Crowtail- Electricity Sensor
Description¶
The Electricity sensor module is a member of Crowtail. It is based on the TA12-200 current transformer which can transform the large AC into small amplitude. You can use it to test large alternating current up to 5A.
Model: CT010593E
Features¶
- Crowtail compatible interface
- Maximum 5A input
- High accuracy
- Small size
Specification¶
Dimensions(mm):40.0(L)x20.0(W)x21.7(H)
| Items | Min | Norm | Max | Unit | 
|---|---|---|---|---|
| Transformation ratio | - | 2000:1 | - | - | 
| Input Current | 0 | - | 5 | A | 
| Output Current | 0 | - | 2.5 | mA | 
| Sampling Resistance | - | 800 | - | Ω | 
| Sampling Voltage | 0 | - | 2 | V | 
| Working Frequency | 20 | - | 20K | HZ | 
| Nonlinear scale | - | - | 0.2% | - | 
| Phase Shift | - | - | 5' | - | 
| Operating Temperature | -55 | - | 85 | ℃ | 
| Dielectric strength | - | 6 | - | KVAC/1min | 
Usage¶
With Arduino¶
The following sketch demonstrates a simple application of measuring the amplitude of the alternating voltage.The SIG pin will output a alternating voltage based on the alternating current being measured. You can measure the value using ADC.
Connect the module to the analog A0 of Crowtail- Base board Put the alternating current wire through the hole of the current transformer.
1.Copy and paste code as below to a your Arduino sketch.
/****************************************************************************/  
//  Function: Measure the amplitude current of the alternating current and 
//            the effective current of the sinusoidal alternating current.
//  Hardware: Crowtail - Electricity Sensor     
//  Date:    June 2,2016
//  by www.elecrow.com
#define ELECTRICITY_SENSOR A0 // Analog input pin that sensor is attached to
float amplitude_current;               //amplitude current
float effective_value;       //effective current 
void setup() 
{
    Serial.begin(9600); 
    pins_init();
}
void loop() 
{
    int sensor_max;
    sensor_max = getMaxValue();
    Serial.print("sensor_max = ");
    Serial.println(sensor_max);
    //the VCC on the Crowtail interface of the sensor is 5v
    amplitude_current=(float)sensor_max/1024*5/800*2000000;
    effective_value=amplitude_current/1.414;//minimum_current=1/1024*5/800*2000000/1.414=8.6(mA) 
                        //Only for sinusoidal alternating current
    Serial.println("The amplitude of the current is(in mA)");
    Serial.println(amplitude_current,1);//Only one number after the decimal point
    Serial.println("The effective value of the current is(in mA)");
    Serial.println(effective_value,1);
}
void pins_init()
{
    pinMode(ELECTRICITY_SENSOR, INPUT);
}
/*Function: Sample for 1000ms and get the maximum value from the SIG pin*/
int getMaxValue()
{
    int sensorValue;             //value read from the sensor
    int sensorMax = 0;
    uint32_t start_time = millis();
    while((millis()-start_time) < 1000)//sample for 1000ms
    {
        sensorValue = analogRead(ELECTRICITY_SENSOR);
        if (sensorValue > sensorMax) 
        {
            /*record the maximum sensor value*/
            sensorMax = sensorValue;
        }
    }
    return sensorMax;
}
Note: The minimum effective current that can be sensed by the code can be calculated using the equation below. minimum_current=1/1024*5/800*2000000/1.414=8.6(mA).
2.Open the serial monitor, The results is as follows:


