
20+
Lessons

16
Built-in modules

www.elecrow.com

All-in-one Starter Kit
for ESP32-P4

Rapid AI deployment
2MP camera | 7-inch display
Open-source Hardware

Table of Contents

1

2

6

19

29

38

47

56

64

72

81

95

109

126

136

155

164

174

184

197

209

• Introduction

• ESP-IDFEnvironment Setup Guide

• Lesson 1 - GPIO LED Control

• Lesson 2 - GPIO Relay Control

• Lesson 3 - Touch Button Toggle

• Lesson 4 - PIR Motion Control

• Lesson 5 - Hall Sensor Detect

• Lesson 6 - Serial LED Control

• Lesson 7 - Timer LED Blink

• Lesson 8 - PWM Servo Control

• Lesson 9 - LCD Display Hello

• Lesson 10 - Ultrasonic Distance Display

• Lesson 11 - DHT20 Temp Humidity

• Lesson 12 - BH1750 Light Sensor

• Lesson 13 - LSM6DS3 Gyroscope Display

• Lesson 14 - WS2814 RGBW Control

• Lesson 15 - ADC Button Control

• Lesson 16 - Smoke Sensor Alert

• Lesson 17 - I2S Audio Record

• Lesson 18 - I2S Audio Playback

• Lesson 19 - LVGL Touch LED Control

Introduction

Welcome to the User Manual for the All-in-one Starter Kit for ESP32-P4. Let’s begin
our journey into the world of the ESP32-P4 development board and its intelligent
sensor modules.

This development board is equipped with 19 courses, carefully designed to be
progressively challenging, engaging, and thought-provoking. These courses will
guide you step-by-step through essential concepts and hands-on practices. Here,
you will become familiar with various electronic modules, strengthen your logical
thinking skills, enhance your creative design abilities, and implement the functional-
ity of these modules through programming using the ESP-IDF framework.

The learning process begins with setting up the ESP-IDF development environ-
ment, followed by an introduction to the ESP32-P4 development board and its wide
range of connected modules. You will then explore how to program each module,
understand its communication protocols, and apply your knowledge in practical
applications. Each step is clearly explained, making it easy for beginners to quickly
grasp embedded development using C language within the IDF environment.

The All-in-one Starter Kit for ESP32-P4 includes 16 electronic modules, each with
distinct features and functions, making it an ideal choice for beginners who wish to
explore both hardware and software development. For example, the temperature
and humidity sensor allows you to monitor environmental data, while the relay and
motor modules help you control real-world devices through code.

In summary, by working with this development board, you will gain a solid under-
standing of sensors and actuators, learn important concepts such as digital and
analog signals, PWM, ADC, DAC, and communication interfaces like UART, I²C,
and SPI. You will also master how to integrate network capabilities such as Wi-Fi
and Bluetooth, and even apply simple AI functions in your projects. Most important-
ly, through ESP-IDF programming, you will develop a deep understanding of
embedded systems and enhance your logical and problem-solving skills.

For the programming software, we will utilize the ESP-IDF development framework.
ESP-IDF is Espressif’s official and powerful open-source platform, offering
developers full control over hardware and enabling professional-grade embedded
programming. It is one of the best tools for learning real-world IoT and AI applica-
tion development.

1

Vs code Installation

ESP-IDFEnvironment Setup Guide

• First, download Visual Studio Code from https://code.visualstudio.com/. Select the
version compatible with your computer's operating system and download it.

1. Double-click to install Visual Studio Code software, and simply proceed with the
default installation throughout.

2

2. Open Visual Studio Code, click on ‘Extensions’, search for Python, and install it.

3

3. Search for ESP-IDF and install it.

4. Install the ESP-IDF tools.

5. Select version 5.4.2 and configure the storage location.

4

6. Awaiting installation.

7. Installation successful.

5

Lesson 1 - GPIO LED ControlLesson 1 - GPIO LED Control

Introduction
This chapter's tutorial introduces the GPIO output applications of the ESP32-P4, using a
light-up example to help understand its fundamental functionality. As a classic test case,
the light-up demonstration provides readers with a straightforward yet comprehensive
grasp of the ESP32-P4's applications, laying the groundwork for more complex projects
to follow.

• 1.1 Introduction to GPIO and LEDs
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

LED

6

1.1 GPIO and LED Introduction

1.1.1 GPIO Introduction

The ESP32-P4 chip provides 55 general-purpose input/output (GPIO) functions, offering
flexibility and adaptability across a wide range of applications. Key features of these
GPIOs include:

① Versatility: Each GPIO pin can function not only as an input or output, but also be
configured via IO MUX for various roles (refer to Chapter 2 for details), such as PWM,
ADC, I2C, SPI, and more. This enables the ESP32-P4 to accommodate diverse
peripheral connections.

② High current output: The ESP32-P4's GPIO pins support up to 40mA current output,
enabling direct driving of low-power loads such as LEDs. This reduces the complexity of
external driver circuits.

③ Programmability: Through the ESP-IDF (SDK) development framework, users can
flexibly configure each GPIO's input/output mode, pull-up/pull-down parameters, and
other settings to meet specific application requirements.

④ Interrupt Support: GPIO pins support interrupt functionality, capable of triggering
interrupts upon signal changes. This is suitable for real-time response applications such
as button detection and sensor triggering.

⑤ Status Indication: GPIO pins can function as LED indicators, enabling status
visualisation through simple high/low level switching. This facilitates user debugging and
monitoring of system operation. The GPIO capabilities of the ESP32-P4 provide robust
hardware support for developers. In this chapter, we shall explore GPIO applications
and configuration in depth through a light-up example.

1.1.2 LED Introduction

LEDs (light-emitting diodes) are highly efficient, long-lasting miniature semiconductor
devices that emit light when an electric current passes through them. They offer
advantages such as high energy conversion efficiency, low heat generation, and
environmental friendliness. Commonly used in indicator lights, displays, and lighting
equipment, LEDs provide rapid response times and a wide range of colours, making
them widely applicable in electronic products. In the ESP32-P4 lighting demonstration,
GPIO control simplifies and intuitively facilitates LED switching, aiding users in grasping
its practical applications.

① Principle of LED Light Emission

LED devices are light-emitting components based on solid-state semiconductor
technology. When a forward current is applied across a semiconductor material with a
PN junction, the recombination of charge carriers within the semiconductor releases
energy in the form of photons, thereby producing light. Consequently, LEDs are cold
light sources that do not generate heat from filament-based illumination, eliminating

7

issues such as burnout. The diagram below illustrates the operating principle of an LED
device.

In the diagram above, the semiconductor PN junction exhibits forward conduction,
reverse blocking, and breakdown characteristics. When no external bias is applied and
the junction is in thermal equilibrium, no carrier recombination occurs within the PN
junction, hence no light emission. However, when a forward bias is applied, the
light-emitting process of the PN junction can be divided into three stages:

Firstly, carriers are injected under the forward bias;

Secondly, electrons and holes recombine within the P-region, releasing energy;

Finally, the energy released during recombination is radiated outward in the form of light.
Simply put, when current flows through the PN junction, electrons migrate towards the
P-region under the influence of the electric field. There, they recombine with holes,
releasing excess energy and generating photons, thereby enabling the PN junction's
luminescent function.

Note: The colour of light emitted by an LED is determined by the bandgap width of the
semiconductor material used. Different materials produce light of varying wavelengths,
enabling diverse colour outputs. This highly efficient luminescence mechanism has led
to the widespread adoption of LEDs in both illumination and indicator applications.

Operating Principle of LED Devices

8

② Principles of LED Lighting Drivers

LED driving refers to supplying LEDs with suitable current and voltage via a stable
power source to ensure proper illumination. The primary LED driving methods are
constant current and constant voltage, with constant current driving being favoured for
its ability to limit current. As LED lamps are highly sensitive to current fluctuations,
exceeding their rated current may cause damage. Consequently, constant current
driving safeguards LED operation by maintaining stable current flow. Next, we shall
examine the two LED drive methods.

1) Current injection connection. This refers to the LED's operating current being supplied
externally, injecting current into our MCU.

The risk here is that fluctuations in the external power supply may easily cause the
MCU's pins to burn out.

2) Sink current configuration. This denotes the MCU supplying voltage and current,
outputting current to the LED. If the MCU's GPIO is used to directly drive the LED, its
drive capability is relatively weak and may fail to provide sufficient current to drive the
LED.

The LED circuit on the DNESP32P4 development board employs the sink current
configuration. This approach avoids the MCU directly supplying voltage and current to
drive the LED, thereby effectively reducing the load on the MCU. This allows the MCU to
focus more on executing other core tasks, thereby enhancing the overall system
performance and stability.

LED lighting in everyday life:

9

③ LED Voltage Drop and Drive Current

The LED circuit on the P4 development board employs the circuit shown earlier to drive
the LED lamp. What, then, is the current flowing through the LED in this circuit? Before
addressing this question, we must first grasp a fundamental concept: the reference
voltage drop value of an LED. Below are the reference voltage drop values for
surface-mount LEDs:

1) Red: Voltage drop 1.82–1.88V, current 5–8mA.

2) Green: Voltage drop 1.75–1.82V, current 3–5mA.

3) Blue: Voltage drop 3.1–3.3V, current 8–10mA.

Using the aforementioned SMD LED voltage drop reference values, the LED current can
be calculated via Kirchhoff's voltage law.

The calculation process is as follows:

(3.3 – 1.8) / 510R = 2.9mA

Ignoring the diode's own resistance, the current flowing through the LED is 2.9mA.
Although this current value falls outside the standard current reference range for
surface-mount LEDs, 2.9mA is still sufficient to illuminate the red LED.

In numerous circuits, regardless of the LED colour mounted on the board, current-limit-
ing resistors of identical values are typically employed. This practice primarily stems
from considerations of standardising components and simplifying design. Utilising
uniform resistor values reduces production and maintenance complexity while facilitating
inventory management. Furthermore, standardised resistor values streamline the circuit
design process, enabling designers to work more efficiently during both design and
debugging phases.

1.2 Hardware design

1.2.1 Routine Functionality

Within a 500-millisecond cycle, the logic state of LED5 will toggle.

1.2.2 Hardware resources

1）LED - IO5

In the diagram above, LED5 is
controlled by GPIO5 on the ESP32-P4,
which determines whether it is
illuminated or not. Concurrently, the
PWR indicator displays the power
status, illuminating when the power
supply is connected.

10

1.3.1 LED Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The LED driver source code comprises two files: bsp_led.c and bsp_led.h.

Below we shall first analyse the bsp_led.h programme: it contains relevant definitions
for the LED pins and function declarations.

/* Header file references*/

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

Within the ESP32P4-dev-kits_gpio example, a new
folder named bsp_led has been created under the
path ESP32P4-dev-kits_gpio\peripheral\. Within the
bsp_led\ path, a new include folder, a CMakeLists.txt
file, and a Kconfig file have been created. The
bsp_led folder houses the bsp_led.c driver file, the
include folder contains the bsp_led.h header file, and
the CMakeLists.txt file integrates the driver into the
build system, enabling the project to utilise LED driver
functionality. The Kconfig file loads the entire driver
alongside GPIO pin definitions into the sdkconfig file
within the IDF platform (configurable via the graphical
interface).

11

/* Pin Definitions and Function Declarations */

Next, we shall analyse the code in bsp_led.c: the initialisation configuration and
functional code for the LED pins.

/* Initialisation function led_init */

Within the led_init function, the various member variables of the gpio_config_t structure
are first parameterised. Subsequently, the gpio_config function is invoked to complete
the GPIO initialisation using these configuration parameters.

It is worth noting that configuring the pins as input/output mode (`GPIO_MODE_IN-
PUT_OUTPUT`) is primarily because ESP-IDF does not provide relevant level inversion
functions. Therefore, to implement level inversion for the LED pin,

the current pin level must first be read, followed by setting its opposite level. This
achieves the desired inversion. If configured as output mode (GPIO_MODE_OUTPUT),
the gpio_get_level function cannot be used to obtain the pin level, thereby preventing
level inversion functionality.

/* Level Toggle Function led_toggle */

Within the led_toggle function, the LED pin is configured to output a level-inverted
signal based on the current input level.

12

Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, the
number 5 refers to GPIO_NUM_5, the pin connected to the LED.

CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_led driver. To
successfully call the contents of the bsp_led folder within the main function, it is
necessary to create and configure the CMakeLists.txt file located within the bsp_led
folder. The configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_led driver functionality.

Note: In subsequent lessons, we shall not create a new CMakeLists.txt file from
scratch. Instead, we shall make minor modifications to this existing file to incorporate
additional drivers into the build system.

1.3.2 main

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder. Add
the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the bsp_led
driver necessitate inclusion of the bsp_led.h header file.

13

Below is an analysis of the main.c programme: system initialisation and execution of
LED-specific functions.

This code resides within the init function, which is employed to store initialisation
functions requiring invocation and to evaluate the outcome of such initialisation. Should
the returned status not be ESP_OK, the code will display an error message and cease
further execution.

Within the app_main function, establish a loop that repeatedly executes the following:
every 500 milliseconds, toggle the LED pin's logic level (to achieve the LED flashing
effect).

1.3.3 CMkaLists.txt file

To successfully call the contents of the bsp_led folder within the main function, it is
necessary to create and configure the CMakeLists.txt file within the main folder. The
configuration should be as follows:

First, the directories for source files and header files are defined, along with the required
driver library—specifically, the driver library for linking bsp_led. Subsequently, these
settings are registered with the build system via the idf_component_register command,
enabling the main function to utilise the bsp_led driver functionality.

Note: In subsequent lessons, we shall not create a new CMakeLists.txt file from
scratch. Instead, we shall make minor modifications to this existing file to incorporate
additional drivers into the main function.

14

Connect the P4 device to the computer via USB

1.4.1 After cloning the code via Git (link to be confirmed), clear any local compilation
information.

1.4 Programming procedure

Connect the USB C cable

15

1.4.2 Configure the IDF environment and chip model for compilation, and set the serial
port number for programming.

1.4.3 Configure the required settings via the SDKConfig (set bootloader to burn CVS
files and select burn speed, enable PSRAM and select speed, activate initialisation for
the course-specific BSP_LED component; if unavailable, search directly for the relevant
content in the search box). Subsequently execute the function: compile, burn, and open
the monitor.

① Click the SDK_config below to access the settings.

16

② Scroll down to the Partition Table section and configure the settings as shown in the
diagram.

③ You can search directly in the search box for BSP. Set the LED light pins.

④ You may search directly in the search box for Make experimental features visible and
tick the option shown in the image.

17

⑤ You may search directly in the search box or locate ESP PSRAM and set it to 200MHz.

1.4.4 Click Compile. Once compilation is successful, click Download.

Download successful notification：

18

Lesson 2 - GPIO Relay ControlLesson 2 - GPIO Relay Control

Introduction
This chapter's tutorial introduces the GPIO output applications of the ESP32-P4.
Through a relay control example, it aids in understanding the practical application of
GPIO in load control. As a common switching device, relays enable isolation and control
between microcontrollers and high-voltage, high-current equipment, forming an essential
foundation for learning smart hardware projects.

• 1.1 Introduction to Relay
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

19

1.1 Relay Introduction

1.1.1 Relay Introduction

A relay is an electromagnetic control switch that uses a small current to control a larger
current. It is widely employed for circuit isolation and the control of electrical equipment.
In the ESP32-P4's basic LED lighting example, we utilised an LED; in this section, we
shall instead control a relay to illuminate external appliances such as a small fan or light
bulb.

Component descriptions in the diagram

Electromagnet coil: Generates a magnetic field when current flows through it.

Armature (iron plate connected to the spring): Pulled down by the magnetic field, altering
the contact state.

Return Spring: Retracts the armature to its original position when the electromagnet is
de-energised.

Contact Assembly:

A—B: Normally Closed (NC) contact, closed in the default state.

B—C: Normally Open (NO) contact, open in the default state.issues such as burnout.
The diagram below illustrates the operating principle of an LED device.

D, E: The two coil terminals of the electromagnet, used for connecting the control
current.

20

① How Relay Works

Relays typically comprise a coil, armature, and contacts. When the GPIO outputs
current to drive the relay coil, the coil generates a magnetic field that attracts the
armature, thereby altering the contact's open or closed state.

Working Principle

1. Initial State (No Current)

Coils D and E are not energized → The electromagnet has no magnetic force. The
spring pulls the armature back, keeping it in the upper position.

At this time:

Contacts B—C are open (not conducting).

Contacts A–B are closed (conductive).

2. Active State (Powered)

When control current is applied across terminals D and E, the electromagnet generates
a magnetic field. Magnetic force pulls the armature downward. The armature moves the
movable contact B downward:

B–C are connected (closed).

A–B are separated (open).

3. Return State (De-energized)

When the control current is interrupted, the electromagnet loses its magnetic force. The
spring pulls the armature back to its original position.

The contacts return to their initial state:

B–C is closed.

A–B is open.

This characteristic of controlling high currents with low currents enables microcontrollers
to safely operate 220V AC equipment.

② Relay drive method

As relay coils typically require 5V/tens of milliamperes, and the ESP32-P4's GPIO
output capability is insufficient for direct driving, a transistor driver circuit or relay module
is required:

GPIO → Transistor → Relay Coil → VCC (5V)

Concurrently, a diode is connected in parallel (in reverse bias across the coil terminals)
to absorb the reverse electromotive force generated when the coil de-energises, thereby
protecting the components.

21

1.2.1 Functionality

Within a 5000-millisecond cycle, the
relay's electrical state will toggle,
switching on once every five seconds to
control the illumination of the external
LED lamp.

1.2.2 Hardware resources

In the diagram above, the relay is
controlled by GPIO42 on the ESP32-P4.

1.2 Hardware design

③ Relay's principal parameters

Common relay parameters include:

Rated voltage: Typically 3.3V, 5V or 12V (control side voltage).(We use 5V here)

Coil current: Ranges from tens to hundreds of milliamperes.

Contact rating: Determines controllable load capacity (e.g., 15A 250V AC).

Normally Open (NO)/Normally Closed (NC) contacts:

NO: Open by default, closes upon energisation.

NC: Closed by default, opens upon energisation.

Within smart home systems, relays are commonly employed to control devices such as
lighting, air conditioning units, and water pumps.

22

1.3.1 Relay Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The Relay driver source code comprises two files: bsp_relay.c and bsp_relay.h.

Below we shall first analyse the bsp_relay.h programme: it contains relevant definitions
for the Relay pins and function declarations.

/* Header file references */

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

Within the ESP32P4-dev-kits_relay example, a new
folder named bsp_relay has been created under the
ESP32P4-dev-kits_relay\peripheral\ directory.
Within the bsp_relay\ directory, a new include folder,
a CMakeLists.txt file, and a Kconfig file have been
created. The bsp_relay folder houses the bsp_re-
lay.c driver file, the include folder contains the
bsp_relay.h header file, and the CMakeLists.txt file
integrates the driver into the build system, enabling
project engineering to utilise the Relay driver
functionality. The Kconfig file loads the entire driver
alongside GPIO pin definitions into the sdkconfig file
within the IDF platform (configurable via the graphical
interface).

23

/* Pin definitions and function declarations */

Next, we shall analyse the code in bsp_relay.c: the initialisation configuration and
functional code for the Relay pin.

/* Initialisation function relay_init */

Within the relay_init function, the individual member variables of the gpio_config_t
structure were first configured with parameters. Subsequently, the gpio_config function
was invoked to complete the initialisation of the GPIO using these configuration
parameters.

It is worth noting that configuring the pin as input-output mode (GPIO_MODE_IN-
PUT_OUTPUT) is primarily because ESP-IDF does not provide a dedicated level
inversion function. Therefore, to achieve level inversion for the Relay pin, one must first
read the pin's current level and then set its opposite level to effect the inversion. If
configured as output mode (GPIO_MODE_OUTPUT), the gpio_get_level function
cannot be used to obtain the pin level, thereby preventing level inversion functionality.

/* Level inversion function relay_toggle */

Within the relay_toggle function, the relay pin is configured to toggle its output state
based on the current input level.

24

1.3.2 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, 42
corresponds to GPIO_NUM_42.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_relay driver. To
successfully invoke the contents of the bsp_relay folder within the main function, it is
necessary to configure the CMakeLists.txt file located within the bsp_relay folder. The
configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_relay driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the
bsp_relay driver necessitate inclusion of the bsp_relay.h header file.

Below is an analysis of the main.c programme: system initialisation and execution
specific to the relay functionality.

25

This code resides within the init function, which is employed to store initialisation
functions requiring invocation and to evaluate the outcome of such initialisation. Should
the returned status not be ESP_OK, the code will display an error message and cease
further execution.

Within the app_main function, establish a loop that repeatedly executes the following:
every 5000 milliseconds, toggle the level of the relay pin (to achieve relay switching
functionality). This differs from the previous lesson's approach to controlling LED
flashing intervals because the mechanical structure of the relay switch has a finite
lifespan and cannot withstand frequent activation.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_relay folder within the main function, it is
necessary to configure the CMakeLists.txt file located in the main folder. The configura-
tion details are as follows:

First, the directories for source files and header files are defined, along with the required
driver library—namely, the driver library for linking bsp_relay. Subsequently, these
settings are registered with the build system via the idf_component_register command,
enabling the main function to utilise the bsp_relay driver functionality.

26

Connect the P4 device to the computer via USB

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1,
requiring only the relay pin to be reconfigured.

1.4 Programming procedure

Connect the USB C cable

27

1.4.3 Click Compile. Upon successful compilation, click Download.

Lesson 3 - Touch Button ToggleLesson 3 - Touch Button Toggle

Introduction
This chapter's tutorial introduces the GPIO input application for the ESP32-P4. Through
a touch sensor example, it aids in understanding GPIO input detection functionality. As a
common human-machine interface, touch sensors enable input detection without
mechanical buttons, serving as a crucial case study for learning intelligent interactive
applications.

Project Demonstration Effect

Touch Sensor

28

• 1.1 Introduction to Touch Sensors
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

This chapter is divided into the following subsections

1.1 Touch Sensor Introduction

1.1.1 Touch Sensor Introduction

Touch sensors are input devices based on the capacitive effect. When a human finger
approaches or makes contact, it causes a change in capacitance, which is detected by
the chip. They are widely used in smart home systems, consumer electronics, and
human-machine interaction applications.

① Principle of Operation of Touch Sensors

Touch detection relies on capacitance variation:

When no finger is present, the capacitance between the electrode and ground remains
stable.

As a finger approaches the electrode, the body's conductivity increases the capacitance
value.

The touch detection circuit within the ESP32-P4 periodically measures this capacitance
value and compares it against a preset threshold.

Once the capacitance value exceeds this threshold, a ‘touch event’ is detected.

29

② Touch Sensor Drive Method

The ESP32-P4 incorporates an integrated touch sensor module, enabling developers to
utilise it without requiring additional circuitry. Its detection process comprises the
following steps:

1. Initialise the GPIO to touch input mode.

2. Read the voltage level of this GPIO to determine whether it has been touched.

Compared to traditional mechanical buttons, touch sensors offer advantages including:

- Absence of mechanical wear

- Rapid response speed

- Convenient waterproof design

③ Key Parameters of Touch Sensors

Common touch sensor parameters include:

Response time: Tens of milliseconds, significantly faster than traditional mechanical
buttons.

Sensitivity: Adjustable via software-set thresholds.

Durability: No mechanical components, ensuring extended service life.

Adaptability: Capable of detecting touch through non-metallic materials such as glass
and acrylic.

Touch sensors are also widely used in everyday life.

30

1.2.1 Routine Functionality

In this experiment, the ESP32-P4 utilises either its onboard or externally attached touch
electrodes (metal plates/conductive areas), requiring no additional components. Upon
detecting a touch, the LED controlled by GPIO5 illuminates.

1.2.2 Hardware resources

GPIO 2 is connected to the metal touchpad (or the copper foil area on the PCB).

The capacitance changes when a human finger approaches or touches it, and the
ESP32-P4 detects these variations in capacitance value.

1.2 Hardware design

31

1.3 Programme Analysis

1.3.1 Touch Driver Code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The Touch driver source code comprises two files: bsp_touch.c and bsp_touch.h.

Below we shall first analyse the bsp_touch.h programme: it contains relevant
definitions for the touch pins and function declarations.

/* Header file references */

/* Pin definitions and function declarations */

Within the ESP32P4-dev-kits_touch example, a new
folder named bsp_touch has been created under the
ESP32P4-dev-kits_touch\peripheral\ directory.
Within the bsp_touch\ path, a new include folder, a
CMakeLists.txt file, and a Kconfig file have been
established. The bsp_touch folder houses the
bsp_touch.c driver file, the include folder contains
the bsp_touch.h header file, and the CMakeLists.txt
file integrates the driver into the build system,
enabling the project to utilise the Relay driver
functionality. The Kconfig file loads the entire driver
configuration, including GPIO pin definitions, into the
sdkconfig file within the IDF platform (configurable
via the graphical interface).

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

32

Next, we shall analyse the code in bsp_touch.c: the initialisation configuration and
function code for the touch pins.

/* Initialisation function touch_init */

Within the touch_init function, the member variables of the gpio_config_t structure are
first configured with parameters. Subsequently, the gpio_config function is invoked to
complete the initialisation of the GPIO using these configuration parameters. Here, the
GPIO mode is set to input mode to read the level status of the I/O ports.

/* Function get_touch_state for acquiring touch button status */

Within the `get_touch_state` function, the current level status of the touch button pin is
read: a high level indicates the touch button is pressed, while a low level indicates the
touch button is released.

1.3.2 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, the
number 2 refers to GPIO_NUM_2.

33

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_touch driver. To
successfully invoke the contents of the bsp_touch folder within the main function, it is
necessary to configure the CMakeLists.txt file located within the bsp_touch folder. The
configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_touch driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the
bsp_touch driver necessitate inclusion of the bsp_touch header file, while those
employing the bsp_led driver require the bsp_led header file.

Below is an analysis of the main.c programme: system initialisation and execution of
LED and touch functionality.

This code resides within the init function, which is employed to store initialisation
functions requiring invocation and to evaluate the outcome of such initialisation. Should
the returned status not be ESP_OK, the code will display an error message and cease
further execution.

34

Within the app_main function, initialise the current state variable and past state variable
for the touch button. Subsequently, establish a loop to repeatedly execute the following:
assess the state every 10 milliseconds. The function for obtaining the touch button
status retrieves the current state and compares it with the previous state. If the state has
changed, the function within the bsp_led driver that sets the LED status is executed.
This function takes a parameter to set the LED level (low level illuminates the LED, high
level extinguishes it). The current touch button state is then assigned to preserve the
past state. The specific functionality is as follows: pressing the touch button turns the
LED off, while releasing it turns the LED on.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_led and bsp_touch folders within the main
function, it is necessary to configure the CMakeLists.txt file located in the main folder.
The configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_led and bsp_touch.
Subsequently, these settings are registered with the build system via the idf_compo-
nent_register command, enabling the main function to utilise these driver capabilities.

35

1.4 Programming procedure

Connect the USB C cable

Connect the P4 device to the computer via USB

When using touch and Hall sensors, the toggle switch near the wireless module must be
set to the Hall and touch position.

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, requiring
only the LED light and touch pins to be reconfigured.

36

1.4.3 Click Compile. Once compilation is successful, click Download.

37

Lesson 4 - PIR Motion ControlLesson 4 - PIR Motion Control

Introduction
This tutorial demonstrates the GPIO input application of the ESP32-P4. Through a PIR
(Passive Infrared) sensor detection example, it helps users understand the GPIO input
detection functionality. As a common human presence detection device, the PIR sensor
enables automatic detection of human activity in the environment, making it a crucial
case study for learning smart security and automation control.

• 1.1 Introduction to the PIR Sensor
• 1.2 Hardware Design
• 1.3 Program Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

PIR sensors

LED

38

1.1 Introduction to PIR Sensors

1.1.1 Introduction to PIR Sensors

PIR (Passive Infrared Sensor) is a detection device based on infrared radiation sensing,
primarily used for detecting human motion. Since the human body emits infrared
radiation with wavelengths between 8 and 14 micrometers, PIR sensors detect changes
in this radiation to determine whether human activity is present.

① How PIR Sensors Work

The PIR consists internally of a pyroelectric infrared sensor and a Fresnel lens:

When the ambient infrared distribution is stable, the sensor output remains at a low
level.

When a human body enters the sensing area, the infrared radiation emitted by the body
is focused onto the sensor through a Fresnel lens, causing a change in the input charge.

This charge change is processed by an amplification and comparison circuit, resulting in
the output of a high-level pulse.

Therefore, PIR does not directly detect temperature but rather detects dynamic changes
in infrared radiation.

② Driving Principle of PIR Sensors

PIR modules typically incorporate signal amplification and comparison circuits, output-
ting digital signals (high/low levels) for direct connection to the ESP32-P4's GPIO:

Human presence detected → Outputs high level (GPIO detects 1).

No human presence detected → Outputs low level (GPIO detects 0).

39

This straightforward interface eliminates the need for users to design complex analog
circuits.

③ Key Parameters of PIR Sensors

Common PIR modules (such as HC-SR501) have the following key specifications:

Operating voltage: 3.3V to 5V (directly compatible with ESP32-P4 interfaces).

Standby current: Approximately 50 μA (low power consumption).

Detection range: Typically 3 to 7 meters, adjustable.

Sensing angle: Approximately 100°–120°.

Output format: High/low level, TTL compatible.

Many everyday applications utilize PIR sensors, such as smart lighting systems.

1.2 Hardware Design

In this experiment, the PIR module's VCC is connected to 3.3V, GND is grounded, and
the OUT pin is connected to GPIO24 of the ESP32-P4.

When human activity is detected, OUT outputs a high level. The LED controlled by
GPIO5 illuminates.

40

The relay is controlled by the GPIO24 pin of the ESP32-P4.

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

In the ESP32P4-dev-kits_pir example, a new folder
named bsp_pir was created under the
ESP32P4-dev-kits_pir\peripheral\ directory. Within
the bsp_pir\ directory, a new include folder, a
CMakeLists.txt file, and a Kconfig file were created.
The bsp_pir folder stores the bsp_pir.c driver file,
the include folder holds the bsp_pir.h header file, and
the CMakeLists.txt file integrates the driver into the
build system, enabling project access to PIR driver
functionality. The Kconfig file loads the entire driver
configuration, including GPIO pin definitions, into the
sdkconfig file within the IDF platform (configurable
via the graphical interface).

41

1.3.1 PIR Driver Code

Here we will only explain the core code. For detailed source code, please refer to the
corresponding source code for this experiment in the code materials.

The PIR driver source code consists of two files: bsp_pir.c and bsp_pir.h.

Below, we will first analyze the bsp_pir.h program: it defines the PIR pin and declares
functions.

/* Header file references*/

/* Pin Definitions and Function Declarations*/

Next, we'll analyze the code in bsp_pir.c: the initialization configuration and function
code for the PIR pin.

/* Initialization function pir_init */

Within the pir_init function, the parameters for each member variable of the gpio_con-
fig_t structure are first configured. Next, the gpio_config function is called to complete
GPIO initialization using these configuration parameters. Finally, the gpio_isr_han-
dler_add function registers the interrupt callback function and binds it to the correspond-
ing GPIO. Here, the GPIO mode is set to input mode to read the IO port level state, and
the interrupt type is selected as rising edge interrupt.

/* PIR pin interrupt callback function PIR_ISR */

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

42

Within the PIR_ISR function, the interrupt flag is set by checking whether the pin number
that triggered the interrupt and the status of the interrupt flag PIR_flag have been
cleared. (static bool PIR_flag = false; The interrupt flag type should be defined as a
global variable.)

/* Function get_pir_state to retrieve PIR status */

1.3.2 Kconfig file

The primary function of this file is to add the required configurations to the sdkconfig file,
enabling certain parameter adjustments to be made through a graphical interface. Here,
24 refers to GPIO_NUM_24.

1.3.3 CMkaLists.txt file

The functionality of this example primarily relies on the bsp_pir driver. To successfully
call the contents of the bsp_pir folder within the main function, you must configure the
CMakeLists.txt file located in the bsp_pir folder. The configuration details are as follows:

43

In this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Then, these settings are registered with
the build system using the idf_component_register command, enabling the project to
utilize the bsp_pir driver functionality.

1.3.4 main folder

The main folder serves as the core directory for program execution. It contains the main
function executable main.c and the main.h header file located within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilizing the bsp_pir
driver require the bsp_pir header file, while functions using the bsp_led driver require the
bsp_led header file.

Below is an analysis of the main.c program: system initialization and execution of LED
and PIR functionality.

This code resides within the init function, which is used to store initialization functions
that need to be called and to evaluate their return values. If the return status is not
ESP_OK, the code will print an error message and halt further execution. It is worth
noting that we have added the gpio_install_isr_service function to register an interrupt
group for all GPIO interrupts.

In the app_main function, initialize the PIR current state variable and past state variable.
Then, use the first PIR state to determine the initial LED state. Finally, create a loop that

44

repeats the following: check the state every 10ms delay. The PIR status retrieval
function determines the current state. This state is compared with the previous state. If
the state changes, the function within the bsp_led driver that sets the LED state is
executed. This function takes a parameter to set the LED level (low level turns the LED
on, high level turns it off). The current PIR state is then assigned to the past state
variable for retention. The specific functionality is: the LED illuminates when an object is
detected moving and turns off when the object remains stationary.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_led and bsp_pir folders within the main
function, you must configure the CMakeLists.txt file located in the main folder. The
configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_led and bsp_pir.
Then, these settings are registered with the build system using the idf_component_regis-
ter command, enabling the main function to utilize these driver features.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

45

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, requiring
only the pir and led pins to be reconfigured.

1.4.3、Click Compile. Once compilation is successful, click Download.

46

Lesson 5 - Hall Sensor DetectLesson 5 - Hall Sensor Detect

Introduction
This chapter's tutorial introduces the GPIO input applications of the ESP32-P4, using a
Hall sensor example to help you understand its basic functionality. As a common
magnetic field detection device, the Hall sensor can directly reflect changes in external
magnetic fields, making it widely used in scenarios such as position detection, speed
measurement, and current sensing. The learning examples in this chapter will provide
readers with a clear understanding of the ESP32-P4's GPIO input capabilities, laying the
foundation for more complex sensor applications in subsequent sections.

• 1.1 Introduction to Hall Sensors
• 1.2 Hardware Design
• 1.3 Software Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

Hall Sensor

Magnet
LED

47

1.1 Introduction to hall Sensors

1.1.1 Introduction to hall Sensors

The Hall sensor is a magnetic field detection device that utilizes the Hall effect. When a
magnetic field passes through the semiconductor material, it generates a voltage signal
across the material's terminals. The ESP32-P4 integrates an analog Hall sensor
internally, enabling direct detection of magnetic field strength changes without requiring
external components.

1.1.2 Driving Principle of PIR Sensors

① Working Principle of Hall Sensors

The Hall effect refers to the phenomenon where, when a current flows through a
conductor or semiconductor, a magnetic field perpendicular to the current direction
induces a potential difference between the two ends perpendicular to both the current
and magnetic field directions. This is known as the Hall voltage.

48

Simply put:

No magnetic field → Output voltage approaches zero.

Magnetic field approaches → Output voltage varies with magnetic field strength.

By reading this voltage value via an ADC or dedicated interface, magnetic field
information can be obtained.

② Hall Sensor Drive Principle

The ESP32-P4's built-in Hall sensor requires no additional hardware. Magnetic field
strength values can be obtained via the SDK's hall_sensor_read() API.

When a magnet approaches the chip, the reading changes noticeably;

When the magnet moves away or is absent, the reading approaches the baseline value;

Users can set thresholds to determine magnetic field detection, enabling functions such
as position detection and rotational speed measurement.

③ Key Parameters of Hall Sensors

The critical specifications of Hall sensors include:

Sensitivity: Determines the sensor's responsiveness to magnetic fields.

Operating Voltage: The ESP32's built-in Hall sensor operates directly at 3.3V.

Response Speed: Hall sensors are fast-response devices suitable for high-speed rotor
detection.

Temperature Stability: Temperature variations may affect readings; software filtering or
calibration methods can compensate.

In experiments with the ESP32-P4 development board, we can verify magnetic field
sensing performance without an external Hall chip by directly calling the interfaces
provided by the SDK.

1.2 Hardware Design

When using the built-in Hall sensor on the ESP32-P4, no external circuitry is required.
Simply position a small magnet near the chip.

To expand with an external Hall sensor (such as the A3144), you need to:

Connect VCC to 3.3V,

Connect GND to ground,

Connect the output pin to a GPIO input pin with a pull-up resistor.

This setup enables magnetic field detection.

49

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

In the ESP32P4-dev-kits_hall example, a new
bsp_hall folder was created under the
ESP32P4-dev-kits_hall\peripheral\ directory. Within
the bsp_hall\ directory, a new include folder,
CMakeLists.txt file, and Kconfig file were added.
The bsp_hall folder stores the bsp_hall.c driver file,
the include folder holds the bsp_hall.h header file,
and the CMakeLists.txt file integrates the driver into
the build system, enabling the project to utilize the
HALL driver functionality. The Kconfig file loads the
entire driver configuration, including GPIO pin
definitions, into the sdkconfig file within the IDF
platform (configurable via the graphical interface).

In

1.3 Programme Analysis

50

1.3.1 HALL Driver Code

Here we will only explain the core code. For detailed source code, please refer to the
corresponding source code for this experiment in the code materials.

The HALL driver source code consists of two files: bsp_hall.c and bsp_hall.h.

Below, we will first analyze the program in bsp_hall.h: it defines the HALL pin and
declares functions.

/* Header file references */

/* Pin Definitions and Function Declarations */

Next, we'll analyze the code in bsp_hall.c: the initialization configuration and function
code for the HALL pin.

/* Initialization function hall_init */

In the hall_init function, the member variables of the gpio_config_t structure are first
configured with parameters. Subsequently, the gpio_config function is called to initialize
the GPIO using these configuration parameters. Finally, the gpio_isr_handler_add
function is used to register the interrupt callback function and bind it to the corresponding
GPIO. Here, the GPIO mode is set to input mode to read the IO port level status. The
interrupt type is configured as full-edge (triggering the interrupt callback function on
either a rising or falling edge).

/* HALL pin interrupt callback function HALL_ISR */

51

In the HALL_ISR function, the interrupt flag is set by checking the pin number that
triggered the interrupt and the current pin level state. (true indicates a falling edge,
meaning the magnet is approaching; false indicates a rising edge, meaning the magnet
is moving away.) (static bool hall_state = false; The interrupt flag type definition should
be a global variable.)

/* Function get_hall_status to retrieve the HALL status */

In the get_hall_status function, return the interrupt flag.

1.3.2 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified through a graphical interface. Here,
the number 7 represents GPIO_NUM_7.

1.3.3 CMkaLists.txt file

The functionality of this example primarily relies on the bsp_hall driver. To successfully
call the contents of the bsp_hall folder within the main function, you must configure the
CMakeLists.txt file located in the bsp_hall folder. The configuration details are as
follows:

In this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Then, these settings are registered with
the build system using the idf_component_register command, enabling the project to
utilize the bsp_hall driver functionality.

52

1.3.4 main folder

The main folder serves as the core directory for program execution. It contains the main
function executable main.c and the main.h header file located within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilizing the bsp_hall
driver require the bsp_hall header file, while functions using the bsp_led driver require
the bsp_led header file.

Below is an analysis of the main.c program: system initialization and execution of LED
and Hall sensor functions.

This code resides within the init function, which is used to store initialization functions
that need to be called and to evaluate their return values. If the return status is not
ESP_OK, the code will print an error message and halt further execution. It is worth
noting that we have added the gpio_install_isr_service function to register an interrupt
group for all GPIO interrupts.

In the app_main function, initialize the HALL current state variable and past state
variable. Then use the first HALL state to determine the initial state of the LED. Finally,
create a loop that repeats the following: check once every 10ms delay. The function for
obtaining the HALL state retrieves the current state and compares it with the previous
state. If the state changes, it executes the function in the bsp_led driver that sets the
LED state. This function takes a parameter to set the LED level (low level turns the LED
on, high level turns it off). The current HALL state is then assigned to the past state
variable for preservation. The specific functionality is: The LED illuminates when the
magnet approaches the Hall sensor. The LED turns off when the magnet moves away
from the Hall sensor.

53

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_led and bsp_hall folders within the main
function, you must configure the CMakeLists.txt file located in the main folder. The
configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_led and bsp_hall.
Then, these settings are registered with the build system using the idf_component_reg-
ister command, enabling the main function to utilize these driver features.

When using touch and Hall sensors, the toggle switch near the wireless module must be
set to the Hall and touch position.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

54

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, requiring
the hall and led pins to be reconfigured.

55

1.4.3 Click Compile. Upon successful compilation, click Download.

Lesson 6 - Serial LED ControlLesson 6 - Serial LED Control

Introduction
This chapter's tutorial introduces the UART application of the ESP32-P4, utilising serial
communication routines to aid understanding of its fundamental functionality. As one of
the most prevalent communication methods in embedded development, UART enables
developers to rapidly implement data exchange between development boards, PCs, and
peripheral modules, laying the groundwork for more complex communication projects.

Serial Port Tool Download Address：
https://drive.google.com/drive/folders/1gNItP4DU5yNUgdyyoi10XiRMDNgYmBAf?usp=sharing

Project Demonstration Effect

56

• 1.1 Introduction to UART
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

This chapter is divided into the following subsections

1.1 UART Introduction

1.1.1 UART Introduction

UART (Universal Asynchronous Receiver/Transmitter) is a common serial communica-
tion protocol that employs asynchronous data transmission. It requires no additional
clock signal and accomplishes data transfer using only two signal lines: TX (transmit)
and RX (receive).

The ESP32-P4 chip incorporates multiple UART controllers, featuring the following
characteristics:
① Multi-channel support: The ESP32-P4 provides up to five UART interfaces, enabling
simultaneous communication with multiple peripherals.
② Flexible baud rate: UART supports baud rate configurations ranging from 300bps to
5Mbps, accommodating diverse application scenarios.
③ Hardware FIFO: The UART incorporates internal FIFO buffering, reducing CPU load

LED

57

for communication data processing and enhancing efficiency.
④ Interrupt support: The UART interface supports interrupt events such as transmission
completion and reception completion, making it suitable for real-time communication.
⑤ Strong compatibility: The UART protocol is straightforward and widely employed in
applications including GPS modules, Bluetooth modules, sensors, and debugging
printouts.

1.1.2 UART Operating Principle

1.1.2 UART Operating Principle
UART communication transmits data in bit units, typically employing an 8-bit data format
with 1 start bit and 1 stop bit. Some applications additionally incorporate a parity bit.
The data frame format is illustrated below:
Start bit | Data bits (D0–D7) | Parity bit (optional) | Stop bit
Brief operational sequence:
1) When the host transmits data to the slave, the TX pin outputs a signal level;
2) The RX pin receives this signal and decodes each bit within the agreed baud rate
time interval;
3) The complete byte is ultimately reconstructed, enabling point-to-point communication.
Unlike controlling LEDs via GPIO, UART places greater emphasis on data format and
timing. Consequently, it is essential to ensure that the baud rate at both the transmitting
and receiving ends is consistent; otherwise, garbled data will occur.

1.2 Hardware design

In this example, we utilise the UART0 of the ESP32-P4 development board to communi-
cate with a PC. The hardware connections are as follows:
TXD0 → USB-to-serial converter chip → Computer serial terminal software (e.g.,
SecureCRT, XCOM)
RXD0 → USB-to-serial converter → computer serial terminal software
GND ↔ Common ground
The ESP32-P4's UART0 is typically pre-connected to the on-board USB-to-serial
converter chip. Users require no additional wiring; communication is achieved using a
single Type-C data cable.

Schematic diagram

58

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

Within the ESP32P4-dev-kits_uart example, a new
folder named bsp_uart has been created under the
ESP32P4-dev-kits_uart\peripheral\ directory. Within
the bsp_uart\ path, a new include folder, a
CMakeLists.txt file, and a Kconfig file have been
established. The bsp_uart folder houses the
bsp_uart.c driver file, the include folder contains the
bsp_uart.h header file, and the CMakeLists.txt file
integrates the driver into the build system, enabling
the project to utilise the HALL driver functionality. The
Kconfig file loads the entire driver configuration,
including GPIO pin definitions, into the sdkconfig file
within the IDF platform (configurable via the graphical
interface).

1.3.1 UART Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The UART driver source code comprises two files: bsp_uart.c and bsp_uart.h.

Below we shall first analyse the bsp_uart.h programme: it contains relevant definitions
for the UART pins and function declarations.

/* Header file references */

59

Within the uart_init function, the various member variables of the uart_config_ structure
are first configured with parameters. Subsequently, the uart_driver_install function is
invoked to register the corresponding serial port controller and buffer configuration.
Finally, the uart_param_config function is employed to assign the configuration parame-
ters to the relevant UART controller.

It is worth noting that here we are configuring UART_NUM_0, which is the default serial
port programmed during the initial burn. This utilises the default pins GPIO_NUM_37 and
GPIO_NUM_38, so no additional configuration is required. Should you wish to use a
different pin, you may call the uart_set_pin function to set the corresponding pin number.

1.3.2 Kconfig file

The primary function of this file is to incorporate the requisite configuration into the
sdkconfig file, enabling certain parameter adjustments to be made via a graphical
interface. Pin configuration is not required here; this serves solely as a macro definition
configuration for enabling features.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_uart driver. To
successfully call the contents of the bsp_uart folder within the main function, it is neces-
sary to configure the CMakeLists.txt file located within the bsp_uart folder. The configura-
tion details are as follows:

60

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_uart driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder. Add
the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the bsp_uart
driver necessitate inclusion of the bsp_uart header file, while those employing the bsp_led
driver require the bsp_led header file.

Below is an analysis of the main.c programme: system initialisation and execution of LED
and UART functionality.

This code resides within the init function, which is employed to store initialisation functions
requiring invocation and to evaluate the outcome of such initialisation. Should the returned
status not be ESP_OK, the code will display an error message and cease further
execution.

61

Within the `app_main` function, initialise the variable for the number of bytes received via
the serial port and the pointer for the received data, allocating a specific amount of
memory space. Subsequently, establish a loop to repeatedly execute:

(1) Use the uart_read_bytes function to read 512 bytes of data, with a timeout set to 1
second. This means data within the buffer is read within 1 second; if the timeout is
exceeded, the read operation automatically terminates and returns the number of bytes
read.

(2) When the number of bytes read is greater than zero (indicating data presence in the
buffer), append a null character “\0” to the end of the data based on the total bytes read.
Subsequently, compare the data against a predefined command string. If the strcmp
function returns zero, the strings are identical. The corresponding command then controls
the LED (LED_ON string turns it on, LED_OFF string turns it off). If the received string
does not match the preset, the serial port prints the error message LOG.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_led and bsp_uart folders within the main
function, it is necessary to configure the CMakeLists.txt file located in the main folder. The
configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_led and bsp_uart.
Subsequently, these settings are registered with the build system via the idf_compo-
nent_register command, enabling the main function to utilise these driver capabilities.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

62

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, Simply
reconfigure the LED pins and enable the UART interface.

1.4.3 Click Compile. Once compilation is successful, click Download.

63

Lesson 7 - Timer LED BlinkLesson 7 - Timer LED Blink

Introduction
This chapter's tutorial introduces the Timer application for the ESP32-P4, using an
example routine to flash an LED at timed intervals to help understand its fundamental
functionality. As a core peripheral in embedded systems, the timer can precisely
generate time interval signals and is widely used in scenarios such as task scheduling,
event triggering, and PWM control. In this chapter, we shall control LED flashing via the
timer to help readers master its fundamental usage, laying the groundwork for more
complex projects.

• 1.1 Timer Introduction
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

LED

64

1.1 Timer Introduction

1.1.1 Timer Introduction

The ESP32-P4 chip integrates multiple General Purpose Timers with the following
characteristics:

① Multiplexed Timers: Supports multiple independent timer groups, enabling simultane-
ous execution of multiple timing tasks;

② High Precision: Timers operate based on the hardware clock, achieving microsec-
ond-level accuracy;

③ Interrupt Functionality: Timers can trigger interrupts upon reaching preset values to
execute specific tasks;

④ Flexible configuration: Supports both periodic and one-shot modes to accommodate
diverse application requirements;

⑤ Extensive applications: Commonly employed for LED blinking, task scheduling, event
counting, timeout detection, PWM, and similar scenarios.

At its core, a timer functions as a hardware counter that increments or decrements
according to a preset clock frequency. Upon reaching the configured value, it triggers an
event (such as an interrupt), thereby executing user-defined tasks.

1.1.2 Timer Working Principle

The operation of the timer can be divided into the following steps:

1) Configure the clock source and division factor to determine the counting frequency;

2) Set the timing period (i.e., how many count pulses trigger an event);

3) Start the timer to begin counting;

4) When the counter reaches the preset value, trigger an interrupt;

5) Execute the task within the interrupt service routine (e.g., toggle the LED state).

The process is illustrated below:

System clock → Frequency divider → Counter accumulation → Matching value →
Trigger interrupt → Task execution

This experiment continues to utilise the on-board LED on the ESP32-P4 development
board as the output test subject.

GPIO pin: The on-board LED is connected to GPIO5.

The circuit structure remains identical to the previous chapter, requiring no additional
hardware connections.

1.2 Hardware design

65

1.3 Programme Analysis

Within the ESP32P4-dev-kits_timer example, a new
folder named bsp_timer has been created under the
ESP32P4-dev-kits_timer\peripheral\ directory. Within
the bsp_timer\ directory, a new include folder, a
CMakeLists.txt file, and a Kconfig file have been
created. The bsp_timer folder houses the bsp_timer.c
driver file, the include folder contains the bsp_timer.h
header file, and the CMakeLists.txt file integrates the
driver into the build system, enabling the project to
utilise timer driver functionality. The Kconfig file loads
the entire driver alongside GPIO pin definitions into the
sdkconfig file within the IDF platform (configurable via
the graphical interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

1.3.1 Timer Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The Timer driver source code comprises two files: bsp_timer.c and bsp_timer.h.

Below we shall first analyse the bsp_timer.h programme: it declares functions for the
Timer.

/* Header file references */

66

/* Function declarations and macro definition declarations */

Next, we shall analyse the bsp_timer.c programme: initialising and configuring the
timer, along with various callable API functions.

/* timer_init */

Within the timer_init function, the parameters for each member variable of the esp_tim-
er_create_args_t structure are first configured. (The most crucial element here is the
callback execution function, which will be detailed later.) Subsequently, the esp_tim-
er_create function is invoked to establish the timer controller, receiving a handle via the
esp_timer_handle_t structure. This handle facilitates subsequent operations on the
controller.

It is worth noting that there is no need to call the esp_timer_init() function here to
initialise the timer controller. This functionality runs automatically upon chip power-up.
Re-initialisation of the controller is only required when other timers have been used.

/* periodic_timer_callback */

Within the timer callback function, we set the timer flag timer_flag to a true value,
indicating that the timer's set duration has elapsed. Other functions may read this flag to
determine whether the required timing period has been reached. Subsequently, the flag
is cleared to ensure the timer can be triggered again.

/* Retrieve timer flag get_timer_flag and reset timer flag reset_timer_flag */

67

/* Start the timer function start_timer */

Within this function, the esp_timer_start_periodic function is invoked to initiate the
periodic timer (i.e., for cyclical execution). The input parameter specifies the timing
interval in microseconds. Adjusting this function's value enables timing at different
durations.

1.3.2 Kconfig file

The primary function of this file is to incorporate the requisite configuration into the
sdkconfig file, enabling certain parameter adjustments to be made via a graphical
interface. Pin configuration is not required here; this serves solely as a macro definition
configuration for enabling functionality.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_timer driver. To
successfully invoke the contents of the bsp_timer folder within the main function, it is
necessary to configure the CMakeLists.txt file located within the bsp_timer folder. The

68

configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_timer driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder. Add
the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the
bsp_timer driver necessitate inclusion of the bsp_timer header file, while those
employing the bsp_led driver require the bsp_led header file.

Below is an analysis of the main.c programme: system initialisation and execution of
LED and timer functions.

This code resides within the init function, which is employed to store initialisation
functions requiring invocation and to evaluate the outcome of such initialisation. Should
the returned status not be ESP_OK, the code will display an error message and cease
further execution.

69

Within the `app_main` function, the `start_timer` function is employed to initiate a
periodic timer with a cycle of 3 seconds.
Subsequently, a loop is established. Within this loop, the timer flag is checked every 10
milliseconds. Should the return value be true, the LED flipping function is executed (refer
to the code from Lesson One). Following execution, the timer flag is cleared to prepare
for the next iteration of the check.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_led and bsp_timer folders within the main
function, it is necessary to configure the CMakeLists.txt file located in the main folder.
The configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_led and bsp_timer.
Subsequently, these settings are registered with the build system via the idf_compo-
nent_register command, enabling the main function to utilise these driver functionalities.

70

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, Simply
reconfigure the LED pins and enable the Timer interface.

71

1.4.3 Click Compile. Once compilation is successful, click Download.

Lesson 8 - PWM Servo ControlLesson 8 - PWM Servo Control

Introduction
This chapter's tutorial introduces the PWM output application of the ESP32-P4, using a
servo control example to help you understand the fundamental functions of PWM.

Servos, as common actuators, are indispensable components in robots, remote-con-
trolled models, and automated devices. Through this chapter, readers will learn how to
generate PWM waveforms using the ESP32-P4's GPIO pins to drive a 360-degree
servo, laying the groundwork for more complex motion control projects.

Project Demonstration Effect

Servo motor module

72

• 1.1 Servo Motors and PWM Introduction
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

This chapter is divided into the following subsections

1.1 Servo Motors and PWM Introduction

1.1.1 PWM Introduction
Pulse Width Modulation (PWM) is a common method of digital signal control that
regulates the average voltage of an output signal by controlling the ratio of the high-level
duration to the cycle period (duty cycle). The ESP32-P4 provides a rich array of PWM
channels suitable for controlling devices such as motors, servos, and backlighting.

Key features:

① Flexibility: Programmable duty cycle and frequency, suitable for diverse applications
ranging from LED dimming to motor speed control.
② High precision: ESP32-P4's PWM incorporates high-resolution timers enabling
smooth control.
③ Multi-channel capability: Simultaneously drives multiple servos or motors to fulfil
complex motion requirements.

1.1.2 Introduction to Servo Motors
A servo is an angle-controlled motor comprising a DC motor, gears, and position
feedback circuitry.

73

Standard 180° servo: Angle-controlled, typically 0° to 180°.

360° continuous rotation servo: Not fixed-angle, but controls rotation direction and speed.

This tutorial employs a 360-degree servo, controlled as follows:

PWM cycle: Typically 20ms (50Hz).

Duty cycle: Determines rotation direction and speed.

Approximately 1.0 ms → Clockwise rotation

Approximately 1.5 ms → Stops

Approximately 2.0 ms → Counter-clockwise rotation

1.1.3 Principles of Servo Motor Drive
Servo control is fundamentally achieved through PWM pulse width modulation:

The ESP32-P4 outputs a PWM wave with a 20ms period;

Different pulse widths (1–2ms) represent distinct rotational states;

The servo's internal circuitry adjusts motor operation based on this signal, thereby
controlling rotational speed and direction.

Unlike LED control, which involves simple ‘on/off’ states, servos require a ‘continuous
PWM signal’ to maintain their position.

Servos find extensive application across a wide range of scenarios requiring angular
control.

1.2 Hardware Design
In this example, we utilise an ESP32-P4 development board paired with a 360-degree
servo motor.

The connection configuration is as follows:

74

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

Within the ESP32P4-dev-kits_servo example, a
new folder named bsp_servo has been created
under the ESP32P4-dev-kits_servo\peripheral\
directory. Within the bsp_servo\ directory, a new
include folder, a CMakeLists.txt file, and a Kconfig
file have been created. The bsp_servo folder
houses the bsp_servo.c driver file, the include
folder contains the bsp_servo.h header file, and the
CMakeLists.txt file integrates the driver into the
build system, enabling the project to utilise servo
motor control functionality. The Kconfig file loads the
entire driver configuration, including GPIO pin
definitions, into the sdkconfig file within the IDF
platform (configurable via the graphical interface).

Servo VCC → 5V power supply (or development board 5V)

Servo GND → Development board GND

Servo signal pin → An available PWM pin on the ESP32-P4 (e.g., GPIO25)

Important notes:

Servos operate at 5V, while the ESP32-P4 outputs 3.3V signals. However, the vast
majority of servos are compatible.

Should multiple servos operate simultaneously, an additional power supply is required to
prevent insufficient current from the development board's USB port.

75

1.3.1 SERVO Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The SERVO driver source code comprises two files: bsp_servo.c and bsp_servo.h.

Below we shall first analyse the bsp_servo.h programme: it contains relevant definitions
for servo pins and function declarations.

/* Header file references */

/* Function declarations and macro definition declarations */

Next, we shall analyse the bsp_servo.c programme: initialising and configuring the
servo pins, and calling the setup function.

/* Initialisation function servo_init */

76

Within the servo_init function, the member variables of the gpio_config_t structure were
first configured with parameters. Subsequently, the gpio_config function is invoked to
complete the initialisation of the GPIO using these configuration parameters. Following
this, the ledc_timer_config_t structure is configured, which sets the parameters for the
LEDC timer (frequency, resolution, etc.). Thereafter, the ledc_channel_config_t structure
is configured; this structure serves to bind the GPIO port being used to the correspond-
ing LEDC timer and LEDC channel. Finally, the `ledc_timer_config` and `ledc_channel_-
config` functions are invoked to complete the initialisation of the LEDC controller and its
channels.

/* Set the servo motion function set_servo_status */

This function takes two parameters: a servo direction and a servo speed. The servo
direction type is defined in the bsp_servo.h file, comprising forward rotation, reverse
rotation, and stop. The servo speed variable ranges from 0 to 4, configuring the speed
into five distinct settings. This function determines which of the `ledc_set_duty` and
`ledc_update_duty` functions to execute based on the servo direction. These functions
set the duty cycle for the current PWM channel and update the current settings for
execution.

It is worth noting that we are using a 360-degree servo, not an 180-degree servo.
Therefore, the PWM waveform we output does not control the servo's rotational angle,
but rather its rotational speed.

77

1.3.2 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, 25
refers to GPIO_NUM_25.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_servo driver. To
successfully call the contents of the bsp_servo folder within the main function, it is
necessary to configure the CMakeLists.txt file located within the bsp_servo folder. The
configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling
the project to utilise the bsp_servo driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder. Add
the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the
bsp_servo driver necessitate inclusion of the bsp_servo header file.

Below is an analysis of the main.c programme: system initialisation and execution of
servo functionality.

78

This code resides within the init function, which is employed to store initialisation
functions requiring invocation and to evaluate the outcome of such initialisation. Should
the returned status not be ESP_OK, the code will display an error message and cease
further execution.

Within the `app_main` function, establish a loop. Within this loop, create a nested loop
designed to execute its purpose five times. This nested loop will cycle through the
following sequence: first, rotate the servo clockwise; after a two-second delay, reverse
the rotation; then, execute all rotation speeds sequentially, incrementally increasing the
rotational velocity. Upon completing this sequence and exiting the nested loop, execute
the command to halt the servo. After a two-second delay, resume execution of the
original loop.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_servo folder within the main function, it is
necessary to configure the CMakeLists.txt file located in the main folder. The configura-
tion details are as follows:

First, the directories for source files and header files are defined, along with the required
driver library—specifically, the driver library for linking bsp_servo. Subsequently, these
settings are registered with the build system via the idf_component_register
command, enabling the main function to utilise these driver capabilities.

79

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, requiring
only the servo pin to be reconfigured.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

80

1.4.3 Click Compile. Once compilation is successful, click Download.

Lesson 9 - LCD Display HelloLesson 9 - LCD Display Hello
Introduction
This chapter's tutorial introduces graphical display applications for the ESP32-P4.
Through example routines utilising LVGL (Light and Versatile Graphics Library)
combined with the MIPI DSI interface, it aids in understanding its fundamental capabili-
ties. Lighting up the screen and rendering basic graphics serve as classic test cases,
enabling readers to gain a straightforward yet comprehensive grasp of display applica-
tions on the ESP32-P4. This lays the groundwork for more complex GUI projects in
subsequent stages.

Project Demonstration Effect

Hello P4

81

• 1.1 Introduction to LVGL and MIPI DSI
• 1.2 Hardware Design
• 1.3 Software Design
• 1.4 Download and Verification

This chapter is divided into the following subsections

1.1 Introduction to LVGL and MIPI DSI

1.1.1 LVGL Introduction

LVGL is an open-source embedded GUI development framework characterised by its
lightweight, cross-platform, and high-performance features, widely utilised across
various MCU and SoC platforms.

Its principal characteristics include:

① Extensive control library: Provides GUI components such as buttons, progress bars,
charts, and images for rapid construction of human-machine interfaces;

② Hardware acceleration support: LVGL integrates with the ESP32-P4's 2D accelerator
and DMA to significantly enhance rendering speed;

③ Multitasking support: Compatible with RTOS for seamless interface switching and
complex logic handling;

④ Customisability: Themes, styles, and fonts are configurable to adapt to diverse
product requirements;

⑤ Cross-platform compatibility: Supports deployment from low-end MCUs to high-per-
formance chips, facilitating portability and scalability.

Through LVGL, developers can rapidly implement sophisticated interface designs
without requiring direct implementation of underlying graphics algorithms.

1.1.2 MIPI DSI Introduction

MIPI DSI (Display Serial Interface) is a high-speed serial display interface protocol
widely employed in smartphone and tablet displays. The ESP32-P4 incorporates an
integrated MIPI DSI controller, enabling direct driving of high-resolution displays.

Its key features include:

① High-speed serial communication: Supports data rates exceeding 500 Mbps to 1
Gbps, suitable for high-definition displays;

② Multi-channel support: Selectable 1–4 lane transmission modes to accommodate
varying resolution and refresh rate requirements;

③ Low-power design: Utilises differential signal transmission for reduced power
consumption and enhanced interference resistance;

82

④ Excellent compatibility: Supports multiple common MIPI DSI display modules (e.g.,
480×800, 720p, 1080p);

⑤ Command and video modes: Supports both command mode (initialisation register
writing) and video mode (continuous pixel stream).

Within the ESP32-P4 display example, LVGL serves as the graphics rendering engine
while MIPI DSI functions as the hardware transmission interface. Their integration
enables rapid screen illumination and interface display.

1.2 Hardware design

Hardware-wise, the ESP32-P4 development board connects to the LCD screen via the
MIPI DSI interface. The screen typically incorporates its own power management
integrated circuit (PMIC) and backlight control circuitry.

The primary connection relationships are as follows:

ESP32-P4 MIPI DSI Lane0~3 → Display MIPI channels

I2C/SPI → Display touch controller (e.g., GT911, FT5x06)

PWM → Backlight brightness adjustment

The ESP32-P4 requires only the correct clock supply and initialisation commands to
drive the display.

83

1.3.1 Display driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The display driver source code comprises two files: bsp_display.c and bsp_display.h.

Below we shall first analyse the bsp_display.h programme: it contains relevant
definitions for the display pins and function declarations.

/* Header file references */

1.3 Programme Analysis

Within the ESP32P4-dev-kits_display example, a new
folder named bsp_display has been created under the
ESP32P4-dev-kits_display\peripheral\ directory.
Within the bsp_display\ path, a new include folder, a
CMakeLists.txt file, and a Kconfig file have been
established. The bsp_display folder houses the
bsp_display.c driver file, the include folder contains the
bsp_display.h header file, and the CMakeLists.txt file
integrates the driver into the build system, enabling the
project to utilise the display driver functionality. The
Kconfig file loads the entire driver configuration,
including GPIO pin definitions, into the sdkconfig file
within the IDF platform (configurable via the graphical
interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

84

/* Function declarations and macro definitions */

Next, we shall analyse the bsp_display.c programme: initialising and configuring the
display pins, and calling the setup function.

/* Backlight initialisation function blight_init */

85

Within the blight_init function, the member variables of the gpio_config_t structure are
first parameterised. Subsequently, the gpio_config function is invoked to complete the
initialisation of the GPIO using these configuration parameters. (Here, all pins required
for subsequent operations are initialised). Subsequently, the ledc_timer_config_t
structure is configured, setting parameters for the LEDC timer (frequency, resolution,
etc.). Following this, the ledc_channel_config_t structure is configured to bind the
GPIO port in use with the corresponding LEDC timer and LEDC channel. Finally, the
`ledc_timer_config` and `ledc_channel_config` functions are invoked to complete the
initialisation of the LEDC controller and its channels. (This registers the PWM interface
for backlight control.)

/* Function to set backlight brightness: `set_lcd_brightness` */

This function takes one parameter: the backlight brightness percentage (0-100). It
executes the `ledc_set_duty` and `ledc_update_duty` functions based on the input
brightness percentage. These functions set the duty cycle for the current PWM channel
and update the current settings for execution.
/* Display port driver function: `display_port_init` */

86

First, configure the esp_lcd_dsi_bus_config_t structure to set up the MIPI DSI interface.
As we are using a 2-lane display, the num_data_lanes parameter is set to 2. Use the
esp_lcd_new_dsi_bus function to create a new DSI bus handle. Next, configure the
esp_lcd_dbi_io_config_t structure and create an IO interface handle for the MIPI DSI
DBI interface using the esp_lcd_new_panel_io_dbi function. Finally, select the screen
colour rendering type via different bit depth settings (we default to RGB565).

We configure the esp_lcd_dpi_panel_config_t structure to set parameters specific to
our display. We then configure the ek79007_vendor_config_t structure, incorporating
our registered display configuration and MIPI DSI bus interface settings. Subsequently,
we configure the esp_lcd_panel_dev_config_t structure, which sets our colour bit
depth, display mode, and display reset pin.

The esp_lcd_new_panel_ek79007 function creates a new control interface for our
display driver chip. Should the screen be replaced, this function must be reconfigured
with the corresponding display driver chip. It registers a handle for this specific display
driver chip. Subsequent calls to esp_lcd_panel_reset reset this handle, and finally,
esp_lcd_panel_init initialises the handle, configuring the display interface initialisation.
It is worth noting that the configuration of the `video_timing` structure involves specific
parameters for the display. These must be set according to the display's data manual,
with resolution and other parameters corresponding precisely to the specifications
outlined therein.

/* lvgl port driver function lvgl_init */

87

First, configure the lvgl_port_cfg_t structure, which sets parameters such as stack
control and priority for the lvgl thread. Then, use the lvgl_port_init function to initialise
and create the lvgl execution thread.

First, configure the `lvgl_port_display_cfg_t` structure by setting the handles obtained
from the display port driver function within the `lvgl` structure. The `buffer_size`
parameter defines the display's refresh buffer, which can be configured based on refresh
rate requirements—such as full-screen or half-screen buffering. The `double_buffer`
parameter determines whether double buffering is enabled, which significantly improves
display frame rates.

Key point: The buff_dma field within the flags structure determines whether the buffer is
allocated within the DMA region. Configuring this to true offers high display efficiency
and rapid refresh rates. However, chip DMA space resources are typically scarce,
making this option generally impractical. Moreover, space constraints often prevent
full-screen configuration, rendering it suitable only for low-resolution displays.

88

buff_spiram configures the buffer within the PSRAM region; this option is mutually
exclusive with buff_dma. Setting this to true enables full-screen buffering, providing
sufficient space and meeting speed requirements, making it suitable for high-resolution
displays.

After configuration, initialise and register the display's LVGL configuration using the
lvgl_port_add_disp_dsi function, which returns a control handle.

/* Screen initialisation function display_init */

This function calls the backlight initialisation, display driver initialisation, and lvgl
initialisation, combining these initialisation functions into a single initialisation process.
It then calls the gpio_set_level function to set the vertical mirror pin to low level and the
horizontal mirror pin to high level. These two mirroring effects are configured according
to the display requirements of the screen in use. Finally, it sets the screen backlight
brightness to 0% (i.e., turns off the backlight).

1.3.2 Kconfig file

The primary function of this file is to incorporate the requisite configurations into the
sdkconfig file, enabling certain parameter adjustments to be made via a graphical
interface. These parameters comprise: screen colour bit depth: 16-bit for RGB565 and
24-bit for RGB888; screen reset pin, backlight control pin, vertical mirror pin,
horizontal mirror pin, and backlight PWM frequency. The numerical pin designations
correspond to the GPIO_NUM sequence.

89

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_display driver. To
successfully invoke the contents of the bsp_display folder within the main function, it is
necessary to configure the CMakeLists.txt file located within the bsp_display folder.
The configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries (the driver library for the display driver
chip ek79007, and the lvgl driver library). Subsequently, these settings are registered
with the build system via the idf_component_register command, enabling the project
to utilise the bsp_display driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the

90

main function executable main.c and the header file main.h within the include folder. Add
the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the
bsp_display driver necessitate inclusion of the bsp_display header file.

Below is an analysis of the main.c programme: system initialisation and execution of
display-specific functions.

This code resides within the init function, which serves to store initialisation functions
requiring invocation and assess their return outcomes. Should the return status deviate
from ESP_OK, the code will output an error message and cease further execution.

/* Screen initialisation and display function display_test */

This function primarily configures the initial screen display content: it sets the
background colour and text display via the lvgl control.

The lv_label_set_text function sets the text displayed on the control.

The lv_obj_set_style_text_color function sets the text display colour.

The lv_obj_set_style_text_font function sets the text font size.

The lv_obj_set_style_bg_color function sets the background colour.

The lv_obj_set_style_bg_opa function sets the background transparency.

It is worth noting that when calling Lvgl functions outside of Lvgl threads, a mutual
exclusion lock must be acquired. The lvgl_port_lock function acquires the mutual
exclusion lock, while the lvgl_port_unlock function releases it.

91

Within the app_main function, the backlight brightness is first set to 100%, followed by
initialising the screen display content. A loop is then created, within which the lvgl
function is executed every two seconds to set the background colour. The background
colour is cycled through (in the sequence red-yellow-blue). These colours may be
modified as required, with colour definitions specified in the bsp_display.h header file.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_display folder within the main function, it is
necessary to configure the CMakeLists.txt file located in the main folder. The configura-
tion details are as follows:

First, the directories for source files and header files are defined, along with the required
driver library—specifically, the driver library for linking bsp_display. Subsequently, these
settings are registered with the build system via the idf_component_register
command, enabling the main function to utilise these driver capabilities.

92

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the DSI pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

93

94

1.4.3 Click Compile. Once compilation is successful, click Download.

Lesson 10 - Ultrasonic Distance DisplayLesson 10 - Ultrasonic Distance Display

Introduction
This chapter's tutorial introduces the interface application between the ESP32-P4 and
an ultrasonic sensor, utilising a distance measurement routine to aid understanding of its
fundamental functionality. As a common sensor application case, ultrasonic ranging
provides readers with an intuitive grasp of how the ESP32-P4 interacts with peripherals,
laying the groundwork for more complex intelligent detection and control projects.

95

Project Demonstration Effect

• 1.1 Introduction to Ultrasonic Sensors
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

This chapter is divided into the following subsections

1.1 Introduction to Ultrasonic Sensors
1.1.1 The Working Principle of Ultrasonic Sensors

Ultrasonic sensors are devices that utilise the principle of sound wave reflection for
non-contact distance measurement, commonly employed in scenarios such as obstacle
detection, liquid level measurement, and robotic obstacle avoidance. Taking the widely
used HC-SR04 module as an example, it accomplishes measurement through the
sequence: emitting an ultrasonic wave → receiving the echo → calculating the distance.

ultrasonic sensor module

distance = 26.1cm distance = 26.1cm

96

Emission: When the ESP32-P4 applies a high level exceeding 10 μs to the Trigger pin,
the sensor emits a 40 kHz ultrasonic pulse.

Propagation and Reflection: The ultrasonic wave reflects back upon encountering an
obstacle.

Reception: The sensor's Echo pin outputs a high-level pulse whose duration is propor-
tional to the round-trip time of the ultrasonic wave.

Distance Calculation: The target distance is calculated using the formula:

Distance (cm) = Time (μs) × Speed of Sound (340 m/s) ÷ 2 × 10,000 Distance (cm) =
\frac{Time (μs) × Speed of Sound (340 m/s)}{2 × 10,000} Distance (cm) = 2 × 10,000
× Time (μs) × Speed of Sound (340 m/s)

For example, if the Echo high-level signal persists for 2 ms, the target distance is
approximately 34 cm.

1.1.2 Module Pin Description

Taking the HC-SR04 as an example, it typically features four pins:

VCC: Power supply voltage 5V (some models support 3.3V)

GND: Ground

Trigger (Trig): Trigger input pin, requires a 10 μs high level

Echo: Echo output terminal, where the high-level width is proportional to the distance

97

1.1.3 Factors Affecting Distance Measurement

Ambient temperature: The speed of sound varies with temperature (approximately 340
m/s at 20°C, increasing by roughly 0.6 m/s per 1°C rise).

Measurement angle: The sensor's emission cone angle is typically around 15°, requiring
the target to remain within this range for accurate distance measurement.

Object Material: Soft or sound-absorbing materials (such as fabric or sponge) may
cause echo attenuation or measurement failure.

Measuring Range: The typical effective measurement range for the HC-SR04 is 2 cm to
400 cm.

Ultrasound finds extensive application in various scenarios of daily life.

 Caution: The ESP32-P4's GPIO operates at 3.3V logic levels, whereas some
ultrasonic modules output Echo at 5V. Therefore, voltage reduction protection is
required via a voltage divider resistor or a level-shifting module.

Ultrasonic Rangefinder

98

1.2 Hardware design

The following table shows the connection method for the ESP32-P4 and HC-SR04:

Ultrasonic Sensor

VCC

GND

Trig

Echo

ESP32-P4

5V

GND

GPIO10

GPIO11

Specifications

Power Supply

Common Ground

Trigger Signal Output

Echo Signal Input (Requires Voltage Dividing)

1.3 Programme Analysis

Within the ESP32P4-dev-kits_ultrasinic
example project, a new folder named bsp_ultrasi-
nic has been created under the
ESP32P4-dev-kits_ultrasinic\peripheral
directory. Within the bsp_ultrasinic\ path, a new
include folder, CMakeLists.txt file, and Kconfig
file have been established. The bsp_ultrasinic
folder houses the bsp_ultrasinic.c driver file, the
include folder contains the bsp_ultrasinic.h
header file, and the CMakeLists.txt file integrates
the driver into the build system, enabling the
project to utilise ultrasonic driver functionality. The
Kconfig file loads the entire driver and GPIO pin
definitions into the sdkconfig file within the IDF
platform (configurable via the graphical interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

99

1.3.1 Ultrasonic Driver Code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The ultrasonic driver source code comprises two files: bsp_ultrasonic.c and bsp_ultra-
sonic.h.

Below we shall first analyse the bsp_ultrasonic.h programme: it contains relevant
definitions for the ultrasonic pins and function declarations.

/* Header file references */

/* Function declarations and macro definition declarations */

Next, we shall analyse the bsp_ultrasonic.c programme: initialising and configuring the
ultrasonic pins, calling the settings, and executing the callback function.

/* Ultrasonic initialisation function ultrasonic_init */

100

Within the ultrasinic_init function, the member variables of the mcpwm_capture_tim-
er_config_t structure are first configured with parameters. Subsequently, the mcpw-
m_new_capture_timer function is invoked to create a new mcpwm timer. The mcpw-
m_capture_channel_config_t structure is then configured. The gpio_num parameter
corresponds to the GPIO pin for the timer input signal, the prescale parameter
corresponds to the prescaler coefficient, flags.neg_edge indicates whether to capture
the falling edge of the signal, flags.pos_edge indicates whether to capture the rising
edge, and flags.pull_up indicates whether to enable internal pull-up. After configuration,
the `mcpwm_new_capture_channel` function registers the new timer capture channel.
Subsequently, the `gpio_config_t` structure is configured, and the `gpio_config`
function sets up the signal output pin. Finally, the capture timer is enabled using
`mcpwm_capture_timer_enable`, and the capture timer is started with the `mcpwm_-
capture_timer_start` function.

/* Ultrasonic callback registration function ultrasonic_callback_register */

101

This function takes one argument, which is the method for conveying results via task
notifications after data acquisition within the callback function. The parameter passed is
the FreeRTOS thread handle. This function configures the `mcpwm_capture_event_-
callbacks_t` structure, registers the callback function via `mcpwm_capture_chan-
nel_register_event_callbacks`, and finally enables the capture timer channel by calling
`mcpwm_capture_channel_enable`.

/* Ultrasonic echo callback execution function `hc_sr04_echo_callback` */

First, the callback function assigns the captured rising edge signal time as the ultrasonic
start time, then assigns the captured falling edge signal time as the ultrasonic end time.
Subtracting these yields the total ultrasonic transit time, which is then transmitted via
task notification.

/* Function send_ultrasonic_start for sending start signal before ultrasonic transmission
*/

102

Call the gpio_set_level function to set the TRIG pin to output a low-level---high-lev-
el---low-level waveform with a 10μs interval. This is the timing requirement for the
ultrasonic sensor's start signal.

/* Ultrasonic time-to-distance conversion function get_ultrasonic_distance */

This function converts the input value “time”, measured in microseconds, into distance
using the following formula: ultrasonic_data.ultrasonic_distance = time * 0.01715; The
conversion formula is time multiplied by 0.01715. The specific formula is as follows:

Distance = High-level Duration × Speed of Sound (340 m/s) ÷ 2. The speed of sound
unit can be converted as follows: 340 m/s = 0.0343 cm/μs. Dividing 0.0343 cm/μs by 2
yields 0.01715, hence the formula conversion to time × 0.01715.

It is worth noting that after converting the distance, we perform a check: if the newly
calculated distance matches the previous one, we return -1.

1.3.2 Kconfig file

The primary function of this file is to incorporate the required configurations into the
sdkconfig file, enabling certain parameter adjustments to be made via a graphical
interface. Here, 12 corresponds to GPIO_NUM_12, and 13 corresponds to
GPIO_NUM_13.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_ultrasonic driver. To
successfully call the contents of the bsp_ultrasonic folder within the main function, it is
necessary to configure the CMakeLists.txt file located within the bsp_ultrasonic folder.
The configuration details are as follows:

103

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries (esp_timer for the capture timer and
esp_rom for microsecond-level timing). Subsequently, these settings are registered with
the build system via the idf_component_register command, enabling the project to
utilise the bsp_ultrasonic driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the main.h header file within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the
bsp_display driver necessitate inclusion of the bsp_display header file, while those
employing the bsp_ultrasonic driver require the bsp_ultrasonic header file.

Below is an analysis of the main.c programme: system initialisation alongside execution
of display functionality and ultrasonic capabilities.

This code resides within the init function, which serves to store initialisation functions
requiring invocation and assess the outcome of such initialisation. Should the return
status not be ESP_OK, the code will output an error message and cease further
execution.

104

/* Screen initialisation and display function ultrasonic_display */

This function primarily configures the initial screen display content: setting background
colours and text display via lvgl controls.

The lv_label_set_text function sets the text displayed on the control.

The lv_style_set_bg_opa function sets the background colour of the style.

The lv_obj_set_style_text_color function sets the text display colour. The lv_obj_set_-
style_text_font function sets the text font size.

The lv_obj_set_style_bg_color function sets the background colour.

lv_obj_set_style_bg_opa function sets background transparency

Note: When calling lvgl functions outside lvgl thread functions, a mutex lock must
be acquired. lvgl_port_lock function acquires the mutex lock, lvgl_port_unlock
function releases it.

/* Screen data refresh display function update_distance_value */

This function employs the snprintf function to format the acquired float-type data into a
string, subsequently refreshing the displayed content via the lv_label_set_text function.

It is worth noting that the snprintf function appends a terminating character to the end of
the formatted string. Furthermore, lv_label_set_text recognises strings by identifying this
terminating character. Consequently, utilising the snprintf function for string formatting
constitutes a preferable approach.

105

Within the app_main function, the backlight brightness is first set to 100%, followed by
initialising the screen display content. Finally, a FreeRTOS thread is created to handle
data processing and screen refresh operations.

/* Ultrasonic data processing and screen refresh thread: ultrasonic_task */

Within the ultrasonic data processing and screen display refresh thread, variables are
first initialised, and ultrasonic_callback_register is invoked to register the callback
function by passing the current thread handle. Subsequently, a while loop is established.
Within this loop, the function to send the ultrasonic start signal is invoked. Should this
fail, the loop is re-entered via continue. Upon successful execution, the thread awaits
the reception task notification. Within this notification, the transmitted time data is
received and converted into units of microseconds. The system then assesses whether
the elapsed time exceeds the ultrasonic measurement maximum of 35 seconds. If
exceeded, the lvgl function is invoked to control the display refresh, showing the string
‘the distance exceeds the limit’. If the limit is not exceeded, the `get_ultrasonic_dis-
tance` function is called to convert the data into distance values. The function's return
value is checked: if it is -1, the data matches the previous reading and the display is not
updated. If it is not -1, the `update_distance_value(distance)` function is called to
refresh the display with the latest data. The final 1-second delay represents the interval
at which ultrasonic distance measurement is performed.

106

1.3.4 CMkaLists.txt file

To successfully call the contents of the bsp_display and bsp_ultrasonic folders within
the main function, it is necessary to configure the CMakeLists.txt file located in the
main folder. The configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries for linking bsp_display and bsp_ul-
trasonic. Subsequently, these settings are registered with the build system via the
idf_component_register command, enabling the main function to utilise these driver
functionalities.

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the screen and ultrasonic pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

107

1.4.3 Click Compile. Once compilation is successful, click Download.

108

Lesson 11 - DHT20 Temp HumidityLesson 11 - DHT20 Temp Humidity

Introduction
This chapter's tutorial introduces the interface application between the ESP32-P4 and
the DHT20 digital temperature and humidity sensor. Through example routines for
reading temperature and humidity data, it assists in understanding how to utilise digital
sensors. As a common environmental monitoring case, temperature and humidity
acquisition provides readers with an intuitive understanding of the interaction between
the ESP32-P4 and peripherals, laying the groundwork for subsequent complex IoT and
smart home projects.

• 1.1 Introduction to the DHT20 Temperature and Humidity Sensor
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

temperature and humidity
sensor module

Temperature = 36.3 C Humidity = 31.0 %

109

1.1 DHT20 Temperature and Humidity Sensor Introduction

1.1.1 DHT20 Introduction

The DHT20 is a digital temperature and humidity sensor incorporating an integrated
capacitive humidity sensor and temperature measurement element, alongside a built-in
12-bit ADC and digital signal processing circuitry. Unlike conventional analogue sensors,
the DHT20 communicates with the host microcontroller via an I²C bus, enabling direct
output of calibrated and compensated temperature and humidity data.

Its key features include:

① Digital output: I²C communication eliminates noise and drift issues associated with
analogue acquisition;

② High precision: Typical humidity accuracy ±3% RH, temperature accuracy ±0.5 ℃;

③ Low power consumption: Typical operating current < 1 mA, suitable for battery-pow-
ered devices;

④ Calibration compensation: Factory-calibrated for immediate measurement upon
power-up, requiring no additional calibration;

⑤ Rapid response: Typical humidity response time less than 10 seconds.

1.1.2 Working Principle

DHT20 internal components:

Capacitive humidity sensor: Comprising a humidity-sensitive polymer film and
electrodes. When air humidity changes, the dielectric constant of the film alters, causing
a corresponding change in capacitance.

Temperature sensor: Utilises a high-precision temperature-sensitive element (e.g., a
silicon sensor with temperature drift compensation).

Signal processing circuit: Transmits temperature and humidity signals to an
analogue-to-digital converter (ADC), which outputs standardised digital values via
internal compensation algorithms.

110

① Humidity measurement principle

The capacitive sensor outputs a capacitance signal that varies with humidity. This is
converted to a digital value by the ADC and then scaled to relative humidity (RH%) using
a calibration curve.

② Temperature Measurement Principle

The resistance or voltage of the temperature-sensitive element varies with temperature.
After ADC conversion, a digital temperature value (in degrees Celsius) is obtained.

③ Data Calculation Formula

According to the DHT20 data sheet, the raw data read is a 20-bit binary number, which
must be converted to the actual physical quantity:

1.1.3 Pin Description

The DHT20 module typically features a 4-pin interface:

VCC: Supply voltage 2.0V–5.5V (the ESP32-P4 development board's 3.3V power
supply can provide direct power)

GND: Ground

SDA: I²C data line

SCL: I²C clock line

The default I²C address is 0x38, supporting both standard mode (100 kHz) and fast
mode (400 kHz).

1.1.4 Applications and Influencing Factors

Application scenarios: Widely employed in smart homes, environmental monitoring,
weather stations, warehouse surveillance, and similar contexts.

Influencing factors:

Rapid temperature fluctuations may cause humidity measurement delays;

Prolonged operation in high-humidity environments necessitates attention to sensor
saturation issues;

Airflow velocity impacts sensor response time.

111

The ESP32-P4 is connected to the DHT20 via the I²C bus. The wiring configuration is as
follows:

ESP32-P4 GPIOxx (SDA) → DHT20 SDA
ESP32-P4 GPIOyy (SCL) → DHT20 SCL
3.3V → VCC
GND → GND

(The specific pins for SDA and SCL may be selected according to the actual pin
definitions of the development board, and pull-up resistors of 4.7kΩ to 10kΩ must be
added.)

The supply voltage is 3.3V, with a typical operating current of 0.5mA, and can be directly
powered by the ESP32-P4 development board.

1.2 Hardware design

Schematic diagram

112

1.3.1 I2C Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The I2C driver source code comprises two files: bsp_i2c.c and bsp_i2c.h.

Below we shall first analyse the bsp_i2c.h programme: it contains relevant definitions for
the I2C pins and function declarations.

/* Header file references */

1.3 Programme Analysis

Within the ESP32P4-dev-kits_dht20 example, new
folders named bsp_i2c and bsp_dht20 were created
under the ESP32P4-dev-kits_dht20\peripheral\
directory. Within the bsp_dht20\ and bsp_i2c\ paths,
new include folders, CMakeLists.txt files, and Kconfig
files were established. The bsp_i2c folder houses the
bsp_i2c.c driver file, while the bsp_dht20 folder
contains the bsp_dht20.c driver file. The respective
include folders house the .h header files, while the
CMakeLists.txt file integrates the drivers into the build
system, enabling project utilisation of their functionality.
The Kconfig file, meanwhile, loads the entire driver
along with GPIO pin definitions into the SDKConfig file
within the IDF platform (configurable via the graphical
interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

113

/* Function declarations and macro definition declarations */

Next, we shall analyse the bsp_i2c.c programme: initialising and configuring the I2C
pins, and exposing the API interface functions.

/* I2C initialisation function i2c_init */

Within the i2c_init function, the member variables of the i2c_master_bus_config_t
structure are first configured with parameters. Subsequently, the i2c_new_master_bus
function is invoked to establish a new I2C bus controller. The parameters for the
i2c_master_bus_config_t structure members are as follows:

i2c_port: I2C bus controller port selection

sda_io_num: I2C bus SDA data line

scl_io_num: I2C bus SCL clock line

clk_source: I2C bus clock source selection

glitch_ignore_cnt: Glitches shorter than this duration are ignored; typically set to 7

flags.enable_internal_pull: Enable internal pull-up resistors

/* I2C slave device registration function i2c_dev_register */

This function takes one parameter: the 7-bit address of the I2C slave device to be

114

registered. Using the device address configuration structure, the address is bound to the
slave device via the `i2c_master_bus_add_device` function, returning a device handle
(usable for subsequent read operations, write operations, etc.).

/* I2C read function `i2c_read` */

I2C read operation: input the I2C device handle, read the receive buffer, and specify the
read quantity

/* I2C write function i2c_write */

I2C write operation: input the I2C device handle, write the array, and the number of
bytes to write

/* I2C read register function i2c_read_reg */

I2C register read operation: input the I2C device handle, register address, read buffer,
and read count.

/* I2C register write function i2c_write_reg */

I²C write register operation: input the I²C device handle, specify the register address,
and write the data (single value).

1.3.2 Kconfig file
The primary function of this file is to
incorporate the required configuration
into the sdkconfig file, enabling certain
parameter settings to be modified via
a graphical interface. Here, 18
corresponds to GPIO_NUM_18,
and 19 corresponds to GPIO_NUM_19.

115

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_i2c driver. To
successfully call functions from the bsp_i2c folder within other functions, it is necessary
to configure the CMakeLists.txt file located within the bsp_i2c folder. The configuration
details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_i2c driver functionality.

1.3.4 DHT20 Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The DHT20 driver source code comprises two files: bsp_dht20.c and bsp_dht20.h.

Below we shall first analyse the bsp_dht20.h programme: it defines relevant pins for the
temperature and humidity sensor and declares functions.

/* Header file references */

/* Function declarations and macro definition declarations */

116

Next, we shall analyse the bsp_dht20.c programme: initialising the DHT20 sensor
configuration and exposing API interface functions.

/* DHT20 initialisation function dht20_begin */

Within the `dht20_begin` function, the `DHT20` sensor is first registered on the I²C bus
using the `i2c_dev_register` function, which returns an operation handle. Subsequently,
if the returned device handle is not null, the `dht20_reset_sensor` function is invoked to
reset the sensor, ensuring it is in a state where temperature and humidity data can be
read.

/* DHT20 sensor reset function dht20_reset_sensor */

This function first calls the `dht20_status` function to obtain the current status of the
DHT20 sensor. If the current status code is not 0x18, it calls the `dht20_reset_register`
function to reset the 0x1B, 0x1C, and 0x1E registers and assess whether the reset was
successful. Following the reset, it re-calls the `dht20_status` function to examine the
sensor's current status code. Should the retry count exceed 254, the function terminates
abruptly and returns the accumulated retry count.

117

/* Function `dht20_status` for reading DHT20 device status codes */

This function uses the i2c_write function to send 0x71 to the DHT20 sensor, then reads
the sensor to retrieve its status code.

/* DHT20 sensor reset register function dht20_reset_register */

First configure the data array for writing, then call the i2c_write function to write data.
After a 5ms delay, call i2c_read to read the sensor and obtain its value. Assign the
acquired data to the first and second elements of the data array. The first element of the
data array uses the bitwise OR operator to set the high-order bit of the input register
address to 1, then rewrites the sensor.

/* Function to determine whether the DHT20 status code is normal: dht20_is_calibrat-
ed */

118

read the receive buffer, and call the dht20_status function with the read count to obtain
the sensor status code. If the status code is not equal to 0x18, return ESP_FAIL.

/* DHT20 read temperature and humidity data function dht20_read_data */

First, initialise the variables. Call the `i2c_write` function to write the measurement
initiation command to the sensor. After a delay of 80 milliseconds, call the `i2c_read`
function to read the status byte and determine whether the sensor has completed the
measurement. If the read time exceeds the set maximum measurement duration, exit

119

and return a timeout error. If the measurement is complete, call the `i2c_read` function
again to read seven bytes of data (the sensor's full measurement includes a CRC
checksum). Convert the checksum for the first six bytes of the read data using the
`dht20_crc8` function (CRC8 check sum polynomial: CRC[7:0] = 1 + x⁴ + x⁵ + x⁸). The
calculated check sum is compared with the read check sum. If they match, the data is
valid. Finally, the read data is converted using the following formula:

The first byte of the read data is the status code. The upper 4 bits of the second, third,
and fourth bytes constitute the humidity data. To convert this humidity data: - Shift the
second byte data left by 8 bits. - Add the third byte data. - Shift the result left by 4 bits. -
Add the third byte data shifted right by 4 bits. Divide the converted humidity data by 2²⁰ ×
100% (e.g., if the second byte data is 0x18, third byte data is 0x22, fourth byte data is
0x11, conversion: ((((0x18<<8)|0x22)<<4) | (0x11>>4))=0x18221
(0x18221/(2^20))*100% = 9.43% (rounded to the nearest whole number)

Similarly, the temperature data comprises the lower four bits of the fourth byte, the fifth
byte, and the sixth byte. To convert the temperature data:

- Add 0x0F to the fourth byte and extract the fourth bit.

- Shift this extracted bit left by 8 positions and add it to the fifth byte. After addition, shift
the result left by 8 bits and add the sixth byte's data. Divide the converted temperature
data by 2²⁰ * 200, then subtract 50 from the result. (For example, if the fourth byte is
0x16, fifth byte is 0xF5, and sixth byte is 0xF2, the conversion yields:

(((((0x16 & 0x0F) << 8) | 0xF5) << 8) | 0xF2) = 0x6F5F2 (((0x6F5F2 / 2^20) * 200) - 50)
= 37 degrees (rounded to the nearest whole degree))

1.3.5 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, 0x38
represents the 7-bit address for the DHT20 sensor.

120

1.3.6 CMkaLists.txt file
The functionality of this example routine relies primarily on the bsp_dht20 driver. To
successfully call functions from the bsp_dht20 folder within other functions, it is
necessary to configure the CMakeLists.txt file located within the bsp_dht20 folder. The
configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (bsp_i2c). Subsequently, these settings
are registered with the build system via the idf_component_register command,
enabling the project to utilise the bsp_dht20 driver functionality.

1.3.7 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the main.h header file within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the
bsp_display driver necessitate inclusion of the bsp_display header file, while those
employing the bsp_dht20 driver require the bsp_dht20 header file.

Below is an analysis of the main.c programme: system initialisation and execution of
functions for I2C, DHT20 sensor, and display functionality.

This code resides within the init function, which is used to store initialisation functions
requiring invocation and to evaluate their return status. Should the return status not be
ESP_OK, the code will print an error message and halt further execution.

121

/* Screen initialisation and display function dht20_display */

This function primarily configures the initial screen display content: setting background
colours and text display via lvgl controls.

The lv_label_set_text function sets the text displayed on the control.

The lv_style_set_bg_opa function sets the background colour of the style.

The lv_obj_set_style_text_color function sets the text display colour.

The lv_obj_set_style_text_font function sets the text font size.

The lv_obj_set_style_bg_color function sets the background colour.

lv_obj_set_style_bg_opa function sets background transparency

Note: When calling lvgl functions outside lvgl thread functions, a mutex lock must be
acquired. lvgl_port_lock function acquires the mutex lock, lvgl_port_unlock function
releases it.

/* Screen data refresh display function update_dht20_value */

This function employs the snprintf function to format the two acquired float-type data into
a string, subsequently refreshing the display content using the lv_label_set_text
function.

It is worth noting that the snprintf function appends a terminating character to the end of
the formatted string. As lv_label_set_text recognises strings by identifying this
terminating character, utilising snprintf for string formatting constitutes a preferable
approach.

Within the app_main function, the backlight brightness is first set to 100%, followed by
initialising the screen display content. Finally, a FreeRTOS thread is created to handle
data processing and screen refresh operations.

122

/* DHT20 temperature and humidity data processing and screen refresh thread
dht20_read_task */

Within the DHT20 temperature and humidity data processing and screen display refresh
thread, variables are first initialised. Subsequently, a while loop is established. Within
this loop, the `dht20_is_calibrated` function is invoked to determine the sensor status
code. Should the result not be `ESP_OK`, the DHT20 sensor is reinitialised. If initialisa-
tion fails, the `continue` statement is executed, returning the loop. If ESP_OK is
returned, the dht20_read_data function is invoked to retrieve temperature and humidity
data. Upon successful acquisition, the update_dht20_value function refreshes the
screen display. Should retrieval fail, the screen displays ‘dht20 read data error’. The
concluding 1-second delay ensures data is refreshed once per second.

1.3.8 CMkaLists.txt file
To successfully call the contents of the bsp_display and bsp_dht20 folders within the
main function, it is necessary to configure the CMakeLists.txt file located in the main
folder. The configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries for linking bsp_display, bsp_dht20, and
bsp_i2c. Subsequently, these settings are registered with the build system via the
idf_component_register command, enabling the main function to utilise these driver
functionalities.

123

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the DSI and dht20 pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

124

1.4.3 Click Compile. Once compilation is successful, click Download.

125

Lesson 12 - BH1750 Light SensorLesson 12 - BH1750 Light Sensor

Introduction
This chapter's tutorial introduces the application of the ESP32-P4's I2C peripheral.
Through experiments with the BH1750 light intensity sensor, it aids in understanding the
fundamental principles of I2C communication and ambient light data acquisition. The
BH1750 is a commonly used digital lux meter capable of directly outputting light intensity
values in lux units, making it highly suitable for projects such as smart lighting, automatic
dimming, and environmental monitoring. This chapter progresses step-by-step, laying
the groundwork for subsequent applications involving additional I²C devices.

• 1.1 Introduction to BH1750 and the I²C Bus
• 1.2 Hardware Design
• 1.3 Software Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

Light Sensor

lux = 0.8

lux = 109.2

126

1.1 BH1750 Introduction

1.1.1 BH1750 Introduction

The BH1750 is a digital light intensity sensor manufactured by ROHM, capable of
converting light intensity into digital signals and outputting them via the I²C bus.
Compared to traditional analogue photoresistors, the BH1750 offers advantages such as
high precision, strong anti-interference capabilities, and rapid response, making it highly
suitable for embedded systems.

Key features include:

① I²C digital output: Eliminates the need for analogue-to-digital conversion (ADC),
enabling direct retrieval of light intensity values (in lux) via I²C.

② Wide sensitivity range: 1 to 65,535 lux, accommodating scenarios from night-time
illumination to intense sunlight.

③ Low-power design: Operating current of approximately 0.12mA, conserving energy.

④ Automatic range switching: Switches between high-resolution mode (1 lx) and
low-resolution mode (4 lx).

⑤ Compact structure: Small package size facilitates easy integration into various control
boards.

1.1.2 Principles of Light Measurement

127

The BH1750 detects ambient light intensity via its integrated photodiode, utilising an
analogue-to-digital converter (ADC) to convert light signals into digital values for output.
Its internal structure primarily comprises the following components:

Photodiode: Converts light energy into electrical signals;

Integrating circuit: Performs time integration on the current signal to obtain the average
light intensity;

Analogue-to-digital converter (ADC): Converts electrical signals into digital signals;

Register and I²C interface: Stores measurement results and transmits them to the host
controller via I²C.

The BH1750 outputs data in lux (Lx), representing the luminous flux received per unit
area. In other words, higher values indicate brighter environments.

1.1.3 Operating Modes of BH1750

BH1750 offers multiple measurement modes, allowing flexible selection according to the
application scenario:

Mode selection is achieved by writing different command words (such as 0x10, 0x11,
0x13) to the BH1750, enabling highly streamlined communication.

1.1.4 I2C Address and Wiring Instructions

The default I²C address for the BH1750 module is 0x5C.

2.2 Hardware design
In the experiment, the BH1750 module is connected to the ESP32-P4 development
board as follows:

modes

H-Resolution Mode

H-Resolution Mode2

L-Resolution Mode

ESP32-P4

3V3

GND

IO18 (SDA)

IO19 (SCL)

BH1750

VCC

GND

SDA

SCL

Function Description

High-resolution mode

High-precision mode

Low-resolution mode

Typical measurement time

120ms

120ms

16ms

resolution

1 lx

0.5 lx

4 lx

Schematic diagram

128

1.3.1 BH1750 Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The BH1750 driver source code comprises two files: bsp_bh1750.c and bsp_bh1750.h.

Below we shall first analyse the bsp_bh1750.h programme: it contains relevant
definitions and function declarations corresponding to the light sensor pins.

/* Header file references */

1.3 Programme Analysis

Within the ESP32P4-dev-kits_bh1750 example, a new
folder named bsp_bh1750 has been created under the
ESP32P4-dev-kits_bh1750\peripheral directory. Within
the bsp_bh1750\ path, a new include folder, CMake-
Lists.txt file, and Kconfig file have been established.
The bsp_bh1750 folder houses the bsp_bh1750.c
driver file. The include folder contains the
bsp_bh1750.h header file, while the CMakeLists.txt file
integrates the driver into the build system, enabling
project utilisation of its functionality. The Kconfig file
loads the entire driver alongside GPIO pin definitions
into the sdkconfig file within the IDF platform (configu-
rable via the graphical interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

129

/* Function declarations and macro definitions */

Next, we shall analyse the bsp_bh1750.c programme: initialising and configuring the
BH1750 sensor whilst exposing API interface functions.

/* BH1750 initialisation function bh1750_begin */

Within the `bh1750_begin` function, the BH1750 sensor is first registered on the I²C bus
using the `i2c_dev_register` function, which returns an operation handle. Subsequently,
if the returned device handle is not null, the `i2c_write` function is invoked to enable the
sensor, ensuring it is in a state where illuminance data can be read. The test register is
then written to enable measurements at 120ms intervals.

/* BH1750 illuminance data read function bh1750_read_data */

First, initialise the variables. Call the i2c_read function to read two bytes of data from the
sensor. Convert the two read bytes using the following formula:

Shift the first byte 8 bits to the left, OR it with the second byte, then divide the result by
1.2

((X1<<8) | X2)/1.2

(Example: If the first byte is 0x02 and the second byte is 0x34, then:

((0x02<<8) | 0x34)/1.2 = 470)

130

1.3.2 Kconfig file

The primary function of this file is to incorporate the requisite configuration into the
sdkconfig file, thereby enabling certain parameter adjustments to be made via a
graphical interface. Here, 0x5C denotes the 7-bit address for the BH1750 sensor.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_bh1750 driver. To
successfully call the contents of the bsp_bh1750 folder from other functions, it is
necessary to configure the CMakeLists.txt file within the bsp_bh1750 folder. The
configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (bsp_i2c). Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_bh1750 driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the main.h header file within the include folder. Add
the main folder to the CMakeLists.txt file within the build system.

The main.h file primarily references required header files: functions utilising the
bsp_display driver necessitate inclusion of the bsp_display header file, while those
employing the bsp_bh1750 driver require the bsp_bh1750 header file.

Below is an analysis of the main.c programme: system initialisation and execution of
functions for I2C, the bh1750 sensor, and display functionality.

131

This code resides within the init function, which is employed to store initialisation
functions requiring invocation and to evaluate their return outcomes. Should the return
status deviate from ESP_OK, the code will output an error message and cease further
execution.

/* Screen initialisation and display function bh1750_display */

This function primarily configures the initial screen display content: setting background
colours and text display via lvgl controls.

The lv_label_set_text function sets the text displayed on the control.

The lv_style_set_bg_opa function sets the background colour of the style.

The lv_obj_set_style_text_color function sets the text display colour.

The lv_obj_set_style_text_font function sets the text font size.

The lv_obj_set_style_bg_color function sets the background colour.

The lvgl_obj_set_style_bg_opa function sets the background transparency.

It is worth noting: When calling lvgl functions outside of lvgl thread functions, a mutex
lock must be acquired.

The lvgl_port_lock function acquires the mutex lock, while the lvgl_port_unlock
function releases it.

/* Screen data refresh display function update_bh1750_value */

This function employs the snprintf function to format the acquired float-type data into a
string, subsequently refreshing the displayed content via the lv_label_set_text function.

It is worth noting that the snprintf function appends a terminating character to the end of
the formatted string. Furthermore, lv_label_set_text recognises strings by identifying
this terminating character. Consequently, utilising the snprintf function for string format-
ting constitutes a preferable approach.

132

Within the app_main function, the backlight brightness is first set to 100%, followed by
initialising the screen display content. Finally, a FreeRTOS thread is created to handle
data processing and screen refresh operations.

/* BH1750 illuminance data processing and screen refresh thread bh1750_read_task */

Within the BH1750 illuminance data processing and screen display refresh thread,
variables are first initialised. Subsequently, a while loop is established. Within this loop,
the bh1750_read_data function is invoked to acquire illuminance data. Upon successful
retrieval, the update_bh1750_value function is employed to refresh the screen display.
Should retrieval fail, the screen displays “bh1750 read data error”. The final 1-second
delay ensures data is refreshed and retrieved once every second.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_display and bsp_bh1750 folders within the
main function, it is necessary to configure the CMakeLists.txt file located in the main
folder. The configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries for linking bsp_display, bsp_bh1750, and
bsp_i2c. Subsequently, these settings are registered with the build system via the
idf_component_register command, enabling the main function to utilise these driver
functionalities.

133

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

134

1.4.3 Click Compile. Once compilation is successful, click Download.

135

Lesson 13 - LSM6DS3 Gyroscope DisplayLesson 13 - LSM6DS3 Gyroscope Display

Introduction
This chapter's tutorial demonstrates the interface application between the ESP32-P4
and the LSM6DS3TR gyroscope sensor. Through an attitude angular velocity measure-
ment example, it aids in understanding the fundamental capabilities of six-axis inertial
sensors. As a common motion detection component, the gyroscope enables readers to
gain an intuitive grasp of the ESP32-P4's applications in motion control, attitude
estimation, and wearable devices, laying the groundwork for more complex intelligent
interaction projects.

• 1.1 Introduction to the LSM6DS3TR Sensor
• 1.2 Hardware Design
• 1.3 Software Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

acc_:-0.04 m/s2 acc_y = -0.06 m/s2 acc_z = 1.02 m/s2

gry_x: 0.00 rad/s gry_y: -0.07 rad/s gry_z: -0.21 rad/s

Accelerometer & Gyro

X

Y

Z

136

1.1 LSM6DS3TR Sensor Introduction

1.1.1 LSM6DS3TR Introduction

The LSM6DS3TR is a six-axis inertial measurement unit (IMU) developed by STMicro-
electronics, featuring integrated:

A triaxial accelerometer (±2g / ±4g / ±8g / ±16g selectable)

A triaxial gyroscope (±125 dps / ±250 dps / ±500 dps / ±1000 dps / ±2000 dps select-
able)

It incorporates a digital signal processing unit (DSP) and communicates directly with the
host via I²C or SPI interfaces.

Key features include:

① High performance: Accelerometer noise density as low as 90 μg/√Hz; gyroscope
noise density typically 4 mdps/√Hz;

② Low power consumption: Typical operating current just 0.9 mA (accelerometer +
gyroscope);

③ Embedded functionality: Supports FIFO buffering, gait detection, activity recognition,
and free-fall detection;

④ Flexible communication: Supports I²C (100kHz/400kHz) and SPI (up to 10 MHz);

⑤ Wide applicability: Suitable for drones, mobile phones, fitness trackers, VR/AR
headsets, robots, and more.

137

1.1.2 How Gyroscopes Work

A gyroscope is a device for measuring angular velocity, implemented internally in the
LSM6DS3TR using MEMS micro-electro-mechanical systems. Its core principle
operates as follows:

When the internal micro-mechanical structure vibrates, it experiences Coriolis force;

Upon angular velocity changes within the device, the vibrating structure undergoes
minute displacement;

This displacement is converted into an electrical signal via capacitive sensing;

The internal ADC and DSP convert the signal into a digital output.

Thus, the gyroscope can measure angular velocity values around the X, Y, and Z axes
in real time (unit: dps, i.e. degrees per second)

1.1.3 Principle of Operation of an Accelerometer

The LSM6DS3TR also incorporates a triaxial accelerometer for measuring linear
acceleration:

When the device experiences acceleration, its internal mass block shifts;

This displacement alters the capacitive structure;

The resulting signal is converted into a digital value by the ADC and output.

Using the triaxial accelerometer, an object's motion state and orientation (such as
horizontal tilt angle) can be calculated.

1.1.4 Data Output and Conversion

The LSM6DS3TR registers store raw measurement values (16-bit two's complement
binary).

138

The typical wiring configuration for the ESP32-P4 and LSM6DS3TR is as follows (I²C
mode):
ESP32-P4 SDA → LSM6DS3TR SDA
ESP32-P4 SCL → LSM6DS3TR SCL
3.3V → VCC
GND → GND
The default I²C address is 0x6B
It is recommended to connect a 4.7kΩ pull-up resistor to each of the SDA and SCL lines.

Gyroscopes find extensive application, being present in everyday items such as drones
and automobiles.

1.2 Hardware design

139

1.3 Programme Analysis

Within the ESP32P4-dev-kits_lsm6ds3tr example, a
new folder named bsp_lsm6ds3tr has been created
under the ESP32P4-dev-kits_lsm6ds3tr\peripheral\
directory. Within the bsp_lsm6ds3tr\ path, a new
include folder, CMakeLists.txt file, and Kconfig file
have been established. The bsp_lsm6ds3tr folder
houses the bsp_lsm6ds3tr.c driver file. The include
folder contains the bsp_lsm6ds3tr.h header file, while
the CMakeLists.txt file integrates the driver into the
build system, enabling project utilisation of its
functionality. The Kconfig file loads the entire driver
alongside GPIO pin definitions into the sdkconfig file
within the IDF platform (configurable via the graphical
interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

140

1.3.1 LSM6DS3TR-C Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The LSM6DS3TR driver source code comprises two files: bsp_lsm6ds3tr.c and
bsp_lsm6ds3tr.h.

We shall first examine the bsp_lsm6ds3tr.h file: it contains relevant definitions for the
accelerometer and gyroscope sensor pins, along with function declarations.

/* Header file references */

/* Function declarations and macro definition declarations */

141

Here, numerous macros define the various register addresses and operation commands
for the sensor.

Next, we shall analyse the program in bsp_lsm6ds3tr.c: initialising the sensor configura-
tion and exposing the API interface functions.

/* LSM6DS3TR initialisation function lsm6ds3_begin */

142

Within the lsm6ds3_begin function, the lsm6ds3tr sensor is first registered on the I2C
bus using the i2c_dev_register function, which returns an operation handle. Subse-
quently, if the returned device handle is non-null, the various register configurations for
initialising the lsm6ds3tr sensor are invoked. The specific functionality of each function
will be analysed in detail below.

/* Function to read the device ID of the LSM6DS3TR: lsm6ds3_getchipID */

First, use the `i2c_read_reg` function to read the ID register address and retrieve the ID
data. Determine whether it is 0x6A (the default value for this register must be 0x6A). If
so, return `ESP_OK`.

/* lsm6ds3_reset function to reset the LSM6DS3TR device */

143

First, employ the `i2c_write_reg` function to write 0x80 to the controller's register
address 3. This step resets the memory contents. After a 15ms delay, read the data from
register address 3; the result should be 0x01, indicating a low bit 1. Subsequently, use
the `i2c_write_reg` function to write this value, thereby enabling the software reset
function. Finally, establish a loop to determine whether the software reset function has
completed (the low bit is reset to 0).
/* lsm6ds3_set_BDU function for configuring BDU on lsm6ds3tr */

First, use the `i2c_read_reg` function to read the controller's register address 3. This
step preserves the original settings, altering only the BDU parameter configuration.
Based on the input Boolean parameter, if true, employ the `i2c_write_reg` function to
set BDU control bit 1. This prevents the output register from updating before reading the
most significant bit and least significant bit. If the parameter is false, the `i2c_write_reg`
function is employed to set the BDU control bit to 0, ensuring the output register
continues to update.
/* Function `lsm6ds3_set_acc_rate` for configuring the accelerometer output rate on the
LSM6DS3TR */

144

First, use the `i2c_read_reg` function to read the register address of Controller 1. This
step preserves the original settings, altering only the parameter configuration for the
accelerometer's output rate. Based on the input parameters,

the configured data is written to the Controller 1 register address via the `i2c_write_reg`
function.

/* Function lsm6ds3_set_acc_fullscale for configuring the accelerometer's maximum
range on the LSM6DS3TR */

First, use the `i2c_read_reg` function to read the register address of Controller 1. This
step preserves the original settings, altering only the configuration parameter for the
accelerometer's maximum range. Based on the input parameters,

the specified data is written to the register address of Controller 1 via the `i2c_write_reg`
function.

/* Function lsm6ds3_set_gyr_rate for configuring gyroscope output rate on LSM6DS3TR
*/

First, use the `i2c_read_reg` function to read the controller 2 register address. This step
preserves the original settings, altering only the gyroscope output rate configuration.
Based on the input parameters,

145

the specified data is written to the controller 2 register address via the `i2c_write_reg`
function.

/* Function lsm6ds3_set_gyr_fullscale for setting the gyroscope full-scale range on the
LSM6DS3TR */

First, use the `i2c_read_reg` function to read the controller 2 register address. This step
preserves the original settings, altering only the gyroscope maximum range parameter
configuration. Based on the input parameters,

the configured data is written to the controller 2 register address via the `i2c_write_reg`
function.

/* Function lsm6ds3_set_acc_bandwidth for configuring the accelerometer bandwidth on
the LSM6DS3TR */

Firstly, this function has two parameters which jointly determine the accelerometer's
bandwidth settings. These are located in

Controller 1 register and Controller 8 register respectively.

/* lsm6ds3_set_gry_register4 function for setting gyroscope controller 4 register on
lsm6ds3tr */

146

This function enables or disables the filter by setting the LPF1 filter parameter in
controller register 4 (0: disabled, 1: enabled).

/* lsm6ds3_set_gry_register6: Function to configure gyroscope controller register 6 for
the LSM6DS3TR */

This function sets controller register 6, which must be configured to 0 according to the
data sheet requirements.

/* lsm6ds3_set_gry_register7: Function to configure gyroscope controller register 7 for
the LSM6DS3TR */

This function enables or disables the gyroscope high-pass filter and selects its cutoff
frequency by configuring parameters in controller register 7.

/* lsm6ds3_get_status function retrieves status register from lsm6ds3tr */

By calling the i2c_read_reg function to read the value of the sensor status register and
return it (determining whether the current state is for reading accelerometer data
updates or gyroscope data updates)

/* lsm6ds3_data_read function for reading the LSM6DS3TR output register */

147

By inputting parameters as conditions for loop execution. Within the loop, the
i2c_read_reg function is invoked to read values from the sensor's output register (after
each read, increment the register address and increment the receive buffer address to
achieve cyclic reading; subsequently decrement the read length data to determine when
the loop should terminate).

/* Function lsm6ds3_get_acc for reading accelerometer parameters from lsm6ds3tr */

The lsm6ds3_data_read function retrieves accelerometer data. The input parameters
determine which conversion method should be applied to the read data (based on the
set maximum range parameter). The specific conversion formula can be found in the
sensor data manual.

/* lsm6ds3_get_gry function for reading gyroscope parameters from lsm6ds3tr */

148

The gyroscope data is read via the lsm6ds3_data_read function. The input parameters
determine which conversion method should be applied to the read data (based on the
set maximum range parameter). The specific conversion formula can be found in the
sensor data manual.

/* lsm6ds3_scan function for scanning and reading the lsm6ds3tr */

Retrieve the current sensor update status via the lsm6ds3_get_status function, and
determine whether to read the accelerometer or gyroscope data based on the status.

1.3.2 Kconfig file

The primary function of this file is to incorporate the requisite configuration into the
sdkconfig file, enabling certain parameter adjustments to be made via a graphical
interface. Here, 0x6B denotes the 7-bit address for the LSM6DS3TR-C sensor.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_lsm6ds3tr driver. To
successfully call the contents of the bsp_lsm6ds3tr folder from other functions, it is
necessary to configure the CMakeLists.txt file within the bsp_lsm6ds3tr folder. The
configuration details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (bsp_i2c). Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_lsm6ds3tr driver functionality.

149

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the main.h header file within the include folder. Add
the main folder to the CMakeLists.txt file within the build system.

The main.h file primarily references required header files: functions utilising the
bsp_display driver necessitate inclusion of the bsp_display header file, while those
employing the bsp_lsm6ds3tr driver require the bsp_lsm6ds3tr header file.

Below is an analysis of the main.c programme: system initialisation and execution of
functions for I2C, the lsm6ds3tr-c sensor, and display functionality.

This code resides within the init function, which serves to store initialisation functions
requiring invocation and assess the outcome of such initialisation. Should the return
status deviate from ESP_OK, the code shall output an error message and cease further
execution.

/* Screen initialisation and display function lsm6ds3_display */

This function primarily configures the initial screen display content: it sets the
background colour and text display via the lvgl control.

The lv_label_set_text function sets the text displayed on the control.

150

The lv_style_set_bg_opa function sets the background colour of the style.

The lv_obj_set_style_text_color function sets the text display colour.

The lv_obj_set_style_text_font function sets the text font size.

The lv_obj_set_style_bg_color function sets the background colour.

The lv_obj_set_style_bg_opa function sets the background transparency.

lv_obj_align function sets the control's alignment and offset

Note: When calling lvgl functions outside lvgl thread functions, a mutex lock must be
acquired. lvgl_port_lock function acquires the mutex lock, lvgl_port_unlock function
releases it.

/* Screen data refresh display function update_lsm6ds3_value */

This function employs the snprintf function to format the acquired float-type data into a
string, subsequently refreshing the displayed content via the lv_label_set_text function.

It is worth noting that the snprintf function appends a terminating character to the end of
the formatted string. As lv_label_set_text recognises strings by identifying this terminat-
ing character, utilising snprintf for string formatting constitutes a preferable approach.

Within the app_main function, the backlight brightness is first set to 100%, followed by
initialising the screen display content. Finally, a FreeRTOS thread is created to handle
data processing and screen refresh operations.

/* lsm6ds3_read_task: Sensor data processing and screen refresh thread for the
LSM6DS3TR-C sensor */

151

Within the LSM6DS3TR-C sensor data processing and screen display refresh thread, a
while loop is first established. Within this loop, the lsm6ds3_scan function is invoked to
update and acquire sensor data. Upon successful acquisition, the update_lsm6ds3_val-
ue function refreshes the screen display data. Should acquisition fail, the screen
displays the error messages ‘LSM6DS3 read acc data error’ and ‘LSM6DS3 read gry
data error’. The final 1-second delay ensures data is refreshed and retrieved once every
second.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_display and bsp_lsm6ds3tr folders within the
main function, it is necessary to configure the CMakeLists.txt file located in the main
folder. The configuration details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries: bsp_display, bsp_lsm6ds3tr, and bsp_i2c. These settings are then
registered with the build system via the idf_component_register command, enabling the
main function to utilise these driver functionalities.

152

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the DSIplay, IIC, and LSM6DS3 pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

153

1.4.3 Click Compile. Once compilation is successful, click Download.

154

Lesson 14 - WS2814 RGBW ControlLesson 14 - WS2814 RGBW Control

Introduction
This chapter's tutorial demonstrates the ESP32-P4's control application for WS2814
RGB LED strips. Through examples of illuminating and transitioning lighting effects, it
aids in understanding its fundamental capabilities. Serving as an advanced test case,
illuminating the LED strip provides readers with an intuitive and in-depth understanding
of the ESP32-P4's peripheral driver capabilities, laying the groundwork for more
complex projects such as LED strip matrix displays and ambient lighting control.

• 1.1 Introduction to WS2814 and RGB LEDs
• 1.2 Hardware Design
• 1.3 Software Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

155

1.1 WS2814 Introduction

1.1.1 WS2814 Introduction

WS2814 is a control chip featuring an integrated constant-current driver and signal
decoding functionality, typically encapsulated with LEDs to form programmable light
beads. Its key characteristics include:

① Single-wire control: WS2814 is controlled via a single data line, supporting cascading
connections where multiple LEDs can be linked sequentially, significantly simplifying
circuit wiring.

② Constant-current drive: Each channel incorporates an internal constant current
source, ensuring uniform brightness and preventing uneven illumination caused by
voltage fluctuations.

③ 16-bit grey scale: WS2814 supports 256 brightness levels (8-bit), enabling rich colour
display effects.

④ Fault tolerance: Supports resume-from-break functionality. Should an LED fail,
subsequent LEDs continue operating normally, enhancing reliability.

⑤ Voltage compatibility: WS2814 typically operates at 5V, with current consumption
dependent on LED colour and brightness.

The ESP32-P4 can drive WS2814 via the RMT peripheral or PWM + precise timing,
simplifying complex colour light control.

WS2814 is commonly used in RGB light strips.

156

1.2 Hardware design

This experiment employs an ESP32-P4 development board with four WS2814 RGB
LEDs connected in series. The circuit connections are as follows:

ESP32-P4 GPIO 8 → WS2814 DIN (Data Input)

5V Power Supply → WS2814 VCC

GND → WS2814 GND

WS2814 DOUT → Next WS2814 DIN (Cascade)

1.3 Programme Analysis

Within the ESP32P4-dev-kits_led example, a new
folder named bsp_led has been created under the
ESP32P4-dev-kits_led\peripheral\ directory. Within
the bsp_led\ path, an include folder, a CMakeLists.txt
file, and a Kconfig file have been established. The
bsp_led folder is designated for storing the bsp_led.c
driver file. The `include` folder holds the `bsp_led.h`
header file, while the `CMakeLists.txt` file integrates
the driver into the build system, enabling project
utilisation of its functionality. The `Kconfig` file registers
the entire driver alongside GPIO pin definitions within
the `sdkconfig` file on the IDF platform (configurable
via the graphical interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

157

1.3.1 RMT LED Driver code
Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The LED driver source code comprises two files: bsp_led.c and bsp_led.h.

Below we shall first analyse the bsp_led.h programme: it defines the RMT output
channel pins and declares the functions for LED usage.

/* Header file references */

/* Function declarations and macro definitions */

This structure defines the colours for the LEDs connected to the four pins of the
WS2814A, facilitating subsequent control via functions.

Next, we shall examine the bsp_led.c programme: initialising the RMT controller and
exposing API interface functions.

/* RMT controller initialisation function led_init */

158

Within the `led_init` function, configuration is first performed for the `rmt_tx_channel_-
config_t` structure. The parameters specified are: the clock source for the TX channel,
the GPIO pin number utilised by the TX channel, the size of the memory block, the
channel clock resolution, and the maximum depth of the internal transmission queue.
Subsequently, a new RMT output channel is created, the callback function for RMT
signal processing is registered within the RMT decoder, and finally, the RMT controller is
enabled.

It is worth noting that here we set the channel clock resolution to 10 MHz. Since the
WS2814A control signals operate at the nanosecond level, a resolution of 10 MHz is set
(meaning one tick equals 0.1 microseconds).

/* Signal definition for RMT output to WS2814A chip */

First, parsing the contents of the structure:

Level0 and duration0 define the level type and duration of the signal's first portion.

Level1 and duration1 define the level type and duration of the signal's second portion.

According to the signal requirements of the WS2814A chip: - A signal with a high level
lasting 400ns and a low level lasting 900ns represents signal value 1. - A signal with a
high level lasting 600ns and a low level lasting 700ns represents signal value 0. - A low
level signal lasting over 280ns constitutes a reset signal.

/* RMT controller decoding callback function encoder_callback */

159

First, determine whether the current symbol buffer possesses sufficient space to
accommodate a character (8 symbols). If this condition is not met, exit immediately. If
space requirements are satisfied, ascertain the current position within the data stream
based on the symbols already written. (Each byte requires 8 symbols; the number of
bytes written can be determined by dividing the number of symbols written by 8). If the
current data has not yet completed encoding, execute the signal encoding configuration
(determine whether signal 0 or signal 1 should be output at the current position). Upon
completion of data encoding, output the reset signal to refresh the LED display.

/* LED function for setting a single LED: set_single_led_status */

160

Firstly, this function has only one input parameter: bit - the 32-bit data parameter
controlling the output of the four LEDs on the WS2814A (as detailed above, the specific
values control the brightness of the lights). The data bits 0-7 correspond to the blue light,
8-15 to the green light, 16-23 to the amber light, and 24-31 to the red light.

The input data undergoes a shift operation to split it into individual 8-bit segments.
Similar to the function controlling a single LED, the corresponding data is configured into
the output array, then the send function is invoked to transmit it. (Use case: inputting
0x00000000 extinguishes all lights).

1.3.2 Kconfig file
The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, the
number 8 corresponds to GPIO_NUM_8.

1.3.3 CMkaLists.txt file
The functionality of this example routine relies primarily on the bsp_led driver. To
successfully call the contents of the bsp_led folder from other functions, it is necessary
to configure the CMakeLists.txt file within the bsp_led folder. The configuration details
are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver libraries. Subsequently, these settings are
registered with the build system via the idf_component_register command, enabling the
project to utilise the bsp_led driver functionality.

1.3.4 main folder
The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the bsp_led
driver necessitate inclusion of the bsp_led header file.

Below is an analysis of the main.c programme: system initialisation and execution
specific to the RMT LED functionality.

161

This code resides within the init function, which serves to store initialisation functions
requiring invocation and assess their return outcomes. Should the return status deviate
from ESP_OK, the code will output an error message and halt further execution.
Following a 200ms delay, the set_led_status function is executed to clear all LED
displays. This step ensures that upon power-up, all LEDs are in an extinguished state.

Within the app_main function, create a FreeRTOS thread to execute the LED running
light effect refresh.

/* LED running light thread led_task */

Within the LED running light thread, first establish a while loop. Within this loop, invoke
the `set_single_led_status` function to activate the desired LED. The sequence defined
within our LED structure corresponds to the left-to-right arrangement of LEDs on the
development board. Therefore, incrementing the enumeration variable sequentially
achieves the effect of illuminating each LED in turn (extinguishing previously lit LEDs).
This sequence executes once every second. Upon reaching the final enumerated LED
value, the sequence resets to the initial red LED state.

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_led folder within the main function, it is
necessary to configure the CMakeLists.txt file located in the main folder. The configura-
tion details are as follows:

162

First, the directories for source files and header files are defined, along with the required
driver library—specifically, the driver library for linking bsp_led. Subsequently, these
settings are registered with the build system via the idf_component_register command,
enabling the main function to utilise these driver capabilities.

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the led pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

163

1.4.3 Click Compile. Once compilation is successful, click Download.

Lesson 15 - ADC Button Control Lesson 15 - ADC Button Control

Introduction
This tutorial chapter introduces the ADC input application of the ESP32-P4. Through a
routine controlling four LEDs via four buttons, it aids in understanding the fundamental
functions of analogue signal detection and multiplexed control. As a common
human-machine interaction method, button inputs combined with the ADC voltage
divider detection technique enable multi-key input whilst occupying only a single ADC
pin, significantly enhancing pin utilisation. This example provides readers with an
intuitive grasp of the ESP32-P4's ADC applications, laying the groundwork for more
complex sensor and interactive projects.

164

• 1.1 Introduction to the ADC and Buttons
• 1.2 Hardware Design
• 1.3 Software Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

1.1 ADC and Button Introduction

1.1.1 ADC Introduction

The ESP32-P4 chip incorporates a multi-channel ADC (analogue-to-digital converter)
capable of converting analogue voltages ranging from 0 to 3.3V into digital values. Its
principal features include:

① Multi-channel input: Supports multiple ADC channels, enabling connection to several
sensors or input signals.

② High resolution: The ESP32-P4's ADC supports 12-bit resolution, with conversion
results ranging from 0 to 4095.

③ Flexible sampling: Configurable sampling period and attenuation mode to accommo-

LED

Button

165

1.2 Hardware design

The hardware comprises one ADC input pin and four buttons:

ADC input pin: GPIO16

Button circuitry: Each of the four buttons is connected to the ADC pin via a voltage
divider circuit using resistors of differing values.

Schematic diagram

date different input voltage ranges.

④ Versatile applications: Commonly used for button voltage divider detection, potenti-
ometers, temperature sensors, battery voltage monitoring, and similar scenarios.

In this chapter's experiment, we shall utilise the ADC's voltage detection capability to
identify inputs from different buttons via a resistor voltage divider circuit, thereby
controlling the corresponding LED lights accordingly.

1.1.2 Button Overview

Button Operating Principle

Buttons are the most common type of switch device, conducting when pressed and
breaking when released. To conserve I/O pins, a resistor voltage-dividing method can be
employed, connecting multiple buttons to the same ADC channel:

Each button is connected in series with a resistor of a different value;

When different buttons are pressed, the ADC acquires different voltages;

The programme determines which button has been pressed based on the voltage range.

166

1.3 Programme Analysis

Within the ESP32P4-dev-kits_key example, a new
folder named bsp_key has been created under the
ESP32P4-dev-kits_key\peripheral\ directory. Within
the bsp_key\ path, an include folder, a CMakeLists.txt
file, and a Kconfig file have been established. The
bsp_key folder is designated for storing the bsp_key.c
driver file. The `include` folder holds the `bsp_key.h`
header file, while the `CMakeLists.txt` file integrates
the driver into the build system, enabling project
utilisation of its functionality. The `Kconfig` file loads
the entire driver configuration, including GPIO pin
definitions, into the `sdkconfig` file within the IDF
platform (configurable via the graphical interface).

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

1.3.1 ADC Button Driver Code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The ADC key driver source code comprises two files: bsp_key.c and bsp_key.h.

Below we shall first analyse the bsp_key.h programme: it defines the relevant ADC key
pins and declares the functions used.

/* Header file references */

167

/* Function declarations and macro definitions */

This structure defines the press and release effects for the four ADC buttons, facilitating
subsequent control via functions.

Next, we shall analyse the bsp_key.c programme: initialising and configuring the ADC
buttons, utilising callback functions, and introducing API interface functions.

/* ADC button initialisation function key_init */

Within the key_init function, configuration begins with the button_config_t structure,
where parameters specify the long-press recognition duration and short-press recogni-
tion duration. Subsequently, the button_adc_config_t structure is configured, with

168

parameters including the ADC controller handle in use, the ADC controller number, the
ADC acquisition channel, the key recognition sequence number, the minimum ADC
voltage value for the key, and the maximum ADC voltage value for the key. A for loop is
employed to configure each of the four buttons sequentially, obtaining the returned
handles.

It is important to note: when setting the voltage ranges for the ADC buttons, overlapping
ranges must be avoided, as this will prevent proper button recognition.

/* ADC button event registration function key_register_cb() */

This function employs a for loop to register all four button callbacks. The iot_button_reg-
ister_cb function is used to register button event callbacks (utilising the button handles
obtained during initialisation).

It is worth noting that this experiment only utilises button press and release events. To
employ other events, consult the enumeration type. Furthermore, ADC buttons cannot
support combination key events, as the ADC values generated by pressing multiple
buttons simultaneously are unpredictable.

/*ADC button event callback function button_event_cb*/

169

First, the callback function executes upon detecting a key press event. Within the key
press event handler, the key identifier can be determined to identify which key triggered
the event. For each of the four keys, the key state variable is assigned accordingly. The
key release state requires no identification of the triggering key.

1.3.2 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, 16
refers to GPIO_NUM_16.

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_key driver. To
successfully call the contents of the bsp_key folder from other functions, it is necessary
to configure the CMakeLists.txt file within the bsp_key folder. The configuration details
are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (the button library). Subsequently, these
settings are registered with the build system via the idf_component_register
command, enabling the project to utilise the bsp_key driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder. Add
the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the bsp_led
driver necessitate inclusion of the bsp_led header file, while those employing the
bsp_key driver require the bsp_key header file.

Below is an analysis of the main.c programme: system initialisation and execution of
ADC key functions.

170

This code resides within the init function, which serves to store initialisation functions
requiring invocation and assess their return status. Should the return status not be
ESP_OK, the code will output an error message and halt further execution. After a
200ms delay, the `set_led_status` function is executed to clear all LED displays. This
step ensures all LEDs are off upon power-up. Calling the `key_register_cb` function
registers the key press event callback.

It is worth noting that prior to calling the key initialisation, we must first create a new
handle pointing to the ADC controller. This handle is passed into the key initialisation
function for configuration.

Within the app_main function, create a FreeRTOS thread to execute the detection and
corresponding LED effect for key presses.

/* ADC key press execution thread key_task */

171

Within the ADC key execution thread, establish a while loop. Within this loop, call the
key status variable to determine the pressed state of different keys, illuminating
corresponding LEDs accordingly. Should a key be released, extinguish all LEDs. (When
no key operation occurs or after executing key effects, set the variable to the idle state
and introduce a 10ms delay, i.e., the scanning recognition interval is 10ms.)

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_key folder within the main function, it is
necessary to configure the CMakeLists.txt file located in the main folder. The configura-
tion details are as follows:

First, the directories for source files and header files are defined, along with the required
driver library—specifically, the driver library for linking bsp_key. Subsequently, these
settings are registered with the build system via the idf_component_register
command, enabling main to utilise these driver functionalities.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

172

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the key and led pins.

1.4.3 Click Compile. Once compilation is successful, click Download.

173

Lesson 16 - Smoke Sensor AlertLesson 16 - Smoke Sensor Alert

Introduction
This chapter's tutorial demonstrates the application of the ESP32-P4's ADC inputs by
connecting an MQ-2 smoke sensor to detect smoke concentration levels in the environ-
ment. The MQ-2, a common gas sensor, detects combustible gases including LPG,
butane, methane, alcohol, hydrogen, and smoke. This experiment helps readers grasp
the fundamental principles of ADC analogue acquisition and environmental sensing,
laying the groundwork for subsequent IoT monitoring and security alarm projects.

• 1.1 Introduction to the MQ-2 Sensor
• 1.2 Hardware Design
• 1.3 Programme Design
• 1.4 Download and Verification

Project Demonstration Effect

This chapter is divided into the following subsections

Gas Sensor

The gas you release
must be safe.

LED

174

1.1 MQ-2 Sensor Introduction

1.1.1 Principles of the MQ-2 Gas Sensor

The MQ-2 sensor comprises a heater and a gas-sensitive resistor (SnO2 semiconductor
material) within its structure. Its operating principle is as follows:

① Under the influence of the heater, oxygen molecules adsorb onto the surface of the
gas-sensitive material, causing a change in electrical resistance;

② When combustible gases or smoke are present in the air, oxygen molecules react
with the target gas, releasing electrons;

③ These electrons re-enter the semiconductor, reducing the resistance of the gas-sensi-
tive resistor and thereby altering the output voltage;

④ By reading the voltage value via an ADC, changes in gas concentration can be
calculated.

175

1.1.2 Relationship between Simulated Voltage and Smoke Concentration

Clean air: Output voltage is low (small ADC value);

Presence of smoke or combustible gases: Output voltage increases (larger ADC value);

Through calibration and curve fitting, ADC values can be mapped to relative concentra-
tions (ppm).

1.2 Hardware design

Sensor input: The analogue output pin of the MQ-2 connects to GPIO17 (ADC channel)
on the ESP32-P4;

Power supply: The MQ-2 module operates at 5V, with an output voltage of 0–3.3V;

Indicator output (optional): An LED may illuminate when smoke concentration exceeds a
specified threshold.

Hardware connection diagram:

VCC → 5V

GND → GND

AOUT → GPIO17（ADC input）

1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

176

1.3.1 ADC GAS Driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The MQ2 smoke sensor driver source code comprises two files: bsp_gas.c and
bsp_gas.h.

Below we shall first analyse the bsp_gas.h programme: it defines the relevant pins for
the smoke sensor and declares the functions used.

/* Header file references */

/* Function declarations and macro definition declarations */

Within the ESP32P4-dev-kits_gas example, a new folder
named bsp_gas has been created under the
ESP32P4-dev-kits_gas\peripheral\ directory. Within the
bsp_gas\ directory, a new include folder, CMakeLists.txt
file, and Kconfig file have been established. The
bsp_gas folder is designated for storing the bsp_gas.c
driver file. The `include` folder holds the `bsp_gas.h`
header file, while the `CMakeLists.txt` file integrates the
driver into the build system, enabling project utilisation of
its functionality. The `Kconfig` file loads the entire driver
and GPIO pin definitions into the `sdkconfig` file within
the IDF platform (configurable via the graphical interface).

177

This structure defines parameters for the smoke sensor's load resistor, ADC handle, and
acquired values, facilitating subsequent function control.

Next, we shall analyse the bsp_gas.c programme: initialising ADC channel configuration,
calculating voltage values, converting ppm parameters, and exposing API interface
functions.

/* ADC GAS initialisation function gas_init */

Within the gas_init function, configuration of the adc_oneshot_chan_cfg_t structure is
first performed, setting the ADC read bit width. Subsequently, the adc_oneshot_con-
fig_channel function is invoked to initialise the ADC channel. Subsequently, the
adc_cali_curve_fitting_config_t structure is configured. This structure similarly sets
parameters for the ADC handle, specifying the relevant channel configuration curve-fitting
calibration scheme. The specific creation function is adc_cali_create_scheme_cur-
ve_fitting. (The final RL=4.7 is the default; in the hardware design, this resistor is indeed
4.7kΩ.)

Within the gas_init function, configuration is first performed for the adc_one-
shot_chan_cfg_t structure. A noteworthy aspect of the configuration values is that the
ESP32P4 chip currently only supports the curve-fitting calibration scheme.

/* Function get_gas_voltage for obtaining the current GAS voltage value via ADC */

178

Within the gas_init function, configuration is first performed for the adc_one-
shot_chan_cfg_t structure.

This function first invokes adc_oneshot_read to acquire the sampled voltage value from
the current ADC channel. Through an accumulative approach, it sums every two
acquired sample values before performing an average calculation. The resulting voltage
value is then passed as an input parameter to the curve-fitting calibration function for
calibration. Finally, the calibrated voltage value is converted from millivolts (mv) to volts
(V). Should voltage parameters be required for debugging, they may be retrieved using
the get_gas_value function.

/* Gas load resistor calibration function (clean air conditions) get_r0_calibration */

This function utilises the get_gas_voltage function to obtain the voltage value currently
fed back from the gas sensor pin. Through average filtering, it acquires ten samples and
calculates the mean value for conversion. Subsequently, the current load resistance
value is derived using the voltage divider formula:

RS = (Vcc - Vout) * RL / Vout.

It should be noted that this method is intended for use in clean air conditions, calculating
the initial load resistance value applicable to clean air.

/*gas function to obtain the current air ppm value get_gas_data*/

179

This function utilises the get_gas_voltage function to obtain the voltage value currently
fed back from the gas sensor pin. It calculates the RS resistance value using the voltage
divider formula (listed above), then applies the ppm conversion formula to the processed
RS resistance value. (adjustable based on specific experiments; here employing the
default gas sensor concentration calibration formula). Here, R0 denotes the sensor's
resistance value in clean air, RS represents the sensor's resistance value in the current
gas environment, 11.5428 is the sensor's characteristic parameter (manufacturer-cali-
brated), and 0.6549 is the sensor response curve parameter. The expression
(11.5428*R0)/RS represents the ratio of the current gas concentration relative to the
reference state. The Pow function is the C language power function calculation function.
As the gas sensor response is non-linear, an exponential function is required for fitting.

1.3.2 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. Here, “1”
denotes ADC sampling channel 1.

180

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_gas driver. To
successfully call functions from the bsp_gas folder within other functions, you must
configure the CMakeLists.txt file located in the bsp_gas folder. The configuration
details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (esp_adc library). Subsequently, these
settings are registered with the build system via the idf_component_register
command, enabling the project to utilise the bsp_gas driver functionality.

1.3.4 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the bsp_led
driver necessitate inclusion of the bsp_led header file, while those employing the
bsp_gas driver require the bsp_gas header file.

Below is an analysis of the main.c programme: system initialisation and initialisation
specific to the ADC functionality.

This code resides within the init function, which is used to store initialisation functions
requiring invocation and to evaluate their return status. Should the return status not be
ESP_OK, the code will print an error message and halt further execution. After a 200ms
delay, the `set_led_status` function is executed to clear all LED displays. This step
ensures all LEDs are in an off state upon power-up. Calling the `get_r0_calibration`
function sets the default initial state to clean air conditions upon power-up, calibrating
the value of the R0 resistor.

181

Within the app_main function, create a FreeRTOS thread to execute the gas concentra-
tion monitoring and visual alarm functions of the smoke sensor.
/* Gas concentration monitoring thread gas_task */

Within the gas concentration monitoring thread, variables are first initialised and the
initial smoke concentration value is acquired for comparison. A while loop is then
established, within which the esp_timer_get_time function is invoked to obtain the
current system time, and the get_gas_data function is called to retrieve the current gas
concentration value. If the current gas concentration exceeds 1000ppm, the LED lights
flash once every 500ms (all four lights illuminate simultaneously). This is achieved by
subtracting the previous system time from the current system time; if the difference is
greater than or equal to 500ms, the LED state variable `state` is inverted. LED control
then follows this state variable. If the current gas concentration is below 1000ppm and
the previous reading exceeded 1000ppm, the alarm threshold remains untriggered, and
the LEDs are extinguished. Finally, the current gas concentration is assigned to the
previous reading for subsequent evaluations. The 20ms delay represents a 20-millisec-
ond interval between each recognition and judgement cycle.

1.3.5 CMkaLists.txt
To successfully call the contents of the bsp_gas folder within the main function, it is
necessary to configure the CMakeLists.txt file located in the main folder. The configura-
tion details are as follows:

182

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the adc channel for gas and led pins.

First, the directories for source files and header files are defined, along with the required
driver libraries—namely, the driver libraries for linking bsp_gas, bsp_led, and esp_tim-
er. Subsequently, these settings are registered with the build system via the idf_compo-
nent_register command, enabling the main function to utilise these driver functionalities.

183

1.4.3 Click Compile. Once compilation is successful, click Download.

Lesson 17 - I2S Audio RecordLesson 17 - I2S Audio Record

Introduction
This chapter's tutorial introduces the I2S-PDM microphone capture and audio storage
application for the ESP32-P4, using a recording example to help understand the
fundamental functionality of the I2S bus.

As a typical audio application case, recording storage enables readers to quickly grasp
the ESP32-P4's capabilities in speech and audio processing, laying the groundwork for
more complex projects such as speech recognition and audio playback.

184

• 1.1 Introduction to I²S and PDM Microphones
• 1.2 Hardware Design
• 1.3 Software Design
• 1.4 Download and Verification

1.1.1 I2S Introduction
The ESP32-P4 chip incorporates multiple I2S peripheral interfaces for audio data
acquisition and playback. Its key features include:
① Support for multiple audio protocols: including standard I2S, left-aligned, right-aligned,
and PDM (Pulse Density Modulation) modes.
② High sampling rate support: Configurable sampling rates from 8kHz to 192kHz,
suitable for voice capture and high-fidelity audio processing.
③ DMA transfer: Enables direct audio data transfer via DMA, reducing CPU overhead
and enhancing real-time performance.
④ Multi-channel support: Simultaneously processes mono, stereo, and other data
formats, facilitating stereo recording or playback.
⑤ Flexible configuration: Operates as either host or slave, supporting both data
acquisition and output.
In this example, we shall utilise the ESP32-P4's I2S interface in PDM microphone mode
to implement voice data acquisition.

1.1.2 PDM Microphone Overview
PDM (Pulse Density Modulation) is a digital audio output method commonly found in
MEMS microphones.
Characteristics of PDM microphones:
① Miniaturisation: Compact size and low power consumption, suitable for embedded
devices.
② Digital interface: Outputs directly as a digital pulse stream, eliminating the need for
analogue amplifiers.
③ High integration: Most PDM microphones incorporate built-in analogue-to-digital
conversion modules.
④ Flexible sampling: Can be captured via I²S-PDM interface, filtered, and restored to
standard PCM data.

This chapter is divided into the following subsections

1.1 Introduction to I²S and PDM Microphones

185

Operating Principle:
When sound waves impinge upon the microphone diaphragm, internal capacitive
sensors convert the acoustic energy into electrical signals. These are then processed by
a Σ-Δ modulator to generate a high-frequency pulse density modulation (PDM) signal.
The ESP32-P4 samples these pulses via the I2S-PDM interface and employs a digital
filter to reconstruct them into PCM audio data.

1.1.3 Introduction to WAV Files
WAV files are a common lossless audio format. The file header stores parameters such
as the audio's sampling rate, number of channels, and bit depth, while the data section
contains the PCM data captured from the samples.
Its primary structure is as follows:
RIFF block: Identifies the file as WAV format
fmt block: Describes the audio format (sampling rate, bit width, channels, etc.)
data block: Stores the actual audio data
By writing the PCM data captured by the PDM microphone to an SD card and encapsu-
lating it as a WAV file, we can achieve standard audio recording functionality.

1.2 Hardware design

In this experiment, the typical connection between the ESP32-P4, PDM digital
microphone, and SD card module is as follows:
PDM microphone → ESP32-P4 I2S interface

186

Within the ESP32P4-dev-kits_mic example, new folders
bsp_mic and bsp_sd were created under the
ESP32P4-dev-kits_mic\peripheral\ path. Within the
bsp_mic\ and bsp_sd\ paths, new include folders,
CMakeLists.txt files, and Kconfig files were established.
The bsp_mic folder houses the bsp_mic.c driver file,
while the bsp_sd folder contains the bsp_sd.c driver file.
Their respective include folders store .h header files. The
CMakeLists.txt file integrates the drivers into the build
system, enabling project utilisation of driver functionality.
The Kconfig file loads the entire driver configuration,
including GPIO pin definitions, into the sdkconfig file
within the IDF platform (configurable via the graphical
interface).

SD card module → ESP32-P4 SPI interface

In this manner, the ESP32-P4 acquires audio data via I2S and writes it to the SD card
via SPI to form WAV files.

1.3 Programme Analysis1.3 Programme Analysis
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

187

1.3.1 SD Card Driver Code
Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.
The SD card driver source code comprises two files: bsp_sd.c and bsp_sd.h.
Below we shall first analyse the bsp_sd.h programme: it defines the relevant SD card
pins and declares the functions used.
/* Header file references */

/* Function declarations and macro definitions */

Next, we shall analyse the bsp_sd.c programme: it initialises and configures the SD
card control bus, mounts it on the file system, and exposes API interface functions.
/* SD card initialisation and file system mounting function sd_init */

188

Within the `sd_init` function, configuration begins with the `esp_vfs_fat_sdm-
mc_mount_config_t` structure to set parameters for mounting the SD card's file system.
Subsequently, the `sdmmc_host_t` structure is configured to manage SDMMC host
controller settings (refer to code comments for specific parameter details). The
`sdmmc_slot_config_t` structure configures the SD card to utilise single-wire mode on
the SDIO bus. Finally, the esp_vfs_fat_sdmmc_mount function is invoked to initialise
the SD card and mount the file system. Should mounting fail, the error type is logged.

It is worth noting that on the ESP32P4 chip, when operating in Wi-Fi/Bluetooth host
mode, the selected SDIO bus slot must differ from that used in Wi-Fi/Bluetooth host
mode.

/* Function get_sd_card_info retrieves information about the currently mounted SD card
*/

189

This function call initialises the handle “card” obtained from the SD card, reads relevant
information about the SD card, and prints the log information.

/* SD card formatting function format_sd_card */

This function formats the specified SD card using esp_vfs_fat_sdcard_format.

/* SD card file operations */

create_file: Creates a binary file.

write_string_file: Writes to a text file.

read_string_file: Reads from a text file.

write_file: Writes a binary file.

write_file_seek: Writes a binary file (with an offset, allowing writing beyond the file's start
position).

read_file: Reads a binary file.

read_file_size: Reads the data size of a binary file.

read_write_file: Reads a binary file and writes its contents to another binary file.

1.3.2 Kconfig file

The primary function of this file is to add the required configuration to the sdkconfig file,
enabling certain parameter settings to be modified via a graphical interface. The numbers
here correspond to the respective GPIO pin numbers.

It is important to note that if the FORMAT_IF_MOUNT_FAILED configuration is enabled,
the SD card will be formatted should initialisation and mounting fail.

190

1.3.3 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_sd driver. To
successfully call functions from the bsp_sd folder within other functions, it is necessary to
configure the CMakeLists.txt file located within the bsp_sd folder. The configuration
details are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (the fatfs library). Subsequently, these
settings are registered with the build system via the idf_component_register command,
enabling the project to utilise the bsp_sd driver functionality.

1.3.4 Microphone driver code

Here we shall focus solely on the core code; for detailed source code, please refer to the
corresponding source files for this experiment within the code materials.

The microphone driver source code comprises two files: bsp_mic.c and bsp_mic.h.

Below we shall first analyse the bsp_mic.h programme: it defines the microphone pins
and declares the relevant functions.

/* Header file references */

/* Function declarations and macro definitions */

Next, we shall analyse the bsp_mic.c programme: configuring the microphone for I2S
PDM mode and exposing the API interface functions.

191

Within the mic_init function, configuration begins with the i2s_chan_config_t structure,
setting parameters for the I2S controller used by the microphone (here employing I2S
controller 0). Subsequently, the i2s_new_channel function is invoked to register a
receive channel on I2S controller 0. The `i2s_pdm_rx_config_t` structure configures
PDM format reception. We can alter the data bit width by modifying the `data_bit_width`
and `slot_bit_width` parameters within the `slot_cfg` field. Modifying the `slot_mode` and
`slot_mask` within `slot_cfg` changes the microphone's reception mode to stereo, mono,
etc. Finally, call the `i2s_channel_init_pdm_rx_mode` function to initialise the receive
channel using PDM format, then call `i2s_channel_enable` to activate the receive
channel.

Note: In this course, we are reading data in mono mode, specifically from the left
channel.

/* Function `generate_wav_header` for configuring the WAV format file header */

/* Microphone initialisation function mic_init */

192

This function configures the WAV file header (the standard header for WAV files) by
inputting the sampling rate and total data quantity.

/* Microphone recording and saving function mic_readwav_to_sd */

This function has three input parameters:

filename - The filename stored on the SD card (including the file system path)

rec_seconds - The duration of the recording (in seconds; consider recording time based
on SD card memory, with a maximum of 3600 seconds)

out_size - Total data size to be received from the recording

The function first validates the input parameters and checks whether the recording buffer
is correctly configured (requiring a buffer size sufficient for at least 1 second of recording).
It then calculates the total data required for recording based on the specified duration. A
WAV file header buffer is created, configured using the `generate_wav_header` function,
and written to the corresponding SD card file. Finally, a loop is established. If the
condition that the amount of data read is less than the required amount to be read is met,
the loop executes. The `min` function calculates how many data points to read in the
current iteration. The `i2s_channel_read` function is called to read the audio data
captured by the microphone, retrieving 16,000 data points each time. Upon successful
reading, the data is written to the file (skipping the first 44 data points corresponding to
the WAV header).

193

1.3.5 Kconfig file

The primary function of this file is to incorporate the requisite configuration into the
sdkconfig file, enabling certain parameter adjustments to be made via a graphical
interface. The GPIO configuration number here corresponds to the respective GPIO pin
number. MIC_SAMPLING_RATE denotes the sampling rate.

1.3.6 CMkaLists.txt file

The functionality of this example routine relies primarily on the bsp_mic driver. To
successfully call the contents of the bsp_mic folder from other functions, it is necessary
to configure the CMakeLists.txt file within the bsp_mic folder. The configuration details
are as follows:

Within this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (bsp_sd library). Subsequently, these
settings are registered with the build system via the idf_component_register
command, enabling the project to utilise the bsp_mic driver functionality.

1.3.7 main folder

The main folder serves as the core directory for programme execution, containing the
main function executable main.c and the header file main.h within the include folder. Add
the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilising the bsp_sd
driver necessitate inclusion of the bsp_sd header file, while those employing the
bsp_mic driver require the bsp_mic header file.

Below is an analysis of the main.c programme: system initialisation and initialisation of
SD card functionality and microphone functionality.

194

This code resides within the init function, which serves to store initialisation functions
requiring invocation and assess their return outcomes. Should the return status deviate
from ESP_OK, the code will output an error message and halt further execution. The
500ms delay configured for microphone initialisation serves to filter out noise generated
during the I2S initialisation of the receive channel.

Within the app_main function, directly invoke the mic_readwav_to_sd function to
record 5 seconds of audio and save it to the SD card. The file name defaults to test.wav
(this may be modified as required; should extended filenames be necessary, enable
Long filename support within the SDK configuration).

1.3.8 CMkaLists.txt file

To successfully call the contents of the bsp_sd folder within the main function, you must
configure the CMakeLists.txt file located in the main folder. The configuration details
are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_sd and bsp_mic.
Subsequently, these settings are registered with the build system via the idf_compo-
nent_register command, enabling the main function to utilise these driver functional-
ities.

195

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the led pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

196

1.4.3 Click Compile. Once compilation is successful, click Download.

Lesson 18 - I2S Audio PlaybackLesson 18 - I2S Audio Playback

Introduction
This chapter's tutorial introduces the I2S audio interface application for the ESP32-P4.
By playing WAV files from an SD card, it helps readers understand the principles of
audio data stream transmission and the basic usage of the I2S peripheral. Audio
playback is one of the most common functions for ESP32 series chips in multimedia and
voice projects. By studying this chapter, readers will learn how to configure the I2S
peripheral, parse WAV files, and implement sound output. This lays the foundation for
more complex projects involving speech recognition, audio synthesis, or music
playback.

Project Demonstration Effect

197

• 1.1 Introduction to I2S and WAV Files

• 1.2 Hardware Design

• 1.3 Software Design

• 1.4 Download and Verification

1.1.1 I2S Introduction

I2S (Inter-IC Sound) is a serial bus interface standard for transmitting digital audio data
between audio devices. The ESP32-P4 chip integrates an I2S controller supporting
various audio formats, including master/slave modes, stereo/mono, and 16/24/32-bit
sampling. It is widely used in scenarios such as speakers, voice assistants, recording,
and Bluetooth audio.

Key features of the I2S interface include:

① Standardized Interface: Supports the I2S-STD standard data format, ensuring
compatibility with common peripherals like audio decoders, DACs, and amplifier chips.

② High-Fidelity Transmission: Utilizes clock-synchronous audio data transfer to deliver
high-quality audio output at 44.1kHz, 48kHz, and even higher sampling rates.

③ Hardware FIFO Buffering: Incorporates an internal FIFO to reduce CPU load,
supports DMA continuous transfer, ensuring smooth, stutter-free audio playback.

④ Multi-Mode Support: Supports both Master and Slave modes, enabling flexible
adaptation to different audio circuit architectures.

⑤ Programmable Configuration: Software-configurable parameters including data bit
width, left/right channel timing, sample rate, and clock polarity to match diverse audio
chips.

The ESP32-P4's I2S functionality provides a robust hardware foundation for audio
applications. In this chapter, we will explore I2S implementation and configuration
through practical playback of WAV files from an SD card.

1.1.2 Playing WAV Files Guide

WAV files are a common uncompressed audio format that stores raw audio data using

This chapter is divided into the following subsections

1.1 Introduction to I2S and WAV Files

198

PCM (Pulse Code Modulation). Due to its simple structure and lossless audio quality,
WAV is frequently used for audio playback experiments in embedded systems.

① Sampling Rate and Audio Quality

The sampling rate determines audio clarity. Common sampling rates include 8kHz
(voice), 16kHz (telephony), and 44.1kHz (music). Higher sampling rates yield better
sound quality but also larger data sizes.

② Playback Principle

The I2S playback process for WAV files involves these steps:

Read the WAV file header from the SD card and parse parameters;

Initialize the I2S interface, setting the matching sample rate and bit width;

Read audio data blocks in a loop and transfer them to the I2S FIFO via DMA;

The I2S peripheral automatically outputs left and right channel data, driving an external
DAC or amplifier to produce sound.

1.2 Hardware Design

The audio output circuit of the ESP32-P4 development board consists of the following
components:

I2S data lines:

BCLK (bit clock)

WS (left/right channel selection)

DATA (Audio Data Line)

External DAC / Audio Amplifier Module: e.g., MAX98357A or ES8388, used to convert
digital signals into analog audio output;

SD Card Module: Communicates with the ESP32-P4 via SPI interface for storing WAV
audio files;

Speaker or Headphone Interface: Connects to the audio output terminal.

199

1.3 Programme Analysis

In the ESP32P4-dev-kits_audio example, a new
bsp_audio folder was created under the
ESP32P4-dev-kits_audio\peripheral\ directory. Within
the bsp_audio\ directory, an include folder, a
CMakeLists.txt file, and a Kconfig file were created.
The bsp_audio folder stores the bsp_audio.c driver
file, the include folder holds .h header files, and the
CMakeLists.txt file integrates the driver into the build
system, enabling project access to its functionality. The
Kconfig file loads the entire driver along with GPIO pin
definitions into the sdkconfig file within the IDF
platform (configurable via the graphical interface).

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

Schematic Diagram

200

1.3.1 Speaker Driver Code
Here we will only explain the core code. For detailed source code, please refer to the
corresponding source code for this experiment in the code materials.

The speaker driver source code consists of two files: bsp_audio.c and bsp_audio.h.

Below, we will first analyze the bsp_audio.h program: it defines the speaker output pins
and declares the functions used.

/* Header file references */

/* Function declarations and macro definitions */

Next, we'll analyze the bsp_audio.c program:

Initialize and configure the speaker for I2S standard mode.

Initialize and configure the NS4168 chip's channel selection pins.

Expose API interface functions.

/* I2S standard mode initialization function audio_init */

201

In the audio_init function, we first configure the i2s_chan_config_t structure to set
parameters for the I2S controller used by the speaker (here we use I2S controller 1).
Then, using the i2s_new_channel function, we register a transmit channel on I2S
controller 1. The `i2s_std_config_t` structure configures standard-mode transmission.
We can modify the data bit width by adjusting the `data_bit_width` and
`slot_bit_width` parameters within the `slot_cfg` field. To enable stereo or mono
output, modify the `slot_mode` and `slot_mask` settings within the `slot_cfg` field.
Finally, call `i2s_channel_init_std_mode` to initialize the transmit channel using
standard mode, then call `i2s_channel_enable` to activate the transmit channel.

Note: Our development board features two speakers, so we configure it for stereo mode
with dual-channel output.

/* audio_ctrl_init: Initialization function for the CTRL pin of the ns4168 chip */

This function calls the GPIO initialization structure to configure the CTRL pin as an
output mode.

/* Speaker mute control function set_Audio_ctrl */

This function calls gpio_set_level to output high/low level control. The status variable
determines the output level. The inversion operation is due to the MOSFET used in the
circuit design. A low level enables the MOSFET, while a high level controls the NS4168
chip to activate sound (dual channel). When the MOSFET is off (high level), it remains in
a low state, muting the sound.

/*wav file header validation function validate_wav_header*/

202

This function reads the first 44 bytes of a WAV file, checks for the standard WAV header,
and prints the file information.

/* Function Audio_play_wav_sd to play WAV files stored on the SD card through the
speaker */

203

1. This function first calls validate_wav_header to verify the wav file header's validity. It
then uses fseek to offset the file start position (skipping the wav header and initial 44
bytes), creating two buffers: one for storing data read from the SD card, and another for
transmitting data in I2S standard mode. The set_Audio_ctrl function is invoked to open
the audio channel (dual-channel). The `fread` function reads data from the SD card file
into the buffer, which is then assigned to the transmission buffer. Since microphone
recordings are mono data, and I2S standard mode transmits audio data in the format left
channel, right channel, left channel, the read data (identical data) is transmitted for both
channels.

204

2. The *10 operation applied to the read data is due to the low sound pressure recorded
by the microphone. Here, a linear amplification method is used to amplify the audio data
(this method also amplifies background noise; it is not used for microphone-recorded
audio). Since the set audio data width is 16 bits, under linear amplification, clipping
processing is required on the audio waveform to ensure the amplified data does not
exceed the bit width.

3. Send the amplified data via the `i2s_channel_write` function. Calculate the remain-
ing data to be read (to determine when to exit; each read operation processes 512 data
points) and the total data sent (to verify if all data was transmitted during debugging; if
incomplete, log an error message and exit the loop).

4. Upon transmission completion (or failure), configure the audio control pin to mute
mode and release buffers and file operations (to prevent stack overflow).

1.3.2 Kconfig file
The primary function of this file is to add the required configurations to the sdkconfig file,
enabling certain parameter adjustments to be made through a graphical interface. The
numbers here correspond to the respective GPIO pin numbers.

1.3.3 CMkaLists.txt file
The functionality of this example primarily relies on the bsp_audio driver. To successfully
call functions from the bsp_audio folder within other functions, you must configure the
CMakeLists.txt file located in the bsp_audio folder. The configuration is as follows:

In this CMakeLists.txt file, the directories for source files and header files are first
defined, along with the required driver library (bsp_sd library). Then, these settings are
registered into the build system using the idf_component_register command, enabling
the project to utilize the bsp_audio driver functionality.

205

1.3.4 main folder

The main folder serves as the core directory for program execution. It contains the main
function executable main.c and the main.h header file located within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.

The main.h file primarily references required header files: functions utilizing the bsp_sd
driver require the bsp_sd header file, while functions using the bsp_audio driver
require the bsp_audio header file.

Below is an analysis of the main.c program: System initialization and initialization for SD
card functionality and speaker functionality.

This code resides within the init function, which stores initialization functions to be called
and evaluates their return status. If the return status is not ESP_OK, the code prints an
error message and halts execution. Here, the configuration first sets up the audio control
pins and performs a mute operation. The 500ms initialization delay is implemented to
filter out noise generated during I2S initialization when sending channels.

In the app_main function, directly call the Audio_play_wav_sd function to play the WAV
file stored on the SD card. The filename is test.wav (can be modified as needed; if long
filenames are required, enable long filename support in sdkconfig).

1.3.5 CMkaLists.txt file

To successfully call the contents of the bsp_sd folder and bsp_audio folder within the
main function, you must configure the CMakeLists.txt file located in the main folder. The
configuration details are as follows:

206

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_sd and bsp_audio.
Then, these settings are registered with the build system using the idf_component_reg-
ister command, enabling the main function to utilize these driver features.

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the led pins.

Connect the P4 device to the computer via USB

1.4 Programming procedure

Connect the USB C cable

207

1.4.3 Click Compile. Once compilation is successful, click Download.

208

Lesson 19 - LVGL Touch LED ControlLesson 19 - LVGL Touch LED Control

Introduction
Building upon the previous chapters “GPIO Output Control of LED Lights” and “LVGL
Display,” this chapter further expands the control application scenarios for the P4
display. Through this chapter, readers will learn how to implement human-machine
interaction control on the ESP32-P4 development board using the LVGL graphical
interface library:

Control the on/off state of LED lights by tapping buttons on the touchscreen;

Master LVGL's basic controls and event response mechanisms;

Understand the combined application of GPIO and GUI.

Project Demonstration Effect

Red LED

Hello P4!

RED YELLOW GREEN BLUE

209

This project integrates graphical interface development with underlying hardware
control, representing a significant advancement from “turning on a light” to “touch-based
smart control.” It lays the foundation for subsequent smart home and human-computer
interaction projects.

1.1Project Objectives

Understand the fundamental components and operational mechanisms of the LVGL
graphical interface framework;

Master the usage of button controls (lv_btn) and label controls (lv_label);

Learn to control GPIO outputs via touch events to implement LED switching;

Master the design logic of event callback functions and methods for synchronized status
display.

1.2 Programme Analysis

The bsp_display folder has been added to the
ESP32P4-dev-kits_lvgl_touch example. Modifications
were made to the bsp_display.c file located in the
bsp_display\ directory, along with updates to the
CMakeLists.txt file and Kconfig files. New code related
to screen touch functionality has been introduced.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-ESP32-P4-with-Common-Board-design

Open the project file in VS Code as per the previous instructions.

210

1.2.1 Screen Touch Driver Code
Here we will only explain the core code. For detailed source code, please refer to the
corresponding source code for this experiment in the code materials.
The modifications to the screen touch driver source code involve two files: bsp_display.c
and bsp_display.h.
Below, we will first analyze the bsp_display.h program: Add relevant definitions and
function declarations for the screen touch pins.
/* Header file references */

/* Function declarations and macro definitions */

Additional content regarding screen touch functionality has been added to the existing
framework.
Next, we will analyze the bsp_display.c program: New initialization configuration and
setting function calls for the display's touch pins have been implemented.
/* Screen touch initialization function touch_init */

211

Within the `touch_init` function, parameter configuration is first performed for each
member variable of the `esp_lcd_panel_io_i2c_config_t` structure. This includes
configuring parameters such as the I²C 7-bit address and command bit width for the
GT911 touch control chip. Subsequently, the `esp_lcd_touch_config_t` structure is
invoked for configuration. This involves defining parameters related to screen resolution,
reset pins, interrupt pins, and their activation signals. The esp_lcd_new_panel_io_i2c
function is then invoked to assign the handle obtained earlier from the I2C driver to the
touch screen. Finally, the esp_lcd_touch_new_i2c_gt911 function initializes the GT911
touch chip configuration and returns the control handle.

Note: When the current GT911 address configuration fails, we switch to an alternative
address for reconfiguration (GT911 has two 7-bit addresses determined by the INT pin
level at power-up).

/* Added touch control to lvgl_init function */

The code added at the end of this function configures the IO handle obtained during
screen touch initialization with the previously configured lvgl display handle. It then uses
the lvgl_port_add_touch function to add touch functionality to the lvgl.

1.2.2 Kconfig file
The primary function of this file is to add the required configurations to the sdkconfig file,
enabling certain parameter adjustments to be made through a graphical interface. The
newly added touch-related configuration parameters define the interrupt pin and reset
pin.

212

1.2.3 CMkaLists.txt file
The functionality of this example primarily relies on the bsp_display driver. To success-
fully call the contents of the bsp_display folder within the main function, you must
configure the CMakeLists.txt file located in the bsp_display folder. The configuration
details are as follows:

In this CMakeLists.txt file, we first define the directories for source files and header files,
along with the required driver libraries (the driver library for the display driver chip
ek79007, the lvgl driver library, the newly added driver library for the touch driver chip
gt911, and our bsp_i2c driver library). Then, using the idf_component_register
command, we register these settings with the build system so the project can utilize the
bsp_display driver functionality.

1.2.4 main folder
The main folder serves as the core directory for program execution. It contains the main
function executable main.c and the main.h header file located within the include folder.
Add the main folder to the CMakeLists.txt file of the build system.
The main.h file primarily references required header files: functions utilizing the
bsp_display driver require the bsp_display header file, while those using the bsp_led
driver require the bsp_led header file.
Below is an analysis of the main.c program: System initialization and execution of
functions for display, touch, and LED capabilities.

This code resides within the init function, which stores initialization functions to be called
and evaluates their return values. If the return status is not ESP_OK, the code prints an
error message and halts execution.
/* Screen initialization and display function display_test */

213

This function primarily configures the initial screen display content: sets background
color and text display via lvgl controls. (Modifies the position of the original “Hello P4”
display, adds four button controls, and configures them accordingly)
lv_label_set_text function sets the text content displayed by the control
lv_style_set_bg_opa function sets the background color of the style
lv_obj_set_style_text_color function sets the text display color lv_obj_set_style_text_font
function sets the text font size
lv_obj_set_style_bg_color function sets the background color
lv_obj_set_style_bg_opa function sets background transparency
lv_obj_align function sets control alignment
lv_btn_create function creates button controls (with pressed, released, clicked effects)
lv_obj_set_size function sets control size
lv_obj_set_pos function sets control x/y coordinates
lv_obj_set_style_radius function sets the control's display radius
lv_obj_set_style_border_width function sets the pixel width of the control's border
lv_obj_set_style_border_color function sets the control's border color
Here we use a for loop to uniformly configure the display of buttons, including text, color,
border, position, etc. Refer to the code comments for specific effects. The final key step
is adding a callback function to handle Lvgl key events. (The last parameter passed
during registration is the callback function's argument; here we pass the key index for
subsequent LED control.)
Note: When calling lvgl functions outside the lvgl thread function, a mutex lock must be
acquired. Use lvgl_port_lock to acquire the lock and lvgl_port_unlock to release it.
/* Button event callback handler function button_event_handler */

214

Here, we retrieve the lv_event_t data obtained from the callback. We use the
lv_event_get_code function to determine the event type, the lv_event_get_target
function to identify which key was pressed, and the lv_event_get_user_data function to
obtain the corresponding input parameter configured for that key.
Based on the event, we determine whether it's a press event. If so, we set the key to a
pressed state and control the corresponding LED to light up according to the input
parameter. During a release event, we clear the key's pressed state and control the
corresponding LED to turn off based on the input parameter.

In the app_main function, first enable the backlight with brightness set to 100%, then
initialize the screen display content. All touch button operations are executed within
callback functions.

1.3.5 CMkaLists.txt file
To successfully call the contents of the bsp_display folder within the main function, you
must configure the CMakeLists.txt file located in the main folder. The configuration
details are as follows:

First, the directories for source files and header files are defined, along with the required
driver libraries—specifically, the driver libraries needed to link bsp_display and bsp_led
(bsp_i2c is already linked in the bsp_display folder). Then, these settings are registered
with the build system using the idf_component_register command, enabling main to
utilize these driver functions.

215

1.4 Programming procedure

Connect the USB C cable

1.4.1 After cloning the code via Git (link to be confirmed), clear all local compilation
information. Configure the IDF environment and chip model for compilation as per
Lesson One, and set the serial port number for programming.

1.4.2 The subsequent SDKConfig configuration is largely identical to Lesson 1, simply
reconfigure the led pins.

Connect the P4 device to the computer via USB

216

217

1.4.3 Click Compile. Once compilation is successful, click Download.

218

MAKE YOUR MAKING EASIER

