduino demo code”, navigate
to the folder lib-> Servo, and add Servo to the
Arduino library. Open the P12_Servo_Control
with Arduino IDE and upload it.

Lesson 12 – Servo control

Introduction

Tower Pro SG90 is a high quality, low-cost servo for all your
mechatronic needs. It comes with a 4-pin power and control
cable, mounting hardware. Servo is used in many intelligent
situations, such as automatic doors, robots, aerial models, etc.
It can be said that the servo is almost an indispensable module
in the field of intelligent control, so in this lesson, we will learn
how to use the servo and make you can make your project
easier by using it.

27

This Crowtail-LED Matrix uses the HT16K33 which is a neat little
chip that has the ability to drive a multiplexed 8x8 matrix (that's 64
individual LED). We offer an LED matrix to you-blue. You need to
pay attention to that the driver can turn LED on and off but does not
have the ability to individually PWM dim them.
In this lesson, we will learn how to use Crowtail-LED Matrix to show
the string. Let’s use this module to make a billboard and show a
personal advertisement!

Lesson 13 – Matrix display

Introduction

Import the servo library. Servo.h is a wonderful library of the servo, it provides a very convenient
function to control rotation of servo.

Servo library: #include <Servo.h>

Create a servo object to control the servo. After import the servo library, we need to create a servo
object to tell that need to control servo.

Create servo instance: Servo myservo;

Declare which pin the servo is connected to. Different from the other modules which use variable to
initialize which pin them should be connected to, servo use ServoObject.attach() function to tell which
pin it is connected to. For example, our code is to connect the servo to D5 port.

Attach function: myservo.attach(5);

The Arduino for loop provides a mechanism to repeat a section of code depending on the value of a
variable. So you set the initial value of the variable, the condition to exit the loop (testing the variable),
and the action on the variable each time around the loop. Initialiser section: The initial value of the
control variable. Condition Section: The condition to stop the loop. Iterator Section: The loop variable
action (increment or decrement). In the first for() statement, we initialize pos to 0, then judge if the pos
less than 180, if yes, pos plus 1 and run the code in for statement.

For() statement: for (<initialiser code> ; <condition test expression> ; <iterator
expression>){code to be run if condition test expression is true }

Code usage

28

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – LED Matrix x1

Crowtail – Cable x1
USB Cable x1

Required Parts

STEP2: Connect Crowtail-LED Matrix
to Crowtail-Base shield’s I port. The
complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

You can see that the LED matrix scrolls in one direction to display "Hello", and then rotates to 90
degrees, and scrolls to display "LED Matrix".

What will you see

1. Import the I2C and LED Matrix library.
2. Create a matrix instance object to control LED Matrix.
3. Initialize and pass the I2C address of LED Matrix.
4. Set text display size and scroll display on LED Matrix.
5. Use for() statement to scroll display “Hello”.
6. Change text display direction.
7. Use for() statement to scroll display “LED Matrix”.
8. Change to default text display orientation.

Code overview

Open the downloaded folder
“Crowtail-Advanced kit for Arduino
demo code”, navigate to the folder
lib-> Adafruit_LED_Backpack, and
add Adafruit_LED_Backpack to the
Arduino library. Open the P13_
Matrix_Display with Arduino IDE and
upload it.

“Adafruit_LEDBackpack.h” is a basic library for an 8x8 LED matrix. The library is written for the
Arduino and will work with any Arduino as it just uses the I2C pins. The code is very portable and can
be easily adapted to any I2C-capable micro.

Matrix library: #include "Adafruit_LEDBackpack.h"

Code usage

29

Lesson 14 – Get atmospheric pressure

Introduction

The BMP180 offers a pressure measuring a range of 300 to 1100 hPa with an accuracy down to 0.02

Create an LED Matrix instance after we import the Adafruit_LEDBackpack.h library. The name of the
instance object is matrix.

Create LED Matrix instance: Adafruit_8x8matrix matrix;

Initialize the LED Matrix instance object and pass the I2C address. The instance object matrix address
is 0x70. The reason that I2C modules can be cascaded is that each module above has its own I2C
address so that they will not be confused when communicating.

Initialize LED Matrix: matrix.begin(0x70);

We use the matrix.setTextSize() function to set the text size displayed on the LED matrix. 1 is a good
choice for 8x8 LED matrix display. You can try changing 1 to 2 and see what the LED matrix will look
like.

Text size: matrix.setTextSize(1);

Using matrix.setTextWrap() function we can set whether the text display on LED Matrix is wrapped or
scroll. If the parameters in the brackets are true, the display text effect is wrapped, if it is false, the
display text effect is scroll.

Wrap of scroll: matrix.setTextWrap(false);

Set whether the LED is on or off, when you choose “LED_ON”, you can see the effect of led light, if
you choose “LED_OFF”, you will not see any effect.

LED Matrix ON or OFF: matrix.setTextColor(LED_ON);

Set the position of the cursor. We use the matrix.setCursor() function to position the cursor. For
example, the cursor is set to display from the horizontal x and vertical 0. Remember that 0 is the first
and 1 is the second.

Set Cursor: matrix.setCursor(x,0);

The matrix.setRotation() function is to set the direction of text display on LED Matrix. The parameters
in parentheses represent the display direction, 0 is the default angle, and the value of the parameter
differs by 1 for every 90 degrees.

Display direction: matrix.setRotation(3); matrix.setRotation(0);

30

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – BMP180 Barometer x1

Crowtail – Cable x1
USB Cable x1

Required Parts

STEP2: Connect Crowtail-BMP180 Barometer to Crowtail-Base shield’s I port. The complete
connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

After uploading the program, open the serial monitor you will see the monitor is printing the altitude,
temperature, absolute pressure, relative pressure and calculated altitude data.

What will you see

1. Import the BMP180 Barometer and I2C library.
2. Create a BMP180 instance to obtain the pressure data and define a macro of altitude.
3. Initialize the serial monitor and set the baud rate for it and initialize the BMP180 barometer.
4. Print the altitude and get the temperature and then print.
5. Get the absolute pressure and relative pressure and then print.

Code overview

Open the downloaded folder “Crowtail-
Advanced kit for Arduino demo code”,
navigate to the folder lib-> SFE_
BMP180, and add SFE_BMP180 to the
Arduino library. Open the P14_Get_
Atmospheric_Pressure with Arduino IDE
and upload it.

 hPa in advanced resolution mode. It's based on piezo-resistive
technology for high accuracy, ruggedness and long term
stability. These come factory-calibrated, with the calibration
coefficients already stored in ROM. What makes this sensor
great is that it is nearly identical to its former rev, the BMP085!
This lesson we will try to use Crowtail-BMP180 Barometer to get
the pressure of atmospheric.

31

Lesson 15 – Digital compass

Introduction

Import the BMP180 library. SFE_BMP180.h is a library of BMP180 barometer, with using the function
of this library, we can easy to obtain the pressure data.

BMP180 Barometer library: #include <SFE_BMP180.h>

As I often mentioned before, after importing the library, if we want to use the library's functions, we
need to create an instance for us so that we can use the module functions more easily.

Create BMP180 instance object: SFE_BMP180 pressure;

The prototype of the macro definition constant is #define [MacroName] [MacroValue]. We will use the
variable of altitude to get the relative pressure data. You need to change your own altitude.

Macro definition: #define ALTITUDE 1655.0.

“pressure.getTemperature” is the function of getting BMP180 temperature data. The temperature data
is stored in the variable T. If successfully gets pressure data, the function returns 1, otherwise, it
returns 0.

Get temperature data: status = pressure.getTemperature(T);

“pressure.getPressure()” is the function of getting BMP180 absolute pressure data. Similar to
pressure.getTemperature function, the pressure data is stored in the variable P and function returns 1
if successful and 0 if failure. What you need to note is that this function requires the previous
temperature data(T).

Get absolute pressure data: status = pressure.getPressure(P,T);

“pressure.sealevel” is the function of getting BMP180 relative pressure data. Parameter P is absolute
pressure in mb. Parameter ALTITUDE is current altitude in m. The result p0 is sea-level compensated
pressure in mb.

Crowtail-3-Axis Compass module, a member of Crowtail family uses I²C based Honeywell HMC5883L
digital compass. This ASIC is equipped with high-resolution HMC118X magneto-resistive sensors and a
12-bit ADC. It can provide an accurate compass heading. Signal conditioning like amplification,
automatic degaussing strap drivers and offset cancellation are inbuilt. This Crowtail module also
includes an XC6206P332MR for power supply requirement. Hence user can connect any 3.3V to 6V
DC power supply.

Get relative pressure data: p0 = pressure.sealevel(P,ALTITUDE);

Code usage

32

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – 3-Axis Compass x1

Crowtail – Cable x1
USB Cable x1

Required Parts

STEP2: Connect Crowtail-3-Axis Compass to Crowtail-Base shield’s I port. The complete connection
is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Upload the program and open the serial monitor, you can see the monitor is printing the raw values
of 3-axis, the scaled values of 3-axis and the information of compass’s radians and degrees.

What will you see

1. Import the I2C and HMC5883L compass library.
2. Create a compass instance and a variable to store errors that occur.
3. In the setup() function, initialize serial, I2C and check errors for compass.
4. Retrieve the raw values from the compass (not scaled)
5. Retrieved the scaled values from the compass (scaled to the configured scale).

Code overview

Open the downloaded folder “Crowtail-
Advanced kit for Arduino demo code”,
navigate to the folder lib-> 3Axis_Digital_-
Compass_HMC5883L, and add Digital
Compass to the Arduino library. Open the
P15_Digital_Compass with Arduino IDE and
upload it.

Do you know what electronic module the ship's heading guidance
uses? That's right, this is the Crowtail-3-Axis Compass module that
you need to learn in this lesson. Let's start learning how to use the
Crowtail-3-Axis Compass module to make a compass.

33

6. Get the radians and change it into degrees, need to make sure the radians between 0-2*PI and
degrees between 0-360 degrees.
7. Use Output() function to print all the data

Import the library of the compass. The library has many build-in functions to get raw, scaled and
degree values.

HMC5883L Compass Library: #include <HMC5883L.h>

Once you get your heading, you need to add your “Declination Angle”, which is the “Error” of the
magnetic field in your location. You can find yours here: “http://www.magnetic-declination.com/”. Mine
is -2 37’ which is -2.617 degrees and I need -0.0456752665 radians and I will use -0.0457.

Add your “Declination Angle”: float declinationAngle = -0.0457;

Create a function called output() to print all the information of compass, there are four parameters we
need to pass to this function, including raw, scaled, radians and degrees.

Function: Output()

“compass.readRawAxis()” is the function retrieve the raw values from the compass(not scaled).
“compass.readScaledAxis” is the function retrieve the scaled values from the compass(scaled to the
configured scale).

Raw and scaled: MagnetometerRaw raw = compass.readRawAxis();
MagnetometerScaled scaled = compass.readScaledAxis();

Code usage

Lesson 16 – IR control system

Introduction
The Crowtail- IR Receiver module uses the HS0038B which is
miniaturized receivers for infrared remote control systems and it
is the standard IR remote control receiver series, supporting all
major transmission codes. The IR detector has a demodulator
inside that looks for modulated IR at 38 kHz. The Infrared
Receiver can receive signals well within 10 meters. If more than
10 meters, the receiver may not get the signals.This lesson, we
will use the IR Receiver, Infrared Remote Control and two color
LEDs to make a wireless IR control project, which allows us to
turn these two LEDs on or off.

34

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – IR Receiver x1
Crowtail – Infrared Remote Control x1

Crowtail – LED(Green) x1
Crowtail – LED(Red) x1
Crowtail – Cable x3
USB Cable x1

Required Parts

STEP2: Connect Crowtail-LED(Red),
Crotail-LED(Green) and Crowtail-IR Receiver to
Crowtail-Base shield's D3, D4 and D5 ports.The
complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto
the Arduino or Crowduino Board.

Hardware Connection

After the program upload is completed, when you press the "1" button on the remote control, the red
LED lights on. When you press the "2" button on the remote control, the green LED light on. When
the "3" button on the remote control is pressed, these two LEDs will be turned off at the same time.

What will you see

1. Import the IR remote library and declare some variable of the remote control button.
2. Declare the pin of two color LEDs and IR Receiver and create an instance of IR Receiver.
3. Initialize serial monitor and IR receiver and then declare modules are output or input.
4. Determine which button is pressed .if the pressed button is the last button pressed or the newly
pressed button.
5. Use switch() statement to do the different things when different buttons are pressed.
6. Receive the next value.

Code overview

Open the downloaded folder “Crowtail-
Advanced kit for Arduino demo code”, navigate
to the folder lib-> IRremote, and add IRremote to
the Arduino library. Open the P16_IR_Control_
System with Arduino IDE and upload it.

'const' is the abbreviation of constants. If you use this to define variables, the variables are marked as
“read-only”, that is, they cannot be changed during the program. Constants are great for declaring pin

Constant: const uint16_t BUTTON_0 = 0x6897;

Code usage

35

Lesson 17 – ESP8266 TCP server

Introduction
The serial wifi module based on ESP-12. which is an
ultra-low-power UART-WiFi module. It has excellent dimensions
and ULP technology compared to other similar modules. The
module is a special design for mobile devices and the Internet of
Things. Once firmware is upgraded to the appropriate version, a
compatible Android device can run the IOT. APK to do the
following: control the PWM, I / O pin, or Serial communication.
For example, you can use this module transmit date with its
serial port. It is easy to communicate with other devices
This lesson, we will use Serial wifi module to make a TCP server
to print the information on the website.

number variables that will not change throughout the program. “uint16_t” is a char unsigned character,
the constant declared with it is a 16-bit character. "0x6897" is the encoding for hex button 0.

Before we use the remote control to control the project, we need to make the IR Receiver start
receiver so that IR Receiver can get the data we send from the remote control.

Start receiver: irrecv.enableIRIn();

“&” symbol means AND operation, just like logic AND modules we learned in Starter kit for Arduino,
When both of the result is 1 when both numbers are 1, otherwise 0. The computer will get values by
converting hexadecimal numbers to binary numbers. For example, 0xF in hexadecimal will be
changed into 0x1111 in a binary number, then we operate 0x1111 and results.value(also need to
convert hexadecimal number to binary number) to get the result. So we use results.value and 0xFFFF
operation. When result.value is 0xFFFF (press the original button), resultCode is 0xFFFF. When
result.value is not 0xFFFF (press the new button), resultCode is results. value.

AND operation: uint16_t resultCode = (results.value & 0xFFFF);

Switch statement is similar to if/else statement, it is a judgment selection code. Its function is to control
the flow of processes. When the quantity expressed by the variable expression matches the constant
in one of the case statements, the statements following the case statement are executed, and the
statements in all subsequent case statements are executed in turn, unless a break; statement is found
out of the switch statement... If the amount of the constant expression does not match the constants of
all case statements, the statements in the default statement are executed.

Switch case statement: switch(variable){case constantExpression1:statement1;break;
case constantExpression2:statement2:break; default:statement2;break;}

36

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – Serial Wifi x1

Crowtail – Cable x1
USB Cable x1

Required Parts

STEP2: Connect Crowtail-Serial Wifi to Crowtail-Base shield’s U2 port. The
complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Upload the code and open the serial monitor, you
can see some configuration information. Then, use
your pc to connect the wifi of Serial Wifi. Once you
connect the Serial Wifi module, open your browser
and type the IP address you just saw from the serial
monitor to visit the web server of the Serial Wifi.

What will you see

1. Macro defines a variable DEBUG to true.
2. Send the data to ESP8266 to configure access
points and other connection information.
3. Check if the ESP is available, if yes, send the
connection id and webpage information.
4. Create a function to send data.

Code overview

Open the P17_ESP8266_TCP_Server with Arduino IDE and upload it.

Switch case statement: switch(variable){case constantExpression1:statement1;break;
case constantExpression2:statement2:break; default:statement2;break;}

The prototype of the macro definition constant is #define [MacroName] [MacroValue]. What is the
difference between a macro definition constant and a variable? Macro-defined constants cannot be
changed while the program is running. We will use this macro definition constant in the function of
sendData().

Macro definition: #define DEBUG true.

This function is to send the data to ESP8266. “command” is the data/command to send. “timeout” is

Send data: String sendData(String command, const int timeout, boolean debug){code
to run; return response;}

Code usage

37

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – Temperature&Humidity Sensor x1
Crowtail – Water Sensor x1

Crowtail – I2C LCD x1
Crowtail – LED x1
Crowtail – Cable x4
USB Cable x1

Required Parts

STEP2: Connect Crowtail-Water Sensor, Crowtail-Temperature&Humidity Sensor and Crowtail-LED
to Crowtail-Base shield’s D4, D5 and D6 port. Connect Crowtail-I2C LCD to Crowtail-Base shield’s I
port. The complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Lesson 18 – Weather reminder

Introduction

the time to wait for a response. “debug” is a selection parameter, choose whether to print on serial
monitor(true=yes, false=no). “return response” is to get the response from the esp8266. “boolean” is
a basic type of data, it only returns true or false when print.

This is slightly different from the normal string, that is, there are "<>" signs on both sides of the string.
This is actually a string representation of a web page, h1 represents the few lines of the string on the
web page.

Have you ever been in a hurry without paying attention to the outside temperature and whether it rained?
I once had such an experience, because I was in a hurry and did not notice that the temperature outside
was so cold, and then I was shivered by the coldness.
In this lesson, we will solve this problem for you! We will use Crowtail-Temperature & Humidity sensor,
Crowtail-Water sensor, Crowtail-I2C LCD and Crowtail-LED as a weather reminder so that you can also
know the weather when you are in a hurry.

Open the P18_Weather_Reminder with Arduino IDE and upload it.

Html string: String webpage = "<h1>Hello World!</h1>";

38

You can see the LCD will display the information of temperature and humidity. And if there is a rain
detected by water sensor, the LCD will display the "Bring umbrella" prompt. In addition, the red led
will light up to make it more obvious that it is raining. You need to bring an umbrella. When the water
sensor does not detect water, the LCD no longer displays the "Bring umbrella" prompt, and the red
led will go out.

What will you see

1. Import I2C, LCD and DHT library.
2. Declare the pin and type of Temperature&Humidity sensor and initialization.
3. Declare I2C address of LCD and declare the pin of water sensor and LED.
4. Initialize the DHT and LCD. Declare modules are output or input.
5. Read the humidity, temperature and water state information.
6. If water is detected, show the temperature and humidity information and water remind on LCD.
7. If water is not detected, it only shows the temperature and humidity information.

Code overview

Import the temperature and humidity sensor, LCD and I2C library. DHT.h is a library based on
temperature and humidity sensors. LiquidCrystal.h is a library of LCD. Wire.h is a library of I2C
modules.

Import library: #include <Wire.h> #include "LiquidCrystal.h" #include "DHT.h"

The prototype for creating a DHT instance object is DHT name (uin8_t pin, uin8_t type, uin8_t count).

Create DHT and LCD instance: DHT dht(DHTPIN, DHTTYPE); LiquidCrystal lcd(0);

Code usage

39

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – IR Receiver x1
Crowtail – MOSFET x1
Crowtail – LED(Green) x1
Crowtail – 9G Servo x1

Crowtail – Cable x3
Infrared Remote Control x1
Battery Case x1
DC Motor x1
USB Cable x1

Required Parts

STEP2: Connect Crowtail-9G Servo, Crowtail-MOSFET, Crowtail-LED and Crowtail-IR Receiver to
Crowtail-Base shield’s D2, D3, D4 and D5 port. The complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Lesson 19 – Remote control system

Introduction
Have you ever been troubled by the need to turn off the fans yourself? Have you ever been troubled
by the need to open the door yourself? Have you ever bothered to get up at night and turn on the
light in the toilet? You must have thought that if you could use a simple remote control to control all of
them!
Let's get started, we will use IR receiver, Infrared remote control, DC motor, Servo, MOSFET, LED to
make a remote control system.

 The “pin” represents the pin of the DHT sensor connected to the Arduino. The “type” represents the
type of the DHT sensor. Our Crowtail–Temperature & Humidity Sensor uses DHT11. The “count” is
an optional parameter. “LiquidCrystal lcd(0)” is to create an instance of LCD, which is connected to
0(I2C address).

Before to use serial monitor, dht and lcd, we need to initialize them. Here, we initialize the baud rate of
serial monitor is 9600 and we set up the LCD’s number of rows and columns.

Initialize : Serial.begin(9600); dht.begin(); lcd.begin(16, 2);

The role of is isnan() to determine whether the number in the brackets is a number. Isnan() is a short
of “is not a number”, if the number in the parentheses is not a number, it returns TRUE, otherwise it
returns FALSE.

Isnan(): if (isnan(t) || isnan(h)) {}

40

Upload the program, when you press the “0” button on Infrared remote control, you can see the servo is
turning to 180 degrees (open door) and then rotate back to 0 degrees (close door). When you press the
“1” button, you can see the motor will be turned on. When you press the “2” button, you can see the
LED will be turned on. When you press the “3” or “4” button, the motor or LED will be turned off
separately. If you turn on both the motor and LED, you can press the “5” button to close all the modules.

What will you see

1. Import servo and IR remote library.
2. Declare some constants, that is, the hexadecimal representation of the remote control buttons.
3. Create servo and IR Receiver instance object and declare the pin of modules.
4. Initialize the servo and IR receiver. Declare modules are output or input.
5. Determine which button is pressed .if the pressed button is the last button pressed or the newly
pressed button.
6. Use switch() statement to do the different things when different buttons are pressed.
7. Receive the next value.

Code overview

Open the P19_Remote_Control
_System with Arduino IDE and
upload it.

Decoding result received by IR Receiver. The decoded result is placed in the instance object “results”
constructed by “decode_results”.

Decode results: decode_results results;

“&” symbol means AND operation, just like logic AND modules we learned in Starter kit for Arduino, When
both of the results is 1 when both numbers are 1, otherwise 0. The computer will get values by converting
hexadecimal numbers to binary numbers. For example, 0xF in hexadecimal will be changed into 0x1111 in

AND operation: uint16_t resultCode = (results.value & 0xFFFF);

Code usage

41

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – LED Matrix x1
Crowtail – Button x1

Crowtail – 9G Servo x1
Crowtail – Cable x2
USB Cable x1

Required Parts

STEP1: Plug the Crowtail-Base
Shield onto the Arduino or
Crowduino Board.

Hardware Connection

Lesson 20 – Polite automatic door

Introduction
Have you ever been doing your own thing and suddenly been asked by your parents to open the
door? This is definitely a very annoying thing, and I am determined to change it! So in this course,
we will use Crowtail-LED Matrix, Crowtail-9G Servo and Crowtail-Button to make a simulated
automatic door opening for the door of our house. Of course, this door will be very polite to visitors.

binary number, then we operate 0x1111 and results.value(also need to convert hexadecimal number to
binary number) to get the result. So we use results.value and 0xFFFF operation. When result.value is
0xFFFF (press the original button), resultCode is 0xFFFF. When result.value is not 0xFFFF (press the new
button), resultCode is results. value.

Switch statement is similar to if/else statement, it is a judgment selection code. Its function is to
control the flow of processes. When the quantity expressed by the variable expression matches the
constant in one of the case statements, the statements following the case statement are executed,
and the statements in all subsequent case statements are executed in turn, unless a break; statement
is found out of the switch statement. . If the amount of the constant expression does not match the
constants of all case statements, the statements in the default statement are executed.

Switch case statement: switch(variable){case constantExpression1:statement1;break;
case constantExpression2:statement2:break; default:statement2;break;}

42

STEP2: Connect Crowtail-Button and Crowtail-9G Servo to Crowtail-Base shield’s D5 and D6 port.
Connect Crowtail-LED Matrix to Crowtail-Base shield’s I port. The complete connection is as follows:

Open the P20_Polite_Automatic_Door with Arduino IDE and upload it.

Upload the program, when you press the button, the servo will rotate to 180 degrees(open door) and
LED Matrix will show “Welcome” prompt message. When you release the button, the servo will rotate
back to 0 degrees(close door). LED Matrix no longer prompts.

What will you see

1. Import the I2C, LED Matrix and servo library.
2. Create instances of LED Matrix and servo.
3. Declare variables of button’s pin and state.
4. Initialize the LED Matrix and servo, pass the I2C address to LED Matrix and declare the pin of servo.
5. Read the state of the button.
6. If button is pressed, LED Matrix displays the welcome message and servo rotate to 180 degrees.
7. If button is not pressed, LED Matrix will display nothing and servo rotate to 0 degrees.

Code overview

Switch case statement: switch(variable){case constantExpression1:statement1;break;
case constantExpression2:statement2:break; default:statement2;break;}

This would be always the first thing to do when you need to use the external function. Crowtail-LED
Matrix is an I2C module, so we need to import I2C library(Wire.h) first. Then we import LED Matrix’s
library “Adafruit_LEDBackpack.h” and servo’s library “Servo.h”.

Import library: #include <Wire.h> #include "Adafruit_LEDBackpack.h" #include
<Servo.h>

Create instances of LED Matrix and servo, so we can use the instance object to control the LED
Matrix and servo.

Create instance: Adafruit_8x8matrix matrix; Servo myservo;

We use the matrix.setTextSize () function to set the text size displayed on the LED matrix. 1 is a good
choice for 8x8 LED matrix display. You can try changing 1 to 2 and see what the LED matrix will look
like.,.

Text size: matrix.setTextSize(1);

Using matrix.setTextWrap() function we can set whether the text display on LED Matrix is wrapped or
scroll. If the parameters in the brackets are true, the display text effect is wrapped, if it is false, the
display text effect is scroll.

Wrap of scroll: matrix.setTextWrap(false);

Code usage

43

Crowduino UNO-SD/Arduino UNO x1
Crowtail – Base Shield x1
Crowtail – Temperature&Humidity Sensor x1
Crowtail – Water Sensor x1
Crowtail – BMP180 Barometer x1

Crowtail – Luminance Sensor x1
Crowtail – I2C LCD x1
Crowtail – Cable x5
USB Cable x1

Required Parts

STEP2: Connect Crowtail-Water Sensor and Crowtail-Temperature&Humidity Sensor to Crowtail-Base
shield’s D4 and D5 port. Connect Crowtail-Luminance sensor to Crowtail-Base shield’s A0 port.
Connect Crowtail-BMP180 Barometer and Crowtail-I2C LCD to Crowtail-Base shield’s I port. The
complete connection is as follows:

STEP1: Plug the Crowtail-Base Shield onto the Arduino or Crowduino Board.

Hardware Connection

Open the P21_Weather_Station with Arduino IDE and upload it.

Lesson 21 – Weather station

Introduction
Remember the weather reminder we made above? Is it still not enough for you to master the
weather? Well, let's make a more detailed weather station and "tell" you all the information about the
weather that can be measured!
We will use Crowtail- Temperature & Humidiy Sensor, Crowtail- Water Sensor, Crowtail- BMP180
Barometer, Crowtail- Luminance Sensor, Crowtail- I2C LCD to make a rich weather information that
can provide you with temperature, humidity, rain, atmospheric pressure and brightness.

Set the whether the LED is on or off, when you choose “LED_ON”, you can see the effect of led light,
if you choose “LED_OFF”, you will not see any effect.

LED Matrix ON or OFF: matrix.setTextColor(LED_ON);

The function of servo rotation. We use instanceName.write() function to control the servo rotate. The
parameters in the brackets of this function are the specific angles to which the servo is rotated. For
example, here we enter the parameter in the brackets as 180 to rotate the servo to 180 degrees.

Servo rotation: myservo.write(180);

44

Upload the program and you will see that the LCD will first display the brightness information of the
environment and whether it is raining, and then the LCD switches the screen to display the humidity and
temperature information of the current environment. Finally, the LCD will switch screens again to display
the current absolute and relative pressure information.

What will you see

1. Import BMP180, I2C, LCD and DHT library.
2. Create BMP180, DHT11 and LCD instances.
3. Declare the pin of modules, some variable and arrays.
4. Initialize the DHT, LCD and determine whether the modules is output or input.
5. Create the function to read luminance data and pressure data.
6. Read humidity, temperature and water information from sensor.
7. Print the luminance and whether it rains on LCD.
8. Print the humidity and temperature sensor on LCD.
9. Print the environment’s pressure information on LCD.

Code overview

45

As I had said before, it would be always first to import the library, so we can very convenient to use
the function which is created by others. “SFE_BMP180.h” is the library file of BMP180 module.
“Wire.h” is the library of I2C modules which is including BMP180 and I2C LCD. “LiquidCrystal.h” is the
library of LCD and “DHT.h” is the library of DHT sensor which include dht11 sensor, dht22 sensor and
other type of DHT sensors.

Import library: #include <SFE_BMP180.h> #include <Wire.h> #include
"LiquidCrystal.h" #include "DHT.h"imp

Create some instances to control the BMP180, DHT and lcd. We create a BMP180 instance object
calls “pressure”. A DHT instance object calls “dht” which includes its pin and type. An LCD instance
object called lcd and passes the I2C address to the object.

Create instances: SFE_BMP180 pressure; DHT dht(DHTPIN, DHTTYPE);
LiquidCrystal lcd(0);

Create the functions to read luminance information and pressure information. When the code is relatively
long, we will try to modularize the code that implements the same function. Modularity means that it is
achieved by creating functions. This way the code is not easy to cause confusion, easy to manage and
modify. Here we create readLuminance() function to read the luminance information. FmultiMap() is a
function to calculate luminance value and we create a function call bmp180() which is to read pressure
information.

Functions: float readLuminance(uint8_t analogpin){} float FmultiMap(float val, float *
_in, float * _out, uint8_t size){} void bmp180(){}

Initialize all the modules that we are going to use. We initialize the serial monitor and set its baud rate
is 9600, initialize the DHT, BMP180 and LCD which is set up 16 row and 2 columns.

Initialize: Serial.begin(9600); dht.begin(); lcd.begin(16, 2); pressure.begin()

In the loop () function, we will read the values of temperature, humidity, brightness, and air pressure
through the function created by ourselves or the function of the imported library file, and then display
them separately through the LCD.

Loop: void loop(){code to run forever}

Code usage

